Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 15 Dec 2011 10:50:13 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/15/t132396433673wps3ej35an3vu.htm/, Retrieved Sun, 10 Nov 2024 20:05:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=155524, Retrieved Sun, 10 Nov 2024 20:05:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact143
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [mr] [2011-12-15 15:50:13] [935c692b8d0e827208dbfd6a4efb0528] [Current]
- RMP     [Recursive Partitioning (Regression Trees)] [tree] [2011-12-15 16:10:04] [7e17e0c557325a60eb6c8af681a1c273]
Feedback Forum

Post a new message
Dataseries X:
129988	81	18158	22622
130358	46	30461	73570
7215	18	1423	1929
112976	87	25629	36294
220191	127	48758	62378
402036	218	129230	167760
125071	51	27376	52443
131822	50	26706	57283
99738	39	26505	36614
269166	88	49801	93268
113066	69	46580	35439
165392	62	48352	72405
78240	90	13899	24044
170854	86	39342	55909
134368	47	27465	44689
125769	68	55211	49319
123467	50	74098	62075
57396	49	13497	2341
108458	79	38338	40551
22762	21	52505	11621
48633	50	10663	18741
182081	83	74484	84202
149507	62	28895	15334
93773	46	32827	28024
133428	79	36188	53306
126660	24	28173	37918
153851	140	54926	54819
140711	75	38900	89058
303952	108	88530	103354
163810	38	35482	70239
134521	41	26730	33045
157640	39	29806	63852
103274	90	41799	30905
193500	105	54289	24242
182027	44	36805	78907
0	1	0	0
181496	56	33146	36005
92342	47	23333	31972
115762	42	47686	35853
179089	51	77783	115301
145067	58	36042	47689
114146	50	34541	34223
86039	26	75620	43431
125481	66	60610	52220
95535	42	55041	33863
129236	79	32087	46879
61554	26	16356	23228
170811	83	40161	42827
161746	76	55459	65765
137317	52	36679	38167
48188	28	22346	14812
97793	57	27377	32615
249356	65	50273	82188
196791	69	32104	51763
161082	51	27016	59325
111388	47	19715	48976
172614	58	33629	43384
63681	19	27084	26692
109102	56	32352	53279
142391	76	51845	20652
125777	51	26591	38338
88650	66	29677	36735
95845	50	54237	42764
83419	29	20284	44331
101723	25	22741	41354
94982	37	34178	47879
145568	62	69551	103793
113325	63	29653	52235
92480	34	38071	49825
31970	15	4157	4105
196420	104	28321	58687
98324	56	40195	40745
80820	56	48158	33187
89319	61	13310	14063
118147	55	78474	37407
56544	32	6386	7190
118838	52	31588	49562
118781	80	61254	76324
60138	23	21152	21928
73422	66	41272	27860
70248	60	34165	28078
225857	54	37054	49577
51185	24	12368	28145
97181	32	23168	36241
45100	40	16380	10824
115801	43	41242	46892
187201	191	48450	61264
71960	86	20790	22933
81701	49	34585	20787
110416	43	35672	43978
98707	34	52168	51305
136234	67	53933	55593
136781	53	34474	51648
116132	54	43753	30552
49164	33	36456	23470
189493	93	51183	77530
169406	50	52742	57299
19349	12	3895	9604
160902	88	37076	34684
109510	53	24079	41094
43803	25	2325	3439
47062	19	29354	25171
110845	44	30341	23437
92517	52	18992	34086
58660	36	15292	24649
27676	22	5842	2342
98550	33	28918	45571
43863	25	3738	3255
0	0	0	0
75566	28	95352	30002
57359	49	37478	19360
104330	36	26839	43320
70369	47	26783	35513
65494	56	33392	23536
3616	5	0	0
0	0	0	0
148117	38	25446	54438
117946	66	59847	56812
138702	86	28162	33838
84336	33	33298	32366
43410	19	2781	13
139695	61	37121	55082
79015	34	22698	31334
106116	47	27615	16612
57586	38	32689	5084
19764	12	5752	9927
112195	43	23164	47413
103651	25	20304	27389
113402	35	34409	30425
11796	9	0	0
7627	9	0	0
121085	50	92538	33510
6836	3	0	0
139563	46	46037	40389
5118	3	0	0
40248	16	5444	6012
0	0	0	0
95079	42	23924	22205
80763	32	52230	17231
7131	4	0	0
4194	11	0	0
60378	20	8019	11017
109214	45	34542	46741
83484	16	21157	39869




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net







Multiple Linear Regression - Estimated Regression Equation
A[t] = + 14102.7884108882 + 724.742727483442B[t] + 0.115266470733345C[t] + 1.38449826266421D[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
A[t] =  +  14102.7884108882 +  724.742727483442B[t] +  0.115266470733345C[t] +  1.38449826266421D[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]A[t] =  +  14102.7884108882 +  724.742727483442B[t] +  0.115266470733345C[t] +  1.38449826266421D[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
A[t] = + 14102.7884108882 + 724.742727483442B[t] + 0.115266470733345C[t] + 1.38449826266421D[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)14102.78841088824580.4320983.07890.0025010.00125
B724.74272748344296.1858167.534800
C0.1152664707333450.1567740.73520.4634240.231712
D1.384498262664210.13571210.201700

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 14102.7884108882 & 4580.432098 & 3.0789 & 0.002501 & 0.00125 \tabularnewline
B & 724.742727483442 & 96.185816 & 7.5348 & 0 & 0 \tabularnewline
C & 0.115266470733345 & 0.156774 & 0.7352 & 0.463424 & 0.231712 \tabularnewline
D & 1.38449826266421 & 0.135712 & 10.2017 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]14102.7884108882[/C][C]4580.432098[/C][C]3.0789[/C][C]0.002501[/C][C]0.00125[/C][/ROW]
[ROW][C]B[/C][C]724.742727483442[/C][C]96.185816[/C][C]7.5348[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]C[/C][C]0.115266470733345[/C][C]0.156774[/C][C]0.7352[/C][C]0.463424[/C][C]0.231712[/C][/ROW]
[ROW][C]D[/C][C]1.38449826266421[/C][C]0.135712[/C][C]10.2017[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)14102.78841088824580.4320983.07890.0025010.00125
B724.74272748344296.1858167.534800
C0.1152664707333450.1567740.73520.4634240.231712
D1.384498262664210.13571210.201700







Multiple Linear Regression - Regression Statistics
Multiple R0.900380076041451
R-squared0.81068428133241
Adjusted R-squared0.80662751593239
F-TEST (value)199.835139919221
F-TEST (DF numerator)3
F-TEST (DF denominator)140
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation27304.227262772
Sum Squared Residuals104372915698.395

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.900380076041451 \tabularnewline
R-squared & 0.81068428133241 \tabularnewline
Adjusted R-squared & 0.80662751593239 \tabularnewline
F-TEST (value) & 199.835139919221 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 140 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 27304.227262772 \tabularnewline
Sum Squared Residuals & 104372915698.395 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.900380076041451[/C][/ROW]
[ROW][C]R-squared[/C][C]0.81068428133241[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.80662751593239[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]199.835139919221[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]140[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]27304.227262772[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]104372915698.395[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.900380076041451
R-squared0.81068428133241
Adjusted R-squared0.80662751593239
F-TEST (value)199.835139919221
F-TEST (DF numerator)3
F-TEST (DF denominator)140
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation27304.227262772
Sum Squared Residuals104372915698.395







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1129988106220.07761061323767.9223893873
2130358152809.623024341-22451.6230243408
3721529982.8788421229-22767.8788421229
4112976130358.550025507-17382.5500255073
5220191198127.5100097722063.4899902303
6402036419256.017559696-17220.0175596962
7125071126827.444804239-1756.44480423884
8131822132726.445132659-904.44513265884
99973896114.9119787173623.08802128296
10269166212749.91790058856416.0820994122
11113066118544.382744562-5478.38274456174
12165392164854.798615962537.201384037711
1378240114220.598788619-35980.5987886189
14170854158371.38983334912482.6101666513
15134368113203.33308150221164.6669184979
16125769138031.340811757-12262.340811757
17123467144823.66938834-21356.6693883404
185739654412.04404596172983.95595403833
19108458131919.338886351-23461.3388863514
202276251463.7060443155-28701.7060443155
214863377515.8931030798-28882.8931030798
22182081199419.465310968-17338.465310968
2314950783597.358546394565909.6414536055
249377390023.98562279183749.01437720821
25133428149330.791314557-15902.7913145566
2612666087241.421274162839418.5787258372
27153851197794.706691059-43943.706691059
28140711196243.004960023-55532.0049600225
29303952245672.9770725258279.0229274805
30163810142978.67044109120831.3295589091
3113452192649.058090150441871.9419098496
32157640134206.37027705623433.6297229445
33103274126935.575902218-23661.5759022184
34193500130021.48310979863478.5168902022
35182027159480.45528754522546.5447124549
36014827.5311383716-14827.5311383716
37181496108357.86353611373138.1364638868
389234295120.3876181311-2778.38761813114
3911576299676.996099882916085.0039001171
40179089219664.473589041-40575.4735890414
41145067126317.63839129218749.3616087075
42114146101703.02799381812442.9720061821
4386039101792.693888082-15753.6938880825
44125481141220.608492268-15739.6084922683
459553597769.629449425-2234.62944942487
46129236139959.913183936-10723.9131839363
476155466990.5233659365-5436.52336593648
48170811138179.55861825632631.4413817443
49161746166627.327144142-4881.327144142
50137317108859.4143111628457.5856888396
514818857478.5176020141-9290.51760201412
5297793103724.184883504-5931.18488350429
53249356180795.00019233568560.9998076647
54196791139476.33495395657314.6650460436
55161082136314.0659184324767.9340815701
56111388118245.36198536-6857.36198536011
57172614120079.23537664352534.7646233565
586368167949.8049534485-4268.80495344855
59109102132182.164947612-23080.1649476125
60142391103751.88399534138639.1160046588
61125777107208.61262983518568.3873701655
6288650116216.115155718-27566.1151557185
6395845115798.316062797-19953.3160627969
648341998834.5850824302-15415.5850824302
6510172392097.17256313699625.8274368631
6694982111146.239082599-16164.2390825994
67145568210754.963997543-65186.9639975427
68113325135498.843649266-22173.8436492658
6992480112114.976889859-19634.9768898586
703197031136.4574102149833.54258978511
