Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 23 Dec 2011 06:49:51 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/23/t13246410230ld1tuzwcigroxc.htm/, Retrieved Fri, 01 Nov 2024 00:00:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=160311, Retrieved Fri, 01 Nov 2024 00:00:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact139
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Kendall tau Correlation Matrix] [] [2010-12-05 17:44:33] [b98453cac15ba1066b407e146608df68]
- RMPD    [Multiple Regression] [Paper stat: Beoor...] [2011-12-23 11:49:51] [9431a512beb885c6943db1a049152d0e] [Current]
Feedback Forum

Post a new message
Dataseries X:
140824	186099	32033	165	165	130	279055
110459	113854	20654	135	132	143	212408
105079	99776	16346	121	121	118	233939
112098	106194	35926	148	145	146	222117
43929	100792	10621	73	71	73	179751
76173	47552	10024	49	47	89	70849
187326	250931	43068	185	177	146	599777
22807	6853	1271	5	5	22	33186
144408	115466	34416	125	124	132	227332
66485	110896	20318	93	92	92	258874
79089	169351	24409	154	149	147	359064
81625	94853	20648	98	93	203	264989
68788	72591	12347	70	70	113	209202
103297	101345	21857	148	148	171	368577
69446	113713	11034	100	100	87	269455
114948	165354	33433	150	142	208	397286
167949	164263	35902	197	194	153	335567
125081	135213	22355	114	113	97	428322
125818	111669	31219	169	162	95	182016
136588	134163	21983	200	186	197	267365
112431	140303	40085	148	147	160	279428
103037	150773	18507	140	137	148	508849
82317	111848	16278	74	71	84	206722
118906	102509	24662	128	123	227	200004
83515	96785	31452	140	134	154	257139
104581	116136	32580	116	115	151	270941
103129	158376	22883	147	138	142	296850
83243	153990	27652	132	125	148	329962
37110	64057	9845	70	66	110	187155
113344	230054	20190	144	137	149	393860
139165	184531	46201	155	152	179	327660
86652	114198	10971	165	159	149	269239
112302	198299	34811	161	159	187	386982
69652	33750	3029	31	31	153	130446
119442	189723	38941	199	185	163	430118
69867	100826	4958	78	78	127	273950
101629	188355	32344	121	117	151	428077
70168	104470	19433	112	109	100	254312
31081	58391	12558	41	41	46	120351
103925	164808	36524	158	149	156	395643
92622	134097	26041	123	123	128	345875
79011	80238	16637	104	103	111	212715
93487	133252	28395	94	87	119	224524
64520	54518	16747	73	71	148	182485
93473	121850	9105	52	51	65	157164
114360	79367	11941	71	70	134	459455
33032	56968	7935	21	21	66	78800
96125	106314	19499	155	155	201	217932
151911	191889	22938	174	172	177	368086
89256	104864	25314	136	133	156	228688
95676	160792	28527	128	125	158	244765
5950	15049	2694	7	7	7	24188
149695	191179	20867	165	158	175	400109
32551	25109	3597	21	21	61	65029
31701	45824	5296	35	35	41	101097
100087	129711	32982	137	133	133	305666
169707	210012	38975	174	169	228	369627
150491	194679	42721	257	256	140	367127
120192	197680	41455	207	190	155	377704
95893	81180	23923	103	100	141	280106
151715	197765	26719	171	171	181	400971
176225	214738	53405	279	267	75	315924
59900	96252	12526	83	80	97	291391
104767	124527	26584	130	126	142	295075
114799	153242	37062	131	132	136	280018
72128	145707	25696	126	121	87	267432
143592	113963	24634	158	156	140	217181
89626	134904	27269	138	133	169	258166
131072	114268	25270	200	199	129	260919
126817	94333	24634	104	98	92	182961
81351	102204	17828	111	109	160	256967
22618	23824	3007	26	25	67	73566
88977	111563	20065	115	113	179	272362
92059	91313	24648	127	126	90	229056
81897	89770	21588	140	137	144	229851
108146	100125	25217	121	121	144	371391
126372	165278	30927	183	178	144	398210
249771	181712	18487	68	63	134	220419
71154	80906	18050	112	109	146	231884
71571	75881	17696	103	101	121	217714
55918	83963	17326	63	61	112	200046
160141	175721	39361	166	157	145	483074
38692	68580	9648	38	38	99	145943
102812	136323	26759	163	159	96	295224
56622	55792	7905	59	58	27	80953
15986	25157	4527	27	27	77	217384
123534	100922	41517	108	108	137	179344
108535	118845	21261	88	83	151	415550
93879	170492	36099	92	88	126	389059
144551	81716	39039	170	164	159	180679
56750	115750	13841	98	96	101	299505
127654	105590	23841	205	192	144	292260
65594	92795	8589	96	94	102	199481
59938	82390	15049	107	107	135	282361
146975	135599	39038	150	144	147	329281
165904	127667	36774	138	136	155	234577