71196420173992.5433277822427.4566722204
7298324115732.898653341-17408.8986533409
7380820106186.727690574-25366.7276905744
748931979316.490580685710002.5094193143
75118147114798.9859582863348.01404171396
765654447985.18988101718558.8101189829
77118838124048.950411716-5210.95041171555
78118781184813.184407447-66032.1844074469
796013863569.2654356598-3431.26543565982
8073422105265.207802727-31843.2078027268
8170248100399.373251585-30151.373251585
82225857126149.24986965199707.7501303491
835118571888.933183205-20703.9331832049
849718190140.6508215227040.34917847797
854510059966.3714959154-14866.3714959154
86115801114942.438011511858.561988489144
87187201242933.211431116-55732.2114311161
8871960110577.751558689-38617.7515586887
898170182381.2383338905-680.238333890456
90110416110265.975832123150.024167877383
9198707115788.94575653-17081.9457565296
92136234145845.629634632-9611.6296346316
93136781127994.4155496538786.58445034703
94116132100581.34050990715550.659490093
954916474715.6270996256-25551.6270996256
96189493194743.696142749-5250.69614274914
97169406135749.67493687533656.3250631252
981934936545.3853588229-17196.3853588229
99160902130173.70584058630728.2941594141
100109510112184.225922222-2674.22592222178
1014380337250.64066773156552.35933226855
1024706266105.637984501-19043.637984501
10311084581937.254190741128907.7458092589
10492517101170.558833367-8653.55883336704
1055866076082.6791471565-17422.6791471565
1062767633963.0100687077-6287.01006870766
10798550104445.544546379-5895.54454637928
1084386337158.76451054756704.23548945255
109014102.7884108882-14102.7884108882
1107556686924.190174242-11358.1901742421
1115735980739.0252129002-23380.0252129002
112104330103263.6281469181066.37185308216
11370369100420.565290255-30051.5652902551
1146549491122.9102507536-25628.9102507536
115361617726.5020483054-14110.5020483054
116014102.7884108882-14102.7884108882
117148117119945.39909245428171.6009075462
118117946147490.276197253-29544.2761972528
119138702126525.44953528812176.5504647119
1208433686668.1121297105-2332.11212971045
1214341028211.454765597615198.5452344024
122139695138851.834751541843.165248459448
1237901584742.228060351-5727.22806035097
12410611674348.065331289131767.9346687109
1255758652449.74688444615136.2531155539
1261976437206.6281338153-17442.6281338153
127112195113579.974348441-1384.97434844149
12810365172481.74993585431169.2500641459
12911340285558.347505830827843.6524941692
1301179620625.4729582392-8829.47295823915
131762720625.4729582392-12998.4729582392
132121085107400.9902356613684.0097643398
133683616277.0165933385-9441.0165933385
134139563108665.97671902230897.0232809778
135511816277.0165933385-11159.0165933385
1364024834649.78627243285598.21372756721
137014102.7884108882-14102.7884108882
1389507978042.40193347617036.598066524
1398076367171.213020727913591.7869792721
140713117001.7593208219-9870.75932082194
141419422074.958413206-17880.958413206
1426037844774.982149139315603.0178508607
143109214115410.578874902-6196.57887490203
1448348483335.926006088148.073993912042

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 129988 & 106220.077610613 & 23767.9223893873 \tabularnewline
2 & 130358 & 152809.623024341 & -22451.6230243408 \tabularnewline
3 & 7215 & 29982.8788421229 & -22767.8788421229 \tabularnewline
4 & 112976 & 130358.550025507 & -17382.5500255073 \tabularnewline
5 & 220191 & 198127.51000977 & 22063.4899902303 \tabularnewline
6 & 402036 & 419256.017559696 & -17220.0175596962 \tabularnewline
7 & 125071 & 126827.444804239 & -1756.44480423884 \tabularnewline
8 & 131822 & 132726.445132659 & -904.44513265884 \tabularnewline
9 & 99738 & 96114.911978717 & 3623.08802128296 \tabularnewline
10 & 269166 & 212749.917900588 & 56416.0820994122 \tabularnewline
11 & 113066 & 118544.382744562 & -5478.38274456174 \tabularnewline
12 & 165392 & 164854.798615962 & 537.201384037711 \tabularnewline
13 & 78240 & 114220.598788619 & -35980.5987886189 \tabularnewline
14 & 170854 & 158371.389833349 & 12482.6101666513 \tabularnewline
15 & 134368 & 113203.333081502 & 21164.6669184979 \tabularnewline
16 & 125769 & 138031.340811757 & -12262.340811757 \tabularnewline
17 & 123467 & 144823.66938834 & -21356.6693883404 \tabularnewline
18 & 57396 & 54412.0440459617 & 2983.95595403833 \tabularnewline
19 & 108458 & 131919.338886351 & -23461.3388863514 \tabularnewline
20 & 22762 & 51463.7060443155 & -28701.7060443155 \tabularnewline
21 & 48633 & 77515.8931030798 & -28882.8931030798 \tabularnewline
22 & 182081 & 199419.465310968 & -17338.465310968 \tabularnewline
23 & 149507 & 83597.3585463945 & 65909.6414536055 \tabularnewline
24 & 93773 & 90023.9856227918 & 3749.01437720821 \tabularnewline
25 & 133428 & 149330.791314557 & -15902.7913145566 \tabularnewline
26 & 126660 & 87241.4212741628 & 39418.5787258372 \tabularnewline
27 & 153851 & 197794.706691059 & -43943.706691059 \tabularnewline
28 & 140711 & 196243.004960023 & -55532.0049600225 \tabularnewline
29 & 303952 & 245672.97707252 & 58279.0229274805 \tabularnewline
30 & 163810 & 142978.670441091 & 20831.3295589091 \tabularnewline
31 & 134521 & 92649.0580901504 & 41871.9419098496 \tabularnewline
32 & 157640 & 134206.370277056 & 23433.6297229445 \tabularnewline
33 & 103274 & 126935.575902218 & -23661.5759022184 \tabularnewline
34 & 193500 & 130021.483109798 & 63478.5168902022 \tabularnewline
35 & 182027 & 159480.455287545 & 22546.5447124549 \tabularnewline
36 & 0 & 14827.5311383716 & -14827.5311383716 \tabularnewline
37 & 181496 & 108357.863536113 & 73138.1364638868 \tabularnewline
38 & 92342 & 95120.3876181311 & -2778.38761813114 \tabularnewline
39 & 115762 & 99676.9960998829 & 16085.0039001171 \tabularnewline
40 & 179089 & 219664.473589041 & -40575.4735890414 \tabularnewline
41 & 145067 & 126317.638391292 & 18749.3616087075 \tabularnewline
42 & 114146 & 101703.027993818 & 12442.9720061821 \tabularnewline
43 & 86039 & 101792.693888082 & -15753.6938880825 \tabularnewline
44 & 125481 & 141220.608492268 & -15739.6084922683 \tabularnewline
45 & 95535 & 97769.629449425 & -2234.62944942487 \tabularnewline
46 & 129236 & 139959.913183936 & -10723.9131839363 \tabularnewline
47 & 61554 & 66990.5233659365 & -5436.52336593648 \tabularnewline
48 & 170811 & 138179.558618256 & 32631.4413817443 \tabularnewline
49 & 161746 & 166627.327144142 & -4881.327144142 \tabularnewline
50 & 137317 & 108859.41431116 & 28457.5856888396 \tabularnewline
51 & 48188 & 57478.5176020141 & -9290.51760201412 \tabularnewline
52 & 97793 & 103724.184883504 & -5931.18488350429 \tabularnewline
53 & 249356 & 180795.000192335 & 68560.9998076647 \tabularnewline
54 & 196791 & 139476.334953956 & 57314.6650460436 \tabularnewline
55 & 161082 & 136314.06591843 & 24767.9340815701 \tabularnewline
56 & 111388 & 118245.36198536 & -6857.36198536011 \tabularnewline
57 & 172614 & 120079.235376643 & 52534.7646233565 \tabularnewline
58 & 63681 & 67949.8049534485 & -4268.80495344855 \tabularnewline
59 & 109102 & 132182.164947612 & -23080.1649476125 \tabularnewline
60 & 142391 & 103751.883995341 & 38639.1160046588 \tabularnewline
61 & 125777 & 107208.612629835 & 18568.3873701655 \tabularnewline
62 & 88650 & 116216.115155718 & -27566.1151557185 \tabularnewline
63 & 95845 & 115798.316062797 & -19953.3160627969 \tabularnewline
64 & 83419 & 98834.5850824302 & -15415.5850824302 \tabularnewline
65 & 101723 & 92097.1725631369 & 9625.8274368631 \tabularnewline
66 & 94982 & 111146.239082599 & -16164.2390825994 \tabularnewline
67 & 145568 & 210754.963997543 & -65186.9639975427 \tabularnewline
68 & 113325 & 135498.843649266 & -22173.8436492658 \tabularnewline
69 & 92480 & 112114.976889859 & -19634.9768898586 \tabularnewline
70 & 31970 & 31136.4574102149 & 833.54258978511 \tabularnewline
71 & 196420 & 173992.54332778 & 22427.4566722204 \tabularnewline
72 & 98324 & 115732.898653341 & -17408.8986533409 \tabularnewline
73 & 80820 & 106186.727690574 & -25366.7276905744 \tabularnewline
74 & 89319 & 79316.4905806857 & 10002.5094193143 \tabularnewline
75 & 118147 & 114798.985958286 & 3348.01404171396 \tabularnewline
76 & 56544 & 47985.1898810171 & 8558.8101189829 \tabularnewline
77 & 118838 & 124048.950411716 & -5210.95041171555 \tabularnewline
78 & 118781 & 184813.184407447 & -66032.1844074469 \tabularnewline
79 & 60138 & 63569.2654356598 & -3431.26543565982 \tabularnewline
80 & 73422 & 105265.207802727 & -31843.2078027268 \tabularnewline
81 & 70248 & 100399.373251585 & -30151.373251585 \tabularnewline
82 & 225857 & 126149.249869651 & 99707.7501303491 \tabularnewline
83 & 51185 & 71888.933183205 & -20703.9331832049 \tabularnewline
84 & 97181 & 90140.650821522 & 7040.34917847797 \tabularnewline
85 & 45100 & 59966.3714959154 & -14866.3714959154 \tabularnewline
86 & 115801 & 114942.438011511 & 858.561988489144 \tabularnewline
87 & 187201 & 242933.211431116 & -55732.2114311161 \tabularnewline
88 & 71960 & 110577.751558689 & -38617.7515586887 \tabularnewline
89 & 81701 & 82381.2383338905 & -680.238333890456 \tabularnewline
90 & 110416 & 110265.975832123 & 150.024167877383 \tabularnewline
91 & 98707 & 115788.94575653 & -17081.9457565296 \tabularnewline
92 & 136234 & 145845.629634632 & -9611.6296346316 \tabularnewline
93 & 136781 & 127994.415549653 & 8786.58445034703 \tabularnewline
94 & 116132 & 100581.340509907 & 15550.659490093 \tabularnewline
95 & 49164 & 74715.6270996256 & -25551.6270996256 \tabularnewline
96 & 189493 & 194743.696142749 & -5250.69614274914 \tabularnewline
97 & 169406 & 135749.674936875 & 33656.3250631252 \tabularnewline
98 & 19349 & 36545.3853588229 & -17196.3853588229 \tabularnewline
99 & 160902 & 130173.705840586 & 30728.2941594141 \tabularnewline
100 & 109510 & 112184.225922222 & -2674.22592222178 \tabularnewline
101 & 43803 & 37250.6406677315 & 6552.35933226855 \tabularnewline
102 & 47062 & 66105.637984501 & -19043.637984501 \tabularnewline
103 & 110845 & 81937.2541907411 & 28907.7458092589 \tabularnewline
104 & 92517 & 101170.558833367 & -8653.55883336704 \tabularnewline
105 & 58660 & 76082.6791471565 & -17422.6791471565 \tabularnewline
106 & 27676 & 33963.0100687077 & -6287.01006870766 \tabularnewline
107 & 98550 & 104445.544546379 & -5895.54454637928 \tabularnewline
108 & 43863 & 37158.7645105475 & 6704.23548945255 \tabularnewline
109 & 0 & 14102.7884108882 & -14102.7884108882 \tabularnewline
110 & 75566 & 86924.190174242 & -11358.1901742421 \tabularnewline
111 & 57359 & 80739.0252129002 & -23380.0252129002 \tabularnewline
112 & 104330 & 103263.628146918 & 1066.37185308216 \tabularnewline
113 & 70369 & 100420.565290255 & -30051.5652902551 \tabularnewline
114 & 65494 & 91122.9102507536 & -25628.9102507536 \tabularnewline
115 & 3616 & 17726.5020483054 & -14110.5020483054 \tabularnewline
116 & 0 & 14102.7884108882 & -14102.7884108882 \tabularnewline
117 & 148117 & 119945.399092454 & 28171.6009075462 \tabularnewline
118 & 117946 & 147490.276197253 & -29544.2761972528 \tabularnewline
119 & 138702 & 126525.449535288 & 12176.5504647119 \tabularnewline
120 & 84336 & 86668.1121297105 & -2332.11212971045 \tabularnewline
121 & 43410 & 28211.4547655976 & 15198.5452344024 \tabularnewline
122 & 139695 & 138851.834751541 & 843.165248459448 \tabularnewline
123 & 79015 & 84742.228060351 & -5727.22806035097 \tabularnewline
124 & 106116 & 74348.0653312891 & 31767.9346687109 \tabularnewline
125 & 57586 & 52449.7468844461 & 5136.2531155539 \tabularnewline
126 & 19764 & 37206.6281338153 & -17442.6281338153 \tabularnewline
127 & 112195 & 113579.974348441 & -1384.97434844149 \tabularnewline
128 & 103651 & 72481.749935854 & 31169.2500641459 \tabularnewline
129 & 113402 & 85558.3475058308 & 27843.6524941692 \tabularnewline
130 & 11796 & 20625.4729582392 & -8829.47295823915 \tabularnewline
131 & 7627 & 20625.4729582392 & -12998.4729582392 \tabularnewline
132 & 121085 & 107400.99023566 & 13684.0097643398 \tabularnewline
133 & 6836 & 16277.0165933385 & -9441.0165933385 \tabularnewline
134 & 139563 & 108665.976719022 & 30897.0232809778 \tabularnewline
135 & 5118 & 16277.0165933385 & -11159.0165933385 \tabularnewline
136 & 40248 & 34649.7862724328 & 5598.21372756721 \tabularnewline
137 & 0 & 14102.7884108882 & -14102.7884108882 \tabularnewline
138 & 95079 & 78042.401933476 & 17036.598066524 \tabularnewline
139 & 80763 & 67171.2130207279 & 13591.7869792721 \tabularnewline
140 & 7131 & 17001.7593208219 & -9870.75932082194 \tabularnewline
141 & 4194 & 22074.958413206 & -17880.958413206 \tabularnewline
142 & 60378 & 44774.9821491393 & 15603.0178508607 \tabularnewline
143 & 109214 & 115410.578874902 & -6196.57887490203 \tabularnewline
144 & 83484 & 83335.926006088 & 148.073993912042 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]129988[/C][C]106220.077610613[/C][C]23767.9223893873[/C][/ROW]
[ROW][C]2[/C][C]130358[/C][C]152809.623024341[/C][C]-22451.6230243408[/C][/ROW]
[ROW][C]3[/C][C]7215[/C][C]29982.8788421229[/C][C]-22767.8788421229[/C][/ROW]
[ROW][C]4[/C][C]112976[/C][C]130358.550025507[/C][C]-17382.5500255073[/C][/ROW]
[ROW][C]5[/C][C]220191[/C][C]198127.51000977[/C][C]22063.4899902303[/C][/ROW]
[ROW][C]6[/C][C]402036[/C][C]419256.017559696[/C][C]-17220.0175596962[/C][/ROW]
[ROW][C]7[/C][C]125071[/C][C]126827.444804239[/C][C]-1756.44480423884[/C][/ROW]
[ROW][C]8[/C][C]131822[/C][C]132726.445132659[/C][C]-904.44513265884[/C][/ROW]
[ROW][C]9[/C][C]99738[/C][C]96114.911978717[/C][C]3623.08802128296[/C][/ROW]
[ROW][C]10[/C][C]269166[/C][C]212749.917900588[/C][C]56416.0820994122[/C][/ROW]
[ROW][C]11[/C][C]113066[/C][C]118544.382744562[/C][C]-5478.38274456174[/C][/ROW]
[ROW][C]12[/C][C]165392[/C][C]164854.798615962[/C][C]537.201384037711[/C][/ROW]
[ROW][C]13[/C][C]78240[/C][C]114220.598788619[/C][C]-35980.5987886189[/C][/ROW]
[ROW][C]14[/C][C]170854[/C][C]158371.389833349[/C][C]12482.6101666513[/C][/ROW]
[ROW][C]15[/C][C]134368[/C][C]113203.333081502[/C][C]21164.6669184979[/C][/ROW]
[ROW][C]16[/C][C]125769[/C][C]138031.340811757[/C][C]-12262.340811757[/C][/ROW]
[ROW][C]17[/C][C]123467[/C][C]144823.66938834[/C][C]-21356.6693883404[/C][/ROW]
[ROW][C]18[/C][C]57396[/C][C]54412.0440459617[/C][C]2983.95595403833[/C][/ROW]
[ROW][C]19[/C][C]108458[/C][C]131919.338886351[/C][C]-23461.3388863514[/C][/ROW]
[ROW][C]20[/C][C]22762[/C][C]51463.7060443155[/C][C]-28701.7060443155[/C][/ROW]
[ROW][C]21[/C][C]48633[/C][C]77515.8931030798[/C][C]-28882.8931030798[/C][/ROW]
[ROW][C]22[/C][C]182081[/C][C]199419.465310968[/C][C]-17338.465310968[/C][/ROW]
[ROW][C]23[/C][C]149507[/C][C]83597.3585463945[/C][C]65909.6414536055[/C][/ROW]
[ROW][C]24[/C][C]93773[/C][C]90023.9856227918[/C][C]3749.01437720821[/C][/ROW]
[ROW][C]25[/C][C]133428[/C][C]149330.791314557[/C][C]-15902.7913145566[/C][/ROW]
[ROW][C]26[/C][C]126660[/C][C]87241.4212741628[/C][C]39418.5787258372[/C][/ROW]
[ROW][C]27[/C][C]153851[/C][C]197794.706691059[/C][C]-43943.706691059[/C][/ROW]
[ROW][C]28[/C][C]140711[/C][C]196243.004960023[/C][C]-55532.0049600225[/C][/ROW]
[ROW][C]29[/C][C]303952[/C][C]245672.97707252[/C][C]58279.0229274805[/C][/ROW]
[ROW][C]30[/C][C]163810[/C][C]142978.670441091[/C][C]20831.3295589091[/C][/ROW]
[ROW][C]31[/C][C]134521[/C][C]92649.0580901504[/C][C]41871.9419098496[/C][/ROW]
[ROW][C]32[/C][C]157640[/C][C]134206.370277056[/C][C]23433.6297229445[/C][/ROW]
[ROW][C]33[/C][C]103274[/C][C]126935.575902218[/C][C]-23661.5759022184[/C][/ROW]
[ROW][C]34[/C][C]193500[/C][C]130021.483109798[/C][C]63478.5168902022[/C][/ROW]
[ROW][C]35[/C][C]182027[/C][C]159480.455287545[/C][C]22546.5447124549[/C][/ROW]
[ROW][C]36[/C][C]0[/C][C]14827.5311383716[/C][C]-14827.5311383716[/C][/ROW]
[ROW][C]37[/C][C]181496[/C][C]108357.863536113[/C][C]73138.1364638868[/C][/ROW]
[ROW][C]38[/C][C]92342[/C][C]95120.3876181311[/C][C]-2778.38761813114[/C][/ROW]
[ROW][C]39[/C][C]115762[/C][C]99676.9960998829[/C][C]16085.0039001171[/C][/ROW]
[ROW][C]40[/C][C]179089[/C][C]219664.473589041[/C][C]-40575.4735890414[/C][/ROW]
[ROW][C]41[/C][C]145067[/C][C]126317.638391292[/C][C]18749.3616087075[/C][/ROW]
[ROW][C]42[/C][C]114146[/C][C]101703.027993818[/C][C]12442.9720061821[/C][/ROW]
[ROW][C]43[/C][C]86039[/C][C]101792.693888082[/C][C]-15753.6938880825[/C][/ROW]
[ROW][C]44[/C][C]125481[/C][C]141220.608492268[/C][C]-15739.6084922683[/C][/ROW]
[ROW][C]45[/C][C]95535[/C][C]97769.629449425[/C][C]-2234.62944942487[/C][/ROW]
[ROW][C]46[/C][C]129236[/C][C]139959.913183936[/C][C]-10723.9131839363[/C][/ROW]
[ROW][C]47[/C][C]61554[/C][C]66990.5233659365[/C][C]-5436.52336593648[/C][/ROW]
[ROW][C]48[/C][C]170811[/C][C]138179.558618256[/C][C]32631.4413817443[/C][/ROW]
[ROW][C]49[/C][C]161746[/C][C]166627.327144142[/C][C]-4881.327144142[/C][/ROW]
[ROW][C]50[/C][C]137317[/C][C]108859.41431116[/C][C]28457.5856888396[/C][/ROW]
[ROW][C]51[/C][C]48188[/C][C]57478.5176020141[/C][C]-9290.51760201412[/C][/ROW]
[ROW][C]52[/C][C]97793[/C][C]103724.184883504[/C][C]-5931.18488350429[/C][/ROW]
[ROW][C]53[/C][C]249356[/C][C]180795.000192335[/C][C]68560.9998076647[/C][/ROW]
[ROW][C]54[/C][C]196791[/C][C]139476.334953956[/C][C]57314.6650460436[/C][/ROW]
[ROW][C]55[/C][C]161082[/C][C]136314.06591843[/C][C]24767.9340815701[/C][/ROW]
[ROW][C]56[/C][C]111388[/C][C]118245.36198536[/C][C]-6857.36198536011[/C][/ROW]
[ROW][C]57[/C][C]172614[/C][C]120079.235376643[/C][C]52534.7646233565[/C][/ROW]
[ROW][C]58[/C][C]63681[/C][C]67949.8049534485[/C][C]-4268.80495344855[/C][/ROW]
[ROW][C]59[/C][C]109102[/C][C]132182.164947612[/C][C]-23080.1649476125[/C][/ROW]
[ROW][C]60[/C][C]142391[/C][C]103751.883995341[/C][C]38639.1160046588[/C][/ROW]
[ROW][C]61[/C][C]125777[/C][C]107208.612629835[/C][C]18568.3873701655[/C][/ROW]
[ROW][C]62[/C][C]88650[/C][C]116216.115155718[/C][C]-27566.1151557185[/C][/ROW]
[ROW][C]63[/C][C]95845[/C][C]115798.316062797[/C][C]-19953.3160627969[/C][/ROW]
[ROW][C]64[/C][C]83419[/C][C]98834.5850824302[/C][C]-15415.5850824302[/C][/ROW]
[ROW][C]65[/C][C]101723[/C][C]92097.1725631369[/C][C]9625.8274368631[/C][/ROW]
[ROW][C]66[/C][C]94982[/C][C]111146.239082599[/C][C]-16164.2390825994[/C][/ROW]
[ROW][C]67[/C][C]145568[/C][C]210754.963997543[/C][C]-65186.9639975427[/C][/ROW]
[ROW][C]68[/C][C]113325[/C][C]135498.843649266[/C][C]-22173.8436492658[/C][/ROW]
[ROW][C]69[/C][C]92480[/C][C]112114.976889859[/C][C]-19634.9768898586[/C][/ROW]
[ROW][C]70[/C][C]31970[/C][C]31136.4574102149[/C][C]833.54258978511[/C][/ROW]
[ROW][C]71[/C][C]196420[/C][C]173992.54332778[/C][C]22427.4566722204[/C][/ROW]
[ROW][C]72[/C][C]98324[/C][C]115732.898653341[/C][C]-17408.8986533409[/C][/ROW]
[ROW][C]73[/C][C]80820[/C][C]106186.727690574[/C][C]-25366.7276905744[/C][/ROW]
[ROW][C]74[/C][C]89319[/C][C]79316.4905806857[/C][C]10002.5094193143[/C][/ROW]
[ROW][C]75[/C][C]118147[/C][C]114798.985958286[/C][C]3348.01404171396[/C][/ROW]
[ROW][C]76[/C][C]56544[/C][C]47985.1898810171[/C][C]8558.8101189829[/C][/ROW]
[ROW][C]77[/C][C]118838[/C][C]124048.950411716[/C][C]-5210.95041171555[/C][/ROW]
[ROW][C]78[/C][C]118781[/C][C]184813.184407447[/C][C]-66032.1844074469[/C][/ROW]
[ROW][C]79[/C][C]60138[/C][C]63569.2654356598[/C][C]-3431.26543565982[/C][/ROW]
[ROW][C]80[/C][C]73422[/C][C]105265.207802727[/C][C]-31843.2078027268[/C][/ROW]
[ROW][C]81[/C][C]70248[/C][C]100399.373251585[/C][C]-30151.373251585[/C][/ROW]
[ROW][C]82[/C][C]225857[/C][C]126149.249869651[/C][C]99707.7501303491[/C][/ROW]
[ROW][C]83[/C][C]51185[/C][C]71888.933183205[/C][C]-20703.9331832049[/C][/ROW]
[ROW][C]84[/C][C]97181[/C][C]90140.650821522[/C][C]7040.34917847797[/C][/ROW]
[ROW][C]85[/C][C]45100[/C][C]59966.3714959154[/C][C]-14866.3714959154[/C][/ROW]
[ROW][C]86[/C][C]115801[/C][C]114942.438011511[/C][C]858.561988489144[/C][/ROW]
[ROW][C]87[/C][C]187201[/C][C]242933.211431116[/C][C]-55732.2114311161[/C][/ROW]
[ROW][C]88[/C][C]71960[/C][C]110577.751558689[/C][C]-38617.7515586887[/C][/ROW]
[ROW][C]89[/C][C]81701[/C][C]82381.2383338905[/C][C]-680.238333890456[/C][/ROW]
[ROW][C]90[/C][C]110416[/C][C]110265.975832123[/C][C]150.024167877383[/C][/ROW]