169265	163073	40076	177	171	138	297995
183500	211381	43840	213	210	113	329583
165986	189944	43146	208	193	248	416463
184923	226168	50099	307	297	116	415683
140358	117495	40312	125	125	176	297080
149959	195894	32616	208	204	140	318283
57224	80684	11338	73	70	59	224033
43750	19630	7409	49	49	64	43287
48029	88634	18213	82	82	40	238089
104978	139292	45873	206	205	98	263322
100046	128602	39844	112	111	139	299566
101047	135848	28317	139	135	135	321797
197426	178377	24797	60	59	97	193926
160902	106330	7471	70	70	142	170491
147172	178303	27259	112	108	155	354041
109432	116938	23201	142	141	115	303273
1168	5841	238	11	11	0	23668
83248	106020	28830	130	130	103	196743
25162	24610	3913	31	28	30	61857
45724	74151	9935	132	101	130	217543
110529	232241	27738	219	216	102	440711
855	6622	338	4	4	0	21054
101382	127097	13326	102	97	77	252805
14116	13155	3988	39	39	9	31961
89506	160501	24347	125	119	150	360436
135356	91502	27111	121	118	163	251948
116066	24469	3938	42	41	148	187003
144244	88229	17416	111	107	94	180842
8773	13983	1888	16	16	21	38214
102153	80716	18700	70	69	151	278173
117440	157384	36809	162	160	187	358276
104128	122975	24959	173	158	171	211775
134238	191469	37343	171	161	170	445926
134047	231257	21849	172	165	145	348017
279488	258287	49809	254	246	198	441946
79756	122531	21654	90	89	152	215177
66089	61394	8728	50	49	112	126320
102070	86480	20920	113	107	173	316128
146760	195791	27195	187	182	177	466139
154771	18284	1037	16	16	153	162279
165933	147581	42570	175	173	161	416643
64593	72558	17672	90	90	115	178322
92280	147341	34245	140	140	147	292443
67150	114651	16786	145	142	124	283913
128692	100187	20954	141	126	57	244802
124089	130332	16378	125	123	144	387072
125386	134218	31852	241	239	126	246963
37238	10901	2805	16	15	78	173260
140015	145758	38086	175	170	153	346748
150047	75767	21166	132	123	196	176654
154451	134969	34672	154	151	130	267742
156349	169216	36171	198	194	159	314070




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Y1[t] = + 9975.2865695666 + 0.399373740130443X1[t] + 0.829081886969305X2[t] -263.961831618897X3[t] + 351.1105913586X4[t] + 282.1501377318X5[t] -0.0726533526117337X6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y1[t] =  +  9975.2865695666 +  0.399373740130443X1[t] +  0.829081886969305X2[t] -263.961831618897X3[t] +  351.1105913586X4[t] +  282.1501377318X5[t] -0.0726533526117337X6[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y1[t] =  +  9975.2865695666 +  0.399373740130443X1[t] +  0.829081886969305X2[t] -263.961831618897X3[t] +  351.1105913586X4[t] +  282.1501377318X5[t] -0.0726533526117337X6[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y1[t] = + 9975.2865695666 + 0.399373740130443X1[t] + 0.829081886969305X2[t] -263.961831618897X3[t] + 351.1105913586X4[t] + 282.1501377318X5[t] -0.0726533526117337X6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)9975.28656956667338.7104411.35930.1762310.088116
X10.3993737401304430.0934754.27253.5e-051.8e-05
X20.8290818869693050.365922.26570.024990.012495
X3-263.961831618897613.350328-0.43040.667590.333795
X4351.1105913586636.3716290.55170.5820010.291001
X5282.150137731868.4257184.12356.3e-053.2e-05
X6-0.07265335261173370.040572-1.79070.0754850.037743

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 9975.2865695666 & 7338.710441 & 1.3593 & 0.176231 & 0.088116 \tabularnewline
X1 & 0.399373740130443 & 0.093475 & 4.2725 & 3.5e-05 & 1.8e-05 \tabularnewline
X2 & 0.829081886969305 & 0.36592 & 2.2657 & 0.02499 & 0.012495 \tabularnewline
X3 & -263.961831618897 & 613.350328 & -0.4304 & 0.66759 & 0.333795 \tabularnewline
X4 & 351.1105913586 & 636.371629 & 0.5517 & 0.582001 & 0.291001 \tabularnewline
X5 & 282.1501377318 & 68.425718 & 4.1235 & 6.3e-05 & 3.2e-05 \tabularnewline
X6 & -0.0726533526117337 & 0.040572 & -1.7907 & 0.075485 & 0.037743 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]9975.2865695666[/C][C]7338.710441[/C][C]1.3593[/C][C]0.176231[/C][C]0.088116[/C][/ROW]
[ROW][C]X1[/C][C]0.399373740130443[/C][C]0.093475[/C][C]4.2725[/C][C]3.5e-05[/C][C]1.8e-05[/C][/ROW]
[ROW][C]X2[/C][C]0.829081886969305[/C][C]0.36592[/C][C]2.2657[/C][C]0.02499[/C][C]0.012495[/C][/ROW]
[ROW][C]X3[/C][C]-263.961831618897[/C][C]613.350328[/C][C]-0.4304[/C][C]0.66759[/C][C]0.333795[/C][/ROW]