[ROW][C]91[/C][C]98707[/C][C]115788.94575653[/C][C]-17081.9457565296[/C][/ROW]
[ROW][C]92[/C][C]136234[/C][C]145845.629634632[/C][C]-9611.6296346316[/C][/ROW]
[ROW][C]93[/C][C]136781[/C][C]127994.415549653[/C][C]8786.58445034703[/C][/ROW]
[ROW][C]94[/C][C]116132[/C][C]100581.340509907[/C][C]15550.659490093[/C][/ROW]
[ROW][C]95[/C][C]49164[/C][C]74715.6270996256[/C][C]-25551.6270996256[/C][/ROW]
[ROW][C]96[/C][C]189493[/C][C]194743.696142749[/C][C]-5250.69614274914[/C][/ROW]
[ROW][C]97[/C][C]169406[/C][C]135749.674936875[/C][C]33656.3250631252[/C][/ROW]
[ROW][C]98[/C][C]19349[/C][C]36545.3853588229[/C][C]-17196.3853588229[/C][/ROW]
[ROW][C]99[/C][C]160902[/C][C]130173.705840586[/C][C]30728.2941594141[/C][/ROW]
[ROW][C]100[/C][C]109510[/C][C]112184.225922222[/C][C]-2674.22592222178[/C][/ROW]
[ROW][C]101[/C][C]43803[/C][C]37250.6406677315[/C][C]6552.35933226855[/C][/ROW]
[ROW][C]102[/C][C]47062[/C][C]66105.637984501[/C][C]-19043.637984501[/C][/ROW]
[ROW][C]103[/C][C]110845[/C][C]81937.2541907411[/C][C]28907.7458092589[/C][/ROW]
[ROW][C]104[/C][C]92517[/C][C]101170.558833367[/C][C]-8653.55883336704[/C][/ROW]
[ROW][C]105[/C][C]58660[/C][C]76082.6791471565[/C][C]-17422.6791471565[/C][/ROW]
[ROW][C]106[/C][C]27676[/C][C]33963.0100687077[/C][C]-6287.01006870766[/C][/ROW]
[ROW][C]107[/C][C]98550[/C][C]104445.544546379[/C][C]-5895.54454637928[/C][/ROW]
[ROW][C]108[/C][C]43863[/C][C]37158.7645105475[/C][C]6704.23548945255[/C][/ROW]
[ROW][C]109[/C][C]0[/C][C]14102.7884108882[/C][C]-14102.7884108882[/C][/ROW]
[ROW][C]110[/C][C]75566[/C][C]86924.190174242[/C][C]-11358.1901742421[/C][/ROW]
[ROW][C]111[/C][C]57359[/C][C]80739.0252129002[/C][C]-23380.0252129002[/C][/ROW]
[ROW][C]112[/C][C]104330[/C][C]103263.628146918[/C][C]1066.37185308216[/C][/ROW]
[ROW][C]113[/C][C]70369[/C][C]100420.565290255[/C][C]-30051.5652902551[/C][/ROW]
[ROW][C]114[/C][C]65494[/C][C]91122.9102507536[/C][C]-25628.9102507536[/C][/ROW]
[ROW][C]115[/C][C]3616[/C][C]17726.5020483054[/C][C]-14110.5020483054[/C][/ROW]
[ROW][C]116[/C][C]0[/C][C]14102.7884108882[/C][C]-14102.7884108882[/C][/ROW]
[ROW][C]117[/C][C]148117[/C][C]119945.399092454[/C][C]28171.6009075462[/C][/ROW]
[ROW][C]118[/C][C]117946[/C][C]147490.276197253[/C][C]-29544.2761972528[/C][/ROW]
[ROW][C]119[/C][C]138702[/C][C]126525.449535288[/C][C]12176.5504647119[/C][/ROW]
[ROW][C]120[/C][C]84336[/C][C]86668.1121297105[/C][C]-2332.11212971045[/C][/ROW]
[ROW][C]121[/C][C]43410[/C][C]28211.4547655976[/C][C]15198.5452344024[/C][/ROW]
[ROW][C]122[/C][C]139695[/C][C]138851.834751541[/C][C]843.165248459448[/C][/ROW]
[ROW][C]123[/C][C]79015[/C][C]84742.228060351[/C][C]-5727.22806035097[/C][/ROW]
[ROW][C]124[/C][C]106116[/C][C]74348.0653312891[/C][C]31767.9346687109[/C][/ROW]
[ROW][C]125[/C][C]57586[/C][C]52449.7468844461[/C][C]5136.2531155539[/C][/ROW]
[ROW][C]126[/C][C]19764[/C][C]37206.6281338153[/C][C]-17442.6281338153[/C][/ROW]
[ROW][C]127[/C][C]112195[/C][C]113579.974348441[/C][C]-1384.97434844149[/C][/ROW]
[ROW][C]128[/C][C]103651[/C][C]72481.749935854[/C][C]31169.2500641459[/C][/ROW]
[ROW][C]129[/C][C]113402[/C][C]85558.3475058308[/C][C]27843.6524941692[/C][/ROW]
[ROW][C]130[/C][C]11796[/C][C]20625.4729582392[/C][C]-8829.47295823915[/C][/ROW]
[ROW][C]131[/C][C]7627[/C][C]20625.4729582392[/C][C]-12998.4729582392[/C][/ROW]
[ROW][C]132[/C][C]121085[/C][C]107400.99023566[/C][C]13684.0097643398[/C][/ROW]
[ROW][C]133[/C][C]6836[/C][C]16277.0165933385[/C][C]-9441.0165933385[/C][/ROW]
[ROW][C]134[/C][C]139563[/C][C]108665.976719022[/C][C]30897.0232809778[/C][/ROW]
[ROW][C]135[/C][C]5118[/C][C]16277.0165933385[/C][C]-11159.0165933385[/C][/ROW]
[ROW][C]136[/C][C]40248[/C][C]34649.7862724328[/C][C]5598.21372756721[/C][/ROW]
[ROW][C]137[/C][C]0[/C][C]14102.7884108882[/C][C]-14102.7884108882[/C][/ROW]
[ROW][C]138[/C][C]95079[/C][C]78042.401933476[/C][C]17036.598066524[/C][/ROW]
[ROW][C]139[/C][C]80763[/C][C]67171.2130207279[/C][C]13591.7869792721[/C][/ROW]
[ROW][C]140[/C][C]7131[/C][C]17001.7593208219[/C][C]-9870.75932082194[/C][/ROW]
[ROW][C]141[/C][C]4194[/C][C]22074.958413206[/C][C]-17880.958413206[/C][/ROW]
[ROW][C]142[/C][C]60378[/C][C]44774.9821491393[/C][C]15603.0178508607[/C][/ROW]
[ROW][C]143[/C][C]109214[/C][C]115410.578874902[/C][C]-6196.57887490203[/C][/ROW]
[ROW][C]144[/C][C]83484[/C][C]83335.926006088[/C][C]148.073993912042[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1129988106220.07761061323767.9223893873
2130358152809.623024341-22451.6230243408
3721529982.8788421229-22767.8788421229
4112976130358.550025507-17382.5500255073
5220191198127.5100097722063.4899902303
6402036419256.017559696-17220.0175596962
7125071126827.444804239-1756.44480423884
8131822132726.445132659-904.44513265884
99973896114.9119787173623.08802128296
10269166212749.91790058856416.0820994122
11113066118544.382744562-5478.38274456174
12165392164854.798615962537.201384037711
1378240114220.598788619-35980.5987886189
14170854158371.38983334912482.6101666513
15134368113203.33308150221164.6669184979
16125769138031.340811757-12262.340811757
17123467144823.66938834-21356.6693883404
185739654412.04404596172983.95595403833
19108458131919.338886351-23461.3388863514
202276251463.7060443155-28701.7060443155
214863377515.8931030798-28882.8931030798
22182081199419.465310968-17338.465310968
2314950783597.358546394565909.6414536055
249377390023.98562279183749.01437720821
25133428149330.791314557-15902.7913145566
2612666087241.421274162839418.5787258372
27153851197794.706691059-43943.706691059
28140711196243.004960023-55532.0049600225
29303952245672.9770725258279.0229274805
30163810142978.67044109120831.3295589091
3113452192649.058090150441871.9419098496
32157640134206.37027705623433.6297229445
33103274126935.575902218-23661.5759022184
34193500130021.48310979863478.5168902022
35182027159480.45528754522546.5447124549
36014827.5311383716-14827.5311383716
37181496108357.86353611373138.1364638868
389234295120.3876181311-2778.38761813114
3911576299676.996099882916085.0039001171
40179089219664.473589041-40575.4735890414
41145067126317.63839129218749.3616087075
42114146101703.02799381812442.9720061821
4386039101792.693888082-15753.6938880825
44125481141220.608492268-15739.6084922683
459553597769.629449425-2234.62944942487
46129236139959.913183936-10723.9131839363
476155466990.5233659365-5436.52336593648
48170811138179.55861825632631.4413817443
49161746166627.327144142-4881.327144142
50137317108859.4143111628457.5856888396
514818857478.5176020141-9290.51760201412
5297793103724.184883504-5931.18488350429
53249356180795.00019233568560.9998076647
54196791139476.33495395657314.6650460436
55161082136314.0659184324767.9340815701
56111388118245.36198536-6857.36198536011
57172614120079.23537664352534.7646233565
586368167949.8049534485-4268.80495344855
59109102132182.164947612-23080.1649476125
60142391103751.88399534138639.1160046588
61125777107208.61262983518568.3873701655
6288650116216.115155718-27566.1151557185
6395845115798.316062797-19953.3160627969
648341998834.5850824302-15415.5850824302
6510172392097.17256313699625.8274368631
6694982111146.239082599-16164.2390825994
67145568210754.963997543-65186.9639975427
68113325135498.843649266-22173.8436492658
6992480112114.976889859-19634.9768898586
703197031136.4574102149833.54258978511
71196420173992.5433277822427.4566722204
7298324115732.898653341-17408.8986533409
7380820106186.727690574-25366.7276905744
748931979316.490580685710002.5094193143
75118147114798.9859582863348.01404171396
765654447985.18988101718558.8101189829
77118838124048.950411716-5210.95041171555
78118781184813.184407447-66032.1844074469
796013863569.2654356598-3431.26543565982
8073422105265.207802727-31843.2078027268
8170248100399.373251585-30151.373251585
82225857126149.24986965199707.7501303491
835118571888.933183205-20703.9331832049
849718190140.6508215227040.34917847797
854510059966.3714959154-14866.3714959154
86115801114942.438011511858.561988489144
87187201242933.211431116-55732.2114311161
8871960110577.751558689-38617.7515586887
898170182381.2383338905-680.238333890456
90110416110265.975832123150.024167877383
9198707115788.94575653-17081.9457565296
92136234145845.629634632-9611.6296346316
93136781127994.4155496538786.58445034703
94116132100581.34050990715550.659490093
954916474715.6270996256-25551.6270996256
96189493194743.696142749-5250.69614274914
97169406135749.67493687533656.3250631252
981934936545.3853588229-17196.3853588229
99160902130173.70584058630728.2941594141
100109510112184.225922222-2674.22592222178
1014380337250.64066773156552.35933226855
1024706266105.637984501-19043.637984501
10311084581937.254190741128907.7458092589
10492517101170.558833367-8653.55883336704
1055866076082.6791471565-17422.6791471565
1062767633963.0100687077-6287.01006870766
10798550104445.544546379-5895.54454637928
1084386337158.76451054756704.23548945255
109014102.7884108882-14102.7884108882
1107556686924.190174242-11358.1901742421
1115735980739.0252129002-23380.0252129002
112104330103263.6281469181066.37185308216
11370369100420.565290255-30051.5652902551
1146549491122.9102507536-25628.9102507536
115361617726.5020483054-14110.5020483054
116014102.7884108882-14102.7884108882
117148117119945.39909245428171.6009075462
118117946147490.276197253-29544.2761972528
119138702126525.44953528812176.5504647119
1208433686668.1121297105-2332.11212971045
1214341028211.454765597615198.5452344024
122139695138851.834751541843.165248459448
1237901584742.228060351-5727.22806035097
12410611674348.065331289131767.9346687109
1255758652449.74688444615136.2531155539
1261976437206.6281338153-17442.6281338153
127112195113579.974348441-1384.97434844149
12810365172481.74993585431169.2500641459
12911340285558.347505830827843.6524941692
1301179620625.4729582392-8829.47295823915
131762720625.4729582392-12998.4729582392
132121085107400.9902356613684.0097643398
133683616277.0165933385-9441.0165933385
134139563108665.97671902230897.0232809778
135511816277.0165933385-11159.0165933385
1364024834649.78627243285598.21372756721