[ROW][C]X4[/C][C]351.1105913586[/C][C]636.371629[/C][C]0.5517[/C][C]0.582001[/C][C]0.291001[/C][/ROW]
[ROW][C]X5[/C][C]282.1501377318[/C][C]68.425718[/C][C]4.1235[/C][C]6.3e-05[/C][C]3.2e-05[/C][/ROW]
[ROW][C]X6[/C][C]-0.0726533526117337[/C][C]0.040572[/C][C]-1.7907[/C][C]0.075485[/C][C]0.037743[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)9975.28656956667338.7104411.35930.1762310.088116
X10.3993737401304430.0934754.27253.5e-051.8e-05
X20.8290818869693050.365922.26570.024990.012495
X3-263.961831618897613.350328-0.43040.667590.333795
X4351.1105913586636.3716290.55170.5820010.291001
X5282.150137731868.4257184.12356.3e-053.2e-05
X6-0.07265335261173370.040572-1.79070.0754850.037743







Multiple Linear Regression - Regression Statistics
Multiple R0.798523959241787
R-squared0.637640513483179
Adjusted R-squared0.622220960865442
F-TEST (value)41.3527246406425
F-TEST (DF numerator)6
F-TEST (DF denominator)141
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation28974.7475546615
Sum Squared Residuals118374575415.747

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.798523959241787 \tabularnewline
R-squared & 0.637640513483179 \tabularnewline
Adjusted R-squared & 0.622220960865442 \tabularnewline
F-TEST (value) & 41.3527246406425 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 141 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 28974.7475546615 \tabularnewline
Sum Squared Residuals & 118374575415.747 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.798523959241787[/C][/ROW]
[ROW][C]R-squared[/C][C]0.637640513483179[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.622220960865442[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]41.3527246406425[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]141[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]28974.7475546615[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]118374575415.747[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.798523959241787
R-squared0.637640513483179
Adjusted R-squared0.622220960865442
F-TEST (value)41.3527246406425
F-TEST (DF numerator)6
F-TEST (DF denominator)141
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation28974.7475546615
Sum Squared Residuals118374575415.747







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1140824141641.102268507-817.102268507171
2110459108196.508836722262.49116327959
310507990217.63691344214861.363086558
4112098119073.037454421-6975.03745442069
54392972231.728853686-28302.728853686
67617360809.036418699415363.9635813006
7187326156829.18332264430496.816677356
82280717997.93055804364809.06944195637
9144408115892.92767017528515.0723298249
106648586012.995366264-19527.995366264
1179089124900.911500947-45811.9115009473
1281625109785.130946324-28160.1309463243
136878871987.0518701783-3199.05187017828
14103297102938.396314613358.603685386712
156944678222.4910504812-8776.49105048116
16114948143818.524754736-28870.5247547364
17167949140247.19054233527701.809457665
1812508188343.315758612136737.6842413879
19125818106306.61689753119511.383102469
20136588130454.9899689826133.01003101796
21112431136631.914743867-24200.9147438666
22103037101470.0111230561566.98887694428
238231782217.477269293399.5227307066657
24118906130278.115212286-11372.1152122855
2583515109568.231105926-26053.2311059255
26104581116046.487456789-11465.4874567887
27103129120347.427050616-17218.4270506156
2883243121231.858146693-37988.8581466928
293711065855.329177109-28745.329177109
30113344142108.744604834-28764.7446048336
31139165161130.537592256-21965.5375922559
328665299430.9626540302-12778.9626540302
33112302156007.134621809-43705.1346218094
346965262358.6827247057293.31727529496
35119442145198.961069617-25756.9610696165
366986777080.4160912034-7213.41609120343
37101629132659.15107857-31030.1510785697
387016886255.1331910242-16087.1331910242
393108151514.8308108997-20433.8308108997
40103925131956.800588094-28031.8005880938
4192622106825.765161477-14203.7651614767
427901180390.2398926568-1379.23989265677
4393487109732.070694231-16245.070694231
446452079792.6901063083-15272.6901063083
459347377289.65974311916183.340256881
4611436061836.072696797352523.9273032027