137014102.7884108882-14102.7884108882
1389507978042.40193347617036.598066524
1398076367171.213020727913591.7869792721
140713117001.7593208219-9870.75932082194
141419422074.958413206-17880.958413206
1426037844774.982149139315603.0178508607
143109214115410.578874902-6196.57887490203
1448348483335.926006088148.073993912042







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.3431924368608110.6863848737216220.656807563139189
80.2242419155331540.4484838310663070.775758084466846
90.2076736477545960.4153472955091930.792326352245404
100.6165742588635880.7668514822728240.383425741136412
110.5524402268891420.8951195462217160.447559773110858
120.447827698133140.8956553962662810.55217230186686
130.5541772867407480.8916454265185040.445822713259252
140.4803062450664510.9606124901329030.519693754933549
150.4393462680974510.8786925361949010.560653731902549
160.3576255672688380.7152511345376760.642374432731162
170.2898339715269850.579667943053970.710166028473015
180.2319754106886740.4639508213773490.768024589311326
190.2025476104184720.4050952208369430.797452389581528
200.1560018836499150.3120037672998310.843998116350085
210.1596201035120210.3192402070240420.84037989648798
220.1241364871562080.2482729743124150.875863512843792
230.5349126609018830.9301746781962340.465087339098117
240.4711939383359310.9423878766718620.528806061664069
250.4268442062867140.8536884125734280.573155793713286
260.5092621355947360.9814757288105290.490737864405264
270.5621988289895590.8756023420208820.437801171010441
280.7540435904823630.4919128190352740.245956409517637
290.8883349257349240.2233301485301520.111665074265076
300.8701597768052110.2596804463895780.129840223194789
310.8994014805295930.2011970389408140.100598519470407
320.8842649104963670.2314701790072650.115735089503633
330.8691791198888180.2616417602223650.130820880111182
340.957093459480760.08581308103847820.0429065405192391
350.9502320620257520.0995358759484960.049767937974248
360.9401853212684150.1196293574631690.0598146787315845
370.9875943438597460.02481131228050830.0124056561402542
380.9826897745876870.03462045082462610.017310225412313
390.9773515072483540.04529698550329140.0226484927516457
400.9852062758432660.02958744831346860.0147937241567343
410.9816980396857880.03660392062842470.0183019603142123
420.9758881874068870.04822362518622570.0241118125931128
430.971756432036720.05648713592655950.0282435679632798
440.9657870144764620.06842597104707580.0342129855235379
450.9549238098322460.09015238033550870.0450761901677544
460.9438895233251710.1122209533496570.0561104766748286
470.9290386053713260.1419227892573480.0709613946286739
480.933384459410090.1332310811798210.0666155405899104
490.9159657723758830.1680684552482340.084034227624117
500.914592611458570.170814777082860.0854073885414298
510.8970676679426750.2058646641146490.102932332057325
520.874594036801020.2508119263979580.125405963198979
530.9618571372134710.07628572557305750.0381428627865288
540.985214289745370.02957142050925880.0147857102546294
550.9846366406798970.03072671864020640.0153633593201032
560.9799787147461830.04004257050763380.0200212852538169
570.9916319441082540.01673611178349290.00836805589174646
580.9886062660381870.02278746792362640.0113937339618132
590.9874610711913970.02507785761720670.0125389288086033
600.9909698354669320.01806032906613550.00903016453306774
610.9895254914475510.02094901710489770.0104745085524489
620.9895580190383570.0208839619232860.010441980961643
630.9878348391928570.02433032161428660.0121651608071433
640.9849873061972060.0300253876055880.015012693802794
650.98062184051610.0387563189677990.0193781594838995
660.9764213303716850.04715733925662950.0235786696283147
670.9942730523635180.01145389527296330.00572694763648165
680.9935860847936770.01282783041264670.00641391520632336
690.9927385625289560.01452287494208860.0072614374710443
700.9899448354932950.02011032901341010.010055164506705
710.990095791753690.01980841649261930.00990420824630967
720.9879476911150960.02410461776980810.012052308884904
730.9872371673917560.02552566521648810.0127628326082441
740.9846035273621340.03079294527573190.015396472637866
750.9793025835563470.04139483288730490.0206974164436525
760.973996618096390.05200676380721950.0260033819036097
770.9659793498040.06804130039199910.0340206501959995
780.9944495942343150.01110081153137040.00555040576568522
790.9921989715752870.01560205684942510.00780102842471255
800.9927705657643350.01445886847132990.00722943423566496
810.993133399853840.01373320029232060.00686660014616029
820.9999916730275091.66539449822972e-058.32697249114858e-06
830.9999903185161841.93629676321211e-059.68148381606057e-06
840.999983444150433.31116991389342e-051.65558495694671e-05
850.9999742662809165.14674381676175e-052.57337190838087e-05
860.9999553914870388.92170259243165e-054.46085129621583e-05
870.9999921765199881.56469600249426e-057.82348001247131e-06
880.9999985041871692.99162566235091e-061.49581283117546e-06
890.9999971881001925.62379961554913e-062.81189980777456e-06
900.99999468571141.06285771987525e-055.31428859937626e-06
910.9999926106471921.47787056161253e-057.38935280806266e-06
920.9999897252456282.0549508743869e-051.02747543719345e-05
930.999981785813033.6428373940557e-051.82141869702785e-05
940.9999715251687735.69496624538188e-052.84748312269094e-05
950.9999758675126344.8264974731744e-052.4132487365872e-05
960.99996938888426.12222315987556e-053.06111157993778e-05
970.9999809028905063.81942189871107e-051.90971094935553e-05
980.9999714115878125.71768243756974e-052.85884121878487e-05
990.9999688464845166.23070309682336e-053.11535154841168e-05
1000.9999443288570760.0001113422858474795.56711429237397e-05
1010.999907150274230.0001856994515386819.28497257693405e-05
1020.9998808857773870.0002382284452268620.000119114222613431
1030.9999140651495640.0001718697008720348.5934850436017e-05
1040.9998606022941070.0002787954117862260.000139397705893113
1050.999822497867820.0003550042643613650.000177502132180683
1060.9996882696636870.0006234606726257050.000311730336312853
1070.9994824226765870.001035154646825790.000517577323412895
1080.9991829159211040.001634168157791770.000817084078895885
1090.9987228246239970.002554350752006890.00127717537600344
1100.998377504194840.003244991610320950.00162249580516047
1110.998625186772230.002749626455539110.00137481322776955
1120.9976589838431750.004682032313650520.00234101615682526
1130.9987583026332750.002483394733449480.00124169736672474
1140.9994305410845460.00113891783090720.000569458915453602
1150.9990811312024160.0018377375951670.000918868797583498
1160.998517493358410.002965013283180570.00148250664159028
1170.9990392388326130.001921522334773440.000960761167386718
1180.9999236533906290.0001526932187425667.63466093712829e-05
1190.9998985959226280.0002028081547434940.000101404077371747
1200.9998057773606780.0003884452786437780.000194222639321889
1210.9997196394310070.0005607211379867640.000280360568993382
1220.9997304521385580.0005390957228831110.000269547861441556
1230.9996304372894540.0007391254210912440.000369562710545622
1240.9995017984290570.0009964031418867470.000498201570943373
1250.9989851844697760.002029631060447080.00101481553022354
1260.9985157753361450.00296844932770930.00148422466385465
1270.9984823553980650.003035289203869140.00151764460193457
1280.9993961920425880.001207615914824220.000603807957412108
1290.9994691198704710.001061760259057090.000530880129528543
1300.998581955019720.002836089960559370.00141804498027968
1310.9969089576661020.006182084667796720.00309104233389836
1320.9946550617625720.01068987647485620.0053449382374281
1330.9863432430088860.02731351398222830.0136567569911142
1340.9820113492316240.03597730153675120.0179886507683756
1350.9560483886724260.0879032226551490.0439516113275745
1360.9088855145383320.1822289709233370.0911144854616683
1370.8066602666224820.3866794667550350.193339733377518

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 & 0.343192436860811 & 0.686384873721622 & 0.656807563139189 \tabularnewline
8 & 0.224241915533154 & 0.448483831066307 & 0.775758084466846 \tabularnewline
9 & 0.207673647754596 & 0.415347295509193 & 0.792326352245404 \tabularnewline
10 & 0.616574258863588 & 0.766851482272824 & 0.383425741136412 \tabularnewline
11 & 0.552440226889142 & 0.895119546221716 & 0.447559773110858 \tabularnewline
12 & 0.44782769813314 & 0.895655396266281 & 0.55217230186686 \tabularnewline
13 & 0.554177286740748 & 0.891645426518504 & 0.445822713259252 \tabularnewline
14 & 0.480306245066451 & 0.960612490132903 & 0.519693754933549 \tabularnewline
15 & 0.439346268097451 & 0.878692536194901 & 0.560653731902549 \tabularnewline
16 & 0.357625567268838 & 0.715251134537676 & 0.642374432731162 \tabularnewline
17 & 0.289833971526985 & 0.57966794305397 & 0.710166028473015 \tabularnewline
18 & 0.231975410688674 & 0.463950821377349 & 0.768024589311326 \tabularnewline
19 & 0.202547610418472 & 0.405095220836943 & 0.797452389581528 \tabularnewline
20 & 0.156001883649915 & 0.312003767299831 & 0.843998116350085 \tabularnewline
21 & 0.159620103512021 & 0.319240207024042 & 0.84037989648798 \tabularnewline
22 & 0.124136487156208 & 0.248272974312415 & 0.875863512843792 \tabularnewline
23 & 0.534912660901883 & 0.930174678196234 & 0.465087339098117 \tabularnewline
24 & 0.471193938335931 & 0.942387876671862 & 0.528806061664069 \tabularnewline
25 & 0.426844206286714 & 0.853688412573428 & 0.573155793713286 \tabularnewline
26 & 0.509262135594736 & 0.981475728810529 & 0.490737864405264 \tabularnewline
27 & 0.562198828989559 & 0.875602342020882 & 0.437801171010441 \tabularnewline
28 & 0.754043590482363 & 0.491912819035274 & 0.245956409517637 \tabularnewline
29 & 0.888334925734924 & 0.223330148530152 & 0.111665074265076 \tabularnewline
30 & 0.870159776805211 & 0.259680446389578 & 0.129840223194789 \tabularnewline
31 & 0.899401480529593 & 0.201197038940814 & 0.100598519470407 \tabularnewline
32 & 0.884264910496367 & 0.231470179007265 & 0.115735089503633 \tabularnewline
33 & 0.869179119888818 & 0.261641760222365 & 0.130820880111182 \tabularnewline
34 & 0.95709345948076 & 0.0858130810384782 & 0.0429065405192391 \tabularnewline
35 & 0.950232062025752 & 0.099535875948496 & 0.049767937974248 \tabularnewline
36 & 0.940185321268415 & 0.119629357463169 & 0.0598146787315845 \tabularnewline
37 & 0.987594343859746 & 0.0248113122805083 & 0.0124056561402542 \tabularnewline
38 & 0.982689774587687 & 0.0346204508246261 & 0.017310225412313 \tabularnewline
39 & 0.977351507248354 & 0.0452969855032914 & 0.0226484927516457 \tabularnewline
40 & 0.985206275843266 & 0.0295874483134686 & 0.0147937241567343 \tabularnewline
41 & 0.981698039685788 & 0.0366039206284247 & 0.0183019603142123 \tabularnewline
42 & 0.975888187406887 & 0.0482236251862257 & 0.0241118125931128 \tabularnewline
43 & 0.97175643203672 & 0.0564871359265595 & 0.0282435679632798 \tabularnewline
44 & 0.965787014476462 & 0.0684259710470758 & 0.0342129855235379 \tabularnewline
45 & 0.954923809832246 & 0.0901523803355087 & 0.0450761901677544 \tabularnewline
46 & 0.943889523325171 & 0.112220953349657 & 0.0561104766748286 \tabularnewline
47 & 0.929038605371326 & 0.141922789257348 & 0.0709613946286739 \tabularnewline
48 & 0.93338445941009 & 0.133231081179821 & 0.0666155405899104 \tabularnewline
49 & 0.915965772375883 & 0.168068455248234 & 0.084034227624117 \tabularnewline
50 & 0.91459261145857 & 0.17081477708286 & 0.0854073885414298 \tabularnewline
51 & 0.897067667942675 & 0.205864664114649 & 0.102932332057325 \tabularnewline
52 & 0.87459403680102 & 0.250811926397958 & 0.125405963198979 \tabularnewline
53 & 0.961857137213471 & 0.0762857255730575 & 0.0381428627865288 \tabularnewline
54 & 0.98521428974537 & 0.0295714205092588 & 0.0147857102546294 \tabularnewline
55 & 0.984636640679897 & 0.0307267186402064 & 0.0153633593201032 \tabularnewline
56 & 0.979978714746183 & 0.0400425705076338 & 0.0200212852538169 \tabularnewline
57 & 0.991631944108254 & 0.0167361117834929 & 0.00836805589174646 \tabularnewline
58 & 0.988606266038187 & 0.0227874679236264 & 0.0113937339618132 \tabularnewline
59 & 0.987461071191397 & 0.0250778576172067 & 0.0125389288086033 \tabularnewline
60 & 0.990969835466932 & 0.0180603290661355 & 0.00903016453306774 \tabularnewline
61 & 0.989525491447551 & 0.0209490171048977 & 0.0104745085524489 \tabularnewline
62 & 0.989558019038357 & 0.020883961923286 & 0.010441980961643 \tabularnewline
63 & 0.987834839192857 & 0.0243303216142866 & 0.0121651608071433 \tabularnewline
64 & 0.984987306197206 & 0.030025387605588 & 0.015012693802794 \tabularnewline
65 & 0.9806218405161 & 0.038756318967799 & 0.0193781594838995 \tabularnewline
66 & 0.976421330371685 & 0.0471573392566295 & 0.0235786696283147 \tabularnewline
67 & 0.994273052363518 & 0.0114538952729633 & 0.00572694763648165 \tabularnewline
68 & 0.993586084793677 & 0.0128278304126467 & 0.00641391520632336 \tabularnewline
69 & 0.992738562528956 & 0.0145228749420886 & 0.0072614374710443 \tabularnewline
70 & 0.989944835493295 & 0.0201103290134101 & 0.010055164506705 \tabularnewline
71 & 0.99009579175369 & 0.0198084164926193 & 0.00990420824630967 \tabularnewline
72 & 0.987947691115096 & 0.0241046177698081 & 0.012052308884904 \tabularnewline
73 & 0.987237167391756 & 0.0255256652164881 & 0.0127628326082441 \tabularnewline
74 & 0.984603527362134 & 0.0307929452757319 & 0.015396472637866 \tabularnewline
75 & 0.979302583556347 & 0.0413948328873049 & 0.0206974164436525 \tabularnewline
76 & 0.97399661809639 & 0.0520067638072195 & 0.0260033819036097 \tabularnewline
77 & 0.965979349804 & 0.0680413003919991 & 0.0340206501959995 \tabularnewline
78 & 0.994449594234315 & 0.0111008115313704 & 0.00555040576568522 \tabularnewline
79 & 0.992198971575287 & 0.0156020568494251 & 0.00780102842471255 \tabularnewline
80 & 0.992770565764335 & 0.0144588684713299 & 0.00722943423566496 \tabularnewline
81 & 0.99313339985384 & 0.0137332002923206 & 0.00686660014616029 \tabularnewline
82 & 0.999991673027509 & 1.66539449822972e-05 & 8.32697249114858e-06 \tabularnewline
83 & 0.999990318516184 & 1.93629676321211e-05 & 9.68148381606057e-06 \tabularnewline
84 & 0.99998344415043 & 3.31116991389342e-05 & 1.65558495694671e-05 \tabularnewline
85 & 0.999974266280916 & 5.14674381676175e-05 & 2.57337190838087e-05 \tabularnewline
86 & 0.999955391487038 & 8.92170259243165e-05 & 4.46085129621583e-05 \tabularnewline
87 & 0.999992176519988 & 1.56469600249426e-05 & 7.82348001247131e-06 \tabularnewline
88 & 0.999998504187169 & 2.99162566235091e-06 & 1.49581283117546e-06 \tabularnewline
89 & 0.999997188100192 & 5.62379961554913e-06 & 2.81189980777456e-06 \tabularnewline
90 & 0.9999946857114 & 1.06285771987525e-05 & 5.31428859937626e-06 \tabularnewline
91 & 0.999992610647192 & 1.47787056161253e-05 & 7.38935280806266e-06 \tabularnewline
92 & 0.999989725245628 & 2.0549508743869e-05 & 1.02747543719345e-05 \tabularnewline
93 & 0.99998178581303 & 3.6428373940557e-05 & 1.82141869702785e-05 \tabularnewline
94 & 0.999971525168773 & 5.69496624538188e-05 & 2.84748312269094e-05 \tabularnewline
95 & 0.999975867512634 & 4.8264974731744e-05 & 2.4132487365872e-05 \tabularnewline
96 & 0.9999693888842 & 6.12222315987556e-05 & 3.06111157993778e-05 \tabularnewline
97 & 0.999980902890506 & 3.81942189871107e-05 & 1.90971094935553e-05 \tabularnewline
98 & 0.999971411587812 & 5.71768243756974e-05 & 2.85884121878487e-05 \tabularnewline
99 & 0.999968846484516 & 6.23070309682336e-05 & 3.11535154841168e-05 \tabularnewline
100 & 0.999944328857076 & 0.000111342285847479 & 5.56711429237397e-05 \tabularnewline
101 & 0.99990715027423 & 0.000185699451538681 & 9.28497257693405e-05 \tabularnewline
102 & 0.999880885777387 & 0.000238228445226862 & 0.000119114222613431 \tabularnewline
103 & 0.999914065149564 & 0.000171869700872034 & 8.5934850436017e-05 \tabularnewline
104 & 0.999860602294107 & 0.000278795411786226 & 0.000139397705893113 \tabularnewline
105 & 0.99982249786782 & 0.000355004264361365 & 0.000177502132180683 \tabularnewline
106 & 0.999688269663687 & 0.000623460672625705 & 0.000311730336312853 \tabularnewline
107 & 0.999482422676587 & 0.00103515464682579 & 0.000517577323412895 \tabularnewline
108 & 0.999182915921104 & 0.00163416815779177 & 0.000817084078895885 \tabularnewline
109 & 0.998722824623997 & 0.00255435075200689 & 0.00127717537600344 \tabularnewline
110 & 0.99837750419484 & 0.00324499161032095 & 0.00162249580516047 \tabularnewline
111 & 0.99862518677223 & 0.00274962645553911 & 0.00137481322776955 \tabularnewline
112 & 0.997658983843175 & 0.00468203231365052 & 0.00234101615682526 \tabularnewline
113 & 0.998758302633275 & 0.00248339473344948 & 0.00124169736672474 \tabularnewline
114 & 0.999430541084546 & 0.0011389178309072 & 0.000569458915453602 \tabularnewline
115 & 0.999081131202416 & 0.001837737595167 & 0.000918868797583498 \tabularnewline
116 & 0.99851749335841 & 0.00296501328318057 & 0.00148250664159028 \tabularnewline
117 & 0.999039238832613 & 0.00192152233477344 & 0.000960761167386718 \tabularnewline
118 & 0.999923653390629 & 0.000152693218742566 & 7.63466093712829e-05 \tabularnewline
119 & 0.999898595922628 & 0.000202808154743494 & 0.000101404077371747 \tabularnewline
120 & 0.999805777360678 & 0.000388445278643778 & 0.000194222639321889 \tabularnewline
121 & 0.999719639431007 & 0.000560721137986764 & 0.000280360568993382 \tabularnewline
122 & 0.999730452138558 & 0.000539095722883111 & 0.000269547861441556 \tabularnewline
123 & 0.999630437289454 & 0.000739125421091244 & 0.000369562710545622 \tabularnewline
124 & 0.999501798429057 & 0.000996403141886747 & 0.000498201570943373 \tabularnewline
125 & 0.998985184469776 & 0.00202963106044708 & 0.00101481553022354 \tabularnewline
126 & 0.998515775336145 & 0.0029684493277093 & 0.00148422466385465 \tabularnewline
127 & 0.998482355398065 & 0.00303528920386914 & 0.00151764460193457 \tabularnewline
128 & 0.999396192042588 & 0.00120761591482422 & 0.000603807957412108 \tabularnewline
129 & 0.999469119870471 & 0.00106176025905709 & 0.000530880129528543 \tabularnewline
130 & 0.99858195501972 & 0.00283608996055937 & 0.00141804498027968 \tabularnewline
131 & 0.996908957666102 & 0.00618208466779672 & 0.00309104233389836 \tabularnewline
132 & 0.994655061762572 & 0.0106898764748562 & 0.0053449382374281 \tabularnewline
133 & 0.986343243008886 & 0.0273135139822283 & 0.0136567569911142 \tabularnewline
134 & 0.982011349231624 & 0.0359773015367512 & 0.0179886507683756 \tabularnewline
135 & 0.956048388672426 & 0.087903222655149 & 0.0439516113275745 \tabularnewline
136 & 0.908885514538332 & 0.182228970923337 & 0.0911144854616683 \tabularnewline
137 & 0.806660266622482 & 0.386679466755035 & 0.193339733377518 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C]0.343192436860811[/C][C]0.686384873721622[/C][C]0.656807563139189[/C][/ROW]
[ROW][C]8[/C][C]0.224241915533154[/C][C]0.448483831066307[/C][C]0.775758084466846[/C][/ROW]
[ROW][C]9[/C][C]0.207673647754596[/C][C]0.415347295509193[/C][C]0.792326352245404[/C][/ROW]
[ROW][C]10[/C][C]0.616574258863588[/C][C]0.766851482272824[/C][C]0.383425741136412[/C][/ROW]
[ROW][C]11[/C][C]0.552440226889142[/C][C]0.895119546221716[/C][C]0.447559773110858[/C][/ROW]
[ROW][C]12[/C][C]0.44782769813314[/C][C]0.895655396266281[/C][C]0.55217230186686[/C][/ROW]
[ROW][C]13[/C][C]0.554177286740748[/C][C]0.891645426518504[/C][C]0.445822713259252[/C][/ROW]
[ROW][C]14[/C][C]0.480306245066451[/C][C]0.960612490132903[/C][C]0.519693754933549[/C][/ROW]
[ROW][C]15[/C][C]0.439346268097451[/C][C]0.878692536194901[/C][C]0.560653731902549[/C][/ROW]
[ROW][C]16[/C][C]0.357625567268838[/C][C]0.715251134537676[/C][C]0.642374432731162[/C][/ROW]
[ROW][C]17[/C][C]0.289833971526985[/C][C]0.57966794305397[/C][C]0.710166028473015[/C][/ROW]
[ROW][C]18[/C][C]0.231975410688674[/C][C]0.463950821377349[/C][C]0.768024589311326[/C][/ROW]
[ROW][C]19[/C][C]0.202547610418472[/C][C]0.405095220836943[/C][C]0.797452389581528[/C][/ROW]
[ROW][C]20[/C][C]0.156001883649915[/C][C]0.312003767299831[/C][C]0.843998116350085[/C][/ROW]
[ROW][C]21[/C][C]0.159620103512021[/C][C]0.319240207024042[/C][C]0.84037989648798[/C][/ROW]
[ROW][C]22[/C][C]0.124136487156208[/C][C]0.248272974312415[/C][C]0.875863512843792[/C][/ROW]
[ROW][C]23[/C][C]0.534912660901883[/C][C]0.930174678196234[/C][C]0.465087339098117[/C][/ROW]
[ROW][C]24[/C][C]0.471193938335931[/C][C]0.942387876671862[/C][C]0.528806061664069[/C][/ROW]
[ROW][C]25[/C][C]0.426844206286714[/C][C]0.853688412573428[/C][C]0.573155793713286[/C][/ROW]
[ROW][C]26[/C][C]0.509262135594736[/C][C]0.981475728810529[/C][C]0.490737864405264[/C][/ROW]
[ROW][C]27[/C][C]0.562198828989559[/C][C]0.875602342020882[/C][C]0.437801171010441[/C][/ROW]
[ROW][C]28[/C][C]0.754043590482363[/C][C]0.491912819035274[/C][C]0.245956409517637[/C][/ROW]
[ROW][C]29[/C][C]0.888334925734924[/C][C]0.223330148530152[/C][C]0.111665074265076[/C][/ROW]
[ROW][C]30[/C][C]0.870159776805211[/C][C]0.259680446389578[/C][C]0.129840223194789[/C][/ROW]
[ROW][C]31[/C][C]0.899401480529593[/C][C]0.201197038940814[/C][C]0.100598519470407[/C][/ROW]
[ROW][C]32[/C][C]0.884264910496367[/C][C]0.231470179007265[/C][C]0.115735089503633[/C][/ROW]
[ROW][C]33[/C][C]0.869179119888818[/C][C]0.261641760222365[/C][C]0.130820880111182[/C][/ROW]
[ROW][C]34[/C][C]0.95709345948076[/C][C]0.0858130810384782[/C][C]0.0429065405192391[/C][/ROW]
[ROW][C]35[/C][C]0.950232062025752[/C][C]0.099535875948496[/C][C]0.049767937974248[/C][/ROW]
[ROW][C]36[/C][C]0.940185321268415[/C][C]0.119629357463169[/C][C]0.0598146787315845[/C][/ROW]
[ROW][C]37[/C][C]0.987594343859746[/C][C]0.0248113122805083[/C][C]0.0124056561402542[/C][/ROW]
[ROW][C]38[/C][C]0.982689774587687[/C][C]0.0346204508246261[/C][C]0.017310225412313[/C][/ROW]
[ROW][C]39[/C][C]0.977351507248354[/C][C]0.0452969855032914[/C][C]0.0226484927516457[/C][/ROW]
[ROW][C]40[/C][C]0.985206275843266[/C][C]0.0295874483134686[/C][C]0.0147937241567343[/C][/ROW]
[ROW][C]41[/C][C]0.981698039685788[/C][C]0.0366039206284247[/C][C]0.0183019603142123[/C][/ROW]
[ROW][C]42[/C][C]0.975888187406887[/C][C]0.0482236251862257[/C][C]0.0241118125931128[/C][/ROW]
[ROW][C]43[/C][C]0.97175643203672[/C][C]0.0564871359265595[/C][C]0.0282435679632798[/C][/ROW]
[ROW][C]44[/C][C]0.965787014476462[/C][C]0.0684259710470758[/C][C]0.0342129855235379[/C][/ROW]
[ROW][C]45[/C][C]0.954923809832246[/C][C]0.0901523803355087[/C][C]0.0450761901677544[/C][/ROW]
[ROW][C]46[/C][C]0.943889523325171[/C][C]0.112220953349657[/C][C]0.0561104766748286[/C][/ROW]
[ROW][C]47[/C][C]0.929038605371326[/C][C]0.141922789257348[/C][C]0.0709613946286739[/C][/ROW]
[ROW][C]48[/C][C]0.93338445941009[/C][C]0.133231081179821[/C][C]0.0666155405899104[/C][/ROW]
[ROW][C]49[/C][C]0.915965772375883[/C][C]0.168068455248234[/C][C]0.084034227624117[/C][/ROW]
[ROW][C]50[/C][C]0.91459261145857[/C][C]0.17081477708286[/C][C]0.0854073885414298[/C][/ROW]
[ROW][C]51[/C][C]0.897067667942675[/C][C]0.205864664114649[/C][C]0.102932332057325[/C][/ROW]
[ROW][C]52[/C][C]0.87459403680102[/C][C]0.250811926397958[/C][C]0.125405963198979[/C][/ROW]
[ROW][C]53[/C][C]0.961857137213471[/C][C]0.0762857255730575[/C][C]0.0381428627865288[/C][/ROW]
[ROW][C]54[/C][C]0.98521428974537[/C][C]0.0295714205092588[/C][C]0.0147857102546294[/C][/ROW]
[ROW][C]55[/C][C]0.984636640679897[/C][C]0.0307267186402064[/C][C]0.0153633593201032[/C][/ROW]
[ROW][C]56[/C][C]0.979978714746183[/C][C]0.0400425705076338[/C][C]0.0200212852538169[/C][/ROW]
[ROW][C]57[/C][C]0.991631944108254[/C][C]0.0167361117834929[/C][C]0.00836805589174646[/C][/ROW]
[ROW][C]58[/C][C]0.988606266038187[/C][C]0.0227874679236264[/C][C]0.0113937339618132[/C][/ROW]
[ROW][C]59[/C][C]0.987461071191397[/C][C]0.0250778576172067[/C][C]0.0125389288086033[/C][/ROW]
[ROW][C]60[/C][C]0.990969835466932[/C][C]0.0180603290661355[/C][C]0.00903016453306774[/C][/ROW]
[ROW][C]61[/C][C]0.989525491447551[/C][C]0.0209490171048977[/C][C]0.0104745085524489[/C][/ROW]
[ROW][C]62[/C][C]0.989558019038357[/C][C]0.020883961923286[/C][C]0.010441980961643[/C][/ROW]
[ROW][C]63[/C][C]0.987834839192857[/C][C]0.0243303216142866[/C][C]0.0121651608071433[/C][/ROW]
[ROW][C]64[/C][C]0.984987306197206[/C][C]0.030025387605588[/C][C]0.015012693802794[/C][/ROW]
[ROW][C]65[/C][C]0.9806218405161[/C][C]0.038756318967799[/C][C]0.0193781594838995[/C][/ROW]
[ROW][C]66[/C][C]0.976421330371685[/C][C]0.0471573392566295[/C][C]0.0235786696283147[/C][/ROW]
[ROW][C]67[/C][C]0.994273052363518[/C][C]0.0114538952729633[/C][C]0.00572694763648165[/C][/ROW]
[ROW][C]68[/C][C]0.993586084793677[/C][C]0.0128278304126467[/C][C]0.00641391520632336[/C][/ROW]
[ROW][C]69[/C][C]0.992738562528956[/C][C]0.0145228749420886[/C][C]0.0072614374710443[/C][/ROW]
[ROW][C]70[/C][C]0.989944835493295[/C][C]0.0201103290134101[/C][C]0.010055164506705[/C][/ROW]
[ROW][C]71[/C][C]0.99009579175369[/C][C]0.0198084164926193[/C][C]0.00990420824630967[/C][/ROW]
[ROW][C]72[/C][C]0.987947691115096[/C][C]0.0241046177698081[/C][C]0.012052308884904[/C][/ROW]
[ROW][C]73[/C][C]0.987237167391756[/C][C]0.0255256652164881[/C][C]0.0127628326082441[/C][/ROW]
[ROW][C]74[/C][C]0.984603527362134[/C][C]0.0307929452757319[/C][C]0.015396472637866[/C][/ROW]
[ROW][C]75[/C][C]0.979302583556347[/C][C]0.0413948328873049[/C][C]0.0206974164436525[/C][/ROW]
[ROW][C]76[/C][C]0.97399661809639[/C][C]0.0520067638072195[/C][C]0.0260033819036097[/C][/ROW]
[ROW][C]77[/C][C]0.965979349804[/C][C]0.0680413003919991[/C][C]0.0340206501959995[/C][/ROW]
[ROW][C]78[/C][C]0.994449594234315[/C][C]0.0111008115313704[/C][C]0.00555040576568522[/C][/ROW]
[ROW][C]79[/C][C]0.992198971575287[/C][C]0.0156020568494251[/C][C]0.00780102842471255[/C][/ROW]
[ROW][C]80[/C][C]0.992770565764335[/C][C]0.0144588684713299[/C][C]0.00722943423566496[/C][/ROW]
[ROW][C]81[/C][C]0.99313339985384[/C][C]0.0137332002923206[/C][C]0.00686660014616029[/C][/ROW]
[ROW][C]82[/C][C]0.999991673027509[/C][C]1.66539449822972e-05[/C][C]8.32697249114858e-06[/C][/ROW]
[ROW][C]83[/C][C]0.999990318516184[/C][C]1.93629676321211e-05[/C][C]9.68148381606057e-06[/C][/ROW]
[ROW][C]84[/C][C]0.99998344415043[/C][C]3.31116991389342e-05[/C][C]1.65558495694671e-05[/C][/ROW]
[ROW][C]85[/C][C]0.999974266280916[/C][C]5.14674381676175e-05[/C][C]2.57337190838087e-05[/C][/ROW]
[ROW][C]86[/C][C]0.999955391487038[/C][C]8.92170259243165e-05[/C][C]4.46085129621583e-05[/C][/ROW]
[ROW][C]87[/C][C]0.999992176519988[/C][C]1.56469600249426e-05[/C][C]7.82348001247131e-06[/C][/ROW]
[ROW][C]88[/C][C]0.999998504187169[/C][C]2.99162566235091e-06[/C][C]1.49581283117546e-06[/C][/ROW]
[ROW][C]89[/C][C]0.999997188100192[/C][C]5.62379961554913e-06[/C][C]2.81189980777456e-06[/C][/ROW]
[ROW][C]90[/C][C]0.9999946857114[/C][C]1.06285771987525e-05[/C][C]5.31428859937626e-06[/C][/ROW]
[ROW][C]91[/C][C]0.999992610647192[/C][C]1.47787056161253e-05[/C][C]7.38935280806266e-06[/C][/ROW]
[ROW][C]92[/C][C]0.999989725245628[/C][C]2.0549508743869e-05[/C][C]1.02747543719345e-05[/C][/ROW]
[ROW][C]93[/C][C]0.99998178581303[/C][C]3.6428373940557e-05[/C][C]1.82141869702785e-05[/C][/ROW]
[ROW][C]94[/C][C]0.999971525168773[/C][C]5.69496624538188e-05[/C][C]2.84748312269094e-05[/C][/ROW]
[ROW][C]95[/C][C]0.999975867512634[/C][C]4.8264974731744e-05[/C][C]2.4132487365872e-05[/C][/ROW]
[ROW][C]96[/C][C]0.9999693888842[/C][C]6.12222315987556e-05[/C][C]3.06111157993778e-05[/C][/ROW]
[ROW][C]97[/C][C]0.999980902890506[/C][C]3.81942189871107e-05[/C][C]1.90971094935553e-05[/C][/ROW]
[ROW][C]98[/C][C]0.999971411587812[/C][C]5.71768243756974e-05[/C][C]2.85884121878487e-05[/C][/ROW]
[ROW][C]99[/C][C]0.999968846484516[/C][C]6.23070309682336e-05[/C][C]3.11535154841168e-05[/C][/ROW]
[ROW][C]100[/C][C]0.999944328857076[/C][C]0.000111342285847479[/C][C]5.56711429237397e-05[/C][/ROW]
[ROW][C]101[/C][C]0.99990715027423[/C][C]0.000185699451538681[/C][C]9.28497257693405e-05[/C][/ROW]
[ROW][C]102[/C][C]0.999880885777387[/C][C]0.000238228445226862[/C][C]0.000119114222613431[/C][/ROW]
[ROW][C]103[/C][C]0.999914065149564[/C][C]0.000171869700872034[/C][C]8.5934850436017e-05[/C][/ROW]
[ROW][C]104[/C][C]0.999860602294107[/C][C]0.000278795411786226[/C][C]0.000139397705893113[/C][/ROW]
[ROW][C]105[/C][C]0.99982249786782[/C][C]0.000355004264361365[/C][C]0.000177502132180683[/C][/ROW]
[ROW][C]106[/C][C]0.999688269663687[/C][C]0.000623460672625705[/C][C]0.000311730336312853[/C][/ROW]
[ROW][C]107[/C][C]0.999482422676587[/C][C]0.00103515464682579[/C][C]0.000517577323412895[/C][/ROW]
[ROW][C]108[/C][C]0.999182915921104[/C][C]0.00163416815779177[/C][C]0.000817084078895885[/C][/ROW]
[ROW][C]109[/C][C]0.998722824623997[/C][C]0.00255435075200689[/C][C]0.00127717537600344[/C][/ROW]
[ROW][C]110[/C][C]0.99837750419484[/C][C]0.00324499161032095[/C][C]0.00162249580516047[/C][/ROW]
[ROW][C]111[/C][C]0.99862518677223[/C][C]0.00274962645553911[/C][C]0.00137481322776955[/C][/ROW]
[ROW][C]112[/C][C]0.997658983843175[/C][C]0.00468203231365052[/C][C]0.00234101615682526[/C][/ROW]
[ROW][C]113[/C][C]0.998758302633275[/C][C]0.00248339473344948[/C][C]0.00124169736672474[/C][/ROW]
[ROW][C]114[/C][C]0.999430541084546[/C][C]0.0011389178309072[/C][C]0.000569458915453602[/C][/ROW]
[ROW][C]115[/C][C]0.999081131202416[/C][C]0.001837737595167[/C][C]0.000918868797583498[/C][/ROW]
[ROW][C]116[/C][C]0.99851749335841[/C][C]0.00296501328318057[/C][C]0.00148250664159028[/C][/ROW]
[ROW][C]117[/C][C]0.999039238832613[/C][C]0.00192152233477344[/C][C]0.000960761167386718[/C][/ROW]
[ROW][C]118[/C][C]0.999923653390629[/C][C]0.000152693218742566[/C][C]7.63466093712829e-05[/C][/ROW]
[ROW][C]119[/C][C]0.999898595922628[/C][C]0.000202808154743494[/C][C]0.000101404077371747[/C][/ROW]
[ROW][C]120[/C][C]0.999805777360678[/C][C]0.000388445278643778[/C][C]0.000194222639321889[/C][/ROW]
[ROW][C]121[/C][C]0.999719639431007[/C][C]0.000560721137986764[/C][C]0.000280360568993382[/C][/ROW]
[ROW][C]122[/C][C]0.999730452138558[/C][C]0.000539095722883111[/C][C]0.000269547861441556[/C][/ROW]
[ROW][C]123[/C][C]0.999630437289454[/C][C]0.000739125421091244[/C][C]0.000369562710545622[/C][/ROW]
[ROW][C]124[/C][C]0.999501798429057[/C][C]0.000996403141886747[/C][C]0.000498201570943373[/C][/ROW]
[ROW][C]125[/C][C]0.998985184469776[/C][C]0.00202963106044708[/C][C]0.00101481553022354[/C][/ROW]
[ROW][C]126[/C][C]0.998515775336145[/C][C]0.0029684493277093[/C][C]0.00148422466385465[/C][/ROW]
[ROW][C]127[/C][C]0.998482355398065[/C][C]0.00303528920386914[/C][C]0.00151764460193457[/C][/ROW]
[ROW][C]128[/C][C]0.999396192042588[/C][C]0.00120761591482422[/C][C]0.000603807957412108[/C][/ROW]
[ROW][C]129[/C][C]0.999469119870471[/C][C]0.00106176025905709[/C][C]0.000530880129528543[/C][/ROW]
[ROW][C]130[/C][C]0.99858195501972[/C][C]0.00283608996055937[/C][C]0.00141804498027968[/C][/ROW]
[ROW][C]131[/C][C]0.996908957666102[/C][C]0.00618208466779672[/C][C]0.00309104233389836[/C][/ROW]
[ROW][C]132[/C][C]0.994655061762572[/C][C]0.0106898764748562[/C][C]0.0053449382374281[/C][/ROW]
[ROW][C]133[/C][C]0.986343243008886[/C][C]0.0273135139822283[/C][C]0.0136567569911142[/C][/ROW]
[ROW][C]134[/C][C]0.982011349231624[/C][C]0.0359773015367512[/C][C]0.0179886507683756[/C][/ROW]
[ROW][C]135[/C][C]0.956048388672426[/C][C]0.087903222655149[/C][C]0.0439516113275745[/C][/ROW]
[ROW][C]136[/C][C]0.908885514538332[/C][C]0.182228970923337[/C][C]0.0911144854616683[/C][/ROW]
[ROW][C]137[/C][C]0.806660266622482[/C][C]0.386679466755035[/C][C]0.193339733377518[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
70.3431924368608110.6863848737216220.656807563139189
80.2242419155331540.4484838310663070.775758084466846
90.2076736477545960.4153472955091930.792326352245404
100.6165742588635880.7668514822728240.383425741136412
110.5524402268891420.8951195462217160.447559773110858
120.447827698133140.8956553962662810.55217230186686
130.5541772867407480.8916454265185040.445822713259252
140.4803062450664510.9606124901329030.519693754933549
150.4393462680974510.8786925361949010.560653731902549
160.3576255672688380.7152511345376760.642374432731162
170.2898339715269850.579667943053970.710166028473015
180.2319754106886740.4639508213773490.768024589311326
190.2025476104184720.4050952208369430.797452389581528
200.1560018836499150.3120037672998310.843998116350085
210.1596201035120210.3192402070240420.84037989648798
220.1241364871562080.2482729743124150.875863512843792
230.5349126609018830.9301746781962340.465087339098117
240.4711939383359310.9423878766718620.528806061664069
250.4268442062867140.8536884125734280.573155793713286
260.5092621355947360.9814757288105290.490737864405264
270.5621988289895590.8756023420208820.437801171010441
280.7540435904823630.4919128190352740.245956409517637
290.8883349257349240.2233301485301520.111665074265076
300.8701597768052110.2596804463895780.129840223194789
310.8994014805295930.2011970389408140.100598519470407
320.8842649104963670.2314701790072650.115735089503633
330.8691791198888180.2616417602223650.130820880111182
340.957093459480760.08581308103847820.0429065405192391
350.9502320620257520.0995358759484960.049767937974248
360.9401853212684150.1196293574631690.0598146787315845
370.9875943438597460.02481131228050830.0124056561402542
380.9826897745876870.03462045082462610.017310225412313
390.9773515072483540.04529698550329140.0226484927516457
400.9852062758432660.02958744831346860.0147937241567343
410.9816980396857880.03660392062842470.0183019603142123
420.9758881874068870.04822362518622570.0241118125931128
430.971756432036720.05648713592655950.0282435679632798
440.9657870144764620.06842597104707580.0342129855235379
450.9549238098322460.09015238033550870.0450761901677544
460.9438895233251710.1122209533496570.0561104766748286
470.9290386053713260.1419227892573480.0709613946286739
480.933384459410090.1332310811798210.0666155405899104
490.9159657723758830.1680684552482340.084034227624117
500.914592611458570.170814777082860.0854073885414298
510.8970676679426750.2058646641146490.102932332057325
520.874594036801020.2508119263979580.125405963198979
530.9618571372134710.07628572557305750.0381428627865288
540.985214289745370.02957142050925880.0147857102546294
550.9846366406798970.03072671864020640.0153633593201032
560.9799787147461830.04004257050763380.0200212852538169
570.9916319441082540.01673611178349290.00836805589174646
580.9886062660381870.02278746792362640.0113937339618132
590.9874610711913970.02507785761720670.0125389288086033
600.9909698354669320.01806032906613550.00903016453306774
610.9895254914475510.02094901710489770.0104745085524489
620.9895580190383570.0208839619232860.010441980961643
630.9878348391928570.02433032161428660.0121651608071433
640.9849873061972060.0300253876055880.015012693802794
650.98062184051610.0387563189677990.0193781594838995
660.9764213303716850.04715733925662950.0235786696283147
670.9942730523635180.01145389527296330.00572694763648165
680.9935860847936770.01282783041264670.00641391520632336
690.9927385625289560.01452287494208860.0072614374710443
700.9899448354932950.02011032901341010.010055164506705
710.990095791753690.01980841649261930.00990420824630967
720.9879476911150960.02410461776980810.012052308884904
730.9872371673917560.02552566521648810.0127628326082441
740.9846035273621340.03079294527573190.015396472637866
750.9793025835563470.04139483288730490.0206974164436525
760.973996618096390.05200676380721950.0260033819036097
770.9659793498040.06804130039199910.0340206501959995
780.9944495942343150.01110081153137040.00555040576568522
790.9921989715752870.01560205684942510.00780102842471255
800.9927705657643350.01445886847132990.00722943423566496
810.993133399853840.01373320029232060.00686660014616029
820.9999916730275091.66539449822972e-058.32697249114858e-06
830.9999903185161841.93629676321211e-059.68148381606057e-06
840.999983444150433.31116991389342e-051.65558495694671e-05
850.9999742662809165.14674381676175e-052.57337190838087e-05
860.9999553914870388.92170259243165e-054.46085129621583e-05
870.9999921765199881.56469600249426e-057.82348001247131e-06
880.9999985041871692.99162566235091e-061.49581283117546e-06
890.9999971881001925.62379961554913e-062.81189980777456e-06
900.99999468571141.06285771987525e-055.31428859937626e-06
910.9999926106471921.47787056161253e-057.38935280806266e-06
920.9999897252456282.0549508743869e-051.02747543719345e-05
930.999981785813033.6428373940557e-051.82141869702785e-05
940.9999715251687735.69496624538188e-052.84748312269094e-05
950.9999758675126344.8264974731744e-052.4132487365872e-05
960.99996938888426.12222315987556e-053.06111157993778e-05
970.9999809028905063.81942189871107e-051.90971094935553e-05
980.9999714115878125.71768243756974e-052.85884121878487e-05
990.9999688464845166.23070309682336e-053.11535154841168e-05
1000.9999443288570760.0001113422858474795.56711429237397e-05
1010.999907150274230.0001856994515386819.28497257693405e-05
1020.9998808857773870.0002382284452268620.000119114222613431
1030.9999140651495640.0001718697008720348.5934850436017e-05
1040.9998606022941070.0002787954117862260.000139397705893113
1050.999822497867820.0003550042643613650.000177502132180683
1060.9996882696636870.0006234606726257050.000311730336312853
1070.9994824226765870.001035154646825790.000517577323412895
1080.9991829159211040.001634168157791770.000817084078895885
1090.9987228246239970.002554350752006890.00127717537600344
1100.998377504194840.003244991610320950.00162249580516047
1110.998625186772230.002749626455539110.00137481322776955
1120.9976589838431750.004682032313650520.00234101615682526
1130.9987583026332750.002483394733449480.00124169736672474
1140.9994305410845460.00113891783090720.000569458915453602
1150.9990811312024160.0018377375951670.000918868797583498
1160.998517493358410.002965013283180570.00148250664159028
1170.9990392388326130.001921522334773440.000960761167386718
1180.9999236533906290.0001526932187425667.63466093712829e-05
1190.9998985959226280.0002028081547434940.000101404077371747
1200.9998057773606780.0003884452786437780.000194222639321889
1210.9997196394310070.0005607211379867640.000280360568993382
1220.9997304521385580.0005390957228831110.000269547861441556
1230.9996304372894540.0007391254210912440.000369562710545622
1240.9995017984290570.0009964031418867470.000498201570943373
1250.9989851844697760.002029631060447080.00101481553022354
1260.9985157753361450.00296844932770930.00148422466385465
1270.9984823553980650.003035289203869140.00151764460193457
1280.9993961920425880.001207615914824220.000603807957412108
1290.9994691198704710.001061760259057090.000530880129528543
1300.998581955019720.002836089960559370.00141804498027968
1310.9969089576661020.006182084667796720.00309104233389836
1320.9946550617625720.01068987647485620.0053449382374281
1330.9863432430088860.02731351398222830.0136567569911142
1340.9820113492316240.03597730153675120.0179886507683756
1350.9560483886724260.0879032226551490.0439516113275745
1360.9088855145383320.1822289709233370.0911144854616683
1370.8066602666224820.3866794667550350.193339733377518







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level500.381679389312977NOK
5% type I error level850.648854961832061NOK
10% type I error level940.717557251908397NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 50 & 0.381679389312977 & NOK \tabularnewline
5% type I error level & 85 & 0.648854961832061 & NOK \tabularnewline
10% type I error level & 94 & 0.717557251908397 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155524&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]50[/C][C]0.381679389312977[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]85[/C][C]0.648854961832061[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]94[/C][C]0.717557251908397[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155524&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155524&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level500.381679389312977NOK
5% type I error level850.648854961832061NOK
10% type I error level940.717557251908397NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}