473303254032.5234294471-21000.5234294471
4896125122987.319094174-26862.3190941744
49151911143287.7499538368623.25004616382
5089256111041.964475959-21785.9644759588
5195676134741.041364414-39065.0413644137
52595019046.7615776129-13096.7615776129
53149695135856.39562983113838.6043701693
543255137302.0768471156-4751.07684711561
553170139940.3327595984-8239.33275959841
56100087114976.478929464-14889.4789294642
57169707177045.952901418-7338.95290141825
58150491158018.306777546-7527.30677754586
59120192151655.799809454-31463.7998094541
609589389586.09268795776306.90731204225
61151715147949.3986192623765.60138073796
62176225158322.62238174317902.3776182571
635990071178.933094198-11278.933094198
64104767110300.441126718-5533.44112671752
65114799131699.320506644-16900.3205066443
6672128103813.345647731-31685.3456477313
67143592112702.09368469330889.906315307
6889626125658.359317489-36032.3593174892
69131072111081.1934043919990.8065956104
7012681787694.902889801239122.0971101988
7181351101019.551311646-19668.5513116456
722261837457.0156402204-14839.0156402204
7388977111202.895619082-22225.8956190821
749205986347.11920772965711.88079227044
758189798802.955668672-16905.955668672
7610814695061.35872589113084.641274109
77126372127514.993474579-1142.993474579
78249771123838.026312793125932.973687207
797115490306.0458569506-19152.0458569506
807157181548.2141417226-9977.21414172256
815591879727.530216048-23809.530216048
82160141129908.65481814130232.3451818594
833869266004.5879785349-27312.5879785349
84102812105042.720481724-2230.72048172411
855662245338.251693481411283.7483065186
861598632060.4861665097-16074.4861665097
87123534119738.5679226623795.43207733847
8810853593393.076734220215141.9232657798
8993879121892.061480648-28013.0614806476
90144551119420.60131387925130.3986861208
915675082253.5981959157-25503.5981959157
92127654104608.31011522623045.6898847735
936559476106.567480747-10512.5674807471
945993882257.2549250543-22319.2549250543
95146975125014.01711905621960.9828809436
96165904129465.56467639736438.4353236028
97169265138933.69631727130331.3036827292
98183500156189.26675715527310.7332428446
99165986174181.583484306-8195.58348430622
100184923167609.23581235217313.7641876479
101140358129289.81440806511068.1855919346
102149959148350.7327576261608.26724237419
1035722457277.1251201434-53.1251201434266
1044375043140.6131564593609.386843540694
1054802961607.6867976128-13578.6867976128
106104978129758.348277069-24780.3482770688
107100046121233.432417949-21187.4324179485
108101047113126.395133896-12079.3951338961
109197426119930.12405841877495.8759415824
11016090292413.75713475268488.242865248
111147172130151.99017477217020.0098252282
11210943298350.260776733111081.7392232669
113116811744.4268822894-10576.4268822894
11483248102316.085699168-19068.0856991677
1152516228666.7372151927-3504.73721519267
1164572469319.6748924629-23595.6748924629
117110529140515.745706648-29986.7457066484
11885511719.1205075774-10864.1205075774
11910138282274.886379674419107.1136203256
1201411622151.5057528272-8035.50575282715
12189506119183.396213403-29677.3962134029
122135356106173.29529749829182.7047025022
12311606654493.449891266861572.5501087332
12414424481303.327750443662940.6722495564
125877321668.1940119069-12895.1940119069
12610215385858.7409961216294.25900388
127117440143495.999554349-26055.9995543491
128104128122452.913446352-18324.9134463522
129134238144362.218623266-10124.2186232664
130134047148606.850430257-14559.8504302568
131279488197507.84043525981980.1595647407
13279756111609.657767436-31853.6577674365
1336608968160.2360002771-2071.23600027706
13410207095442.88176703926627.11823296078
135146760141331.2307995565428.76920044449
13615477150910.4317712199103860.56822878
137165933133913.75159438132019.2484056191
1386459380939.5445837735-16346.5445837735
13992280129641.25424569-37361.2542456898
1406715095623.4779707979-28473.4779707979
14112869272678.113409144256013.8865908558
14212408998304.083129026625784.9168709734
143125386127895.204833847-2509.2048338471
1443723827117.494837725510120.5051622745
145140015131235.663289828779.33671018038
146150047108593.54656419541453.4534358048
147154451122219.02928223432231.9707177663
148156349145439.07982066210909.9201793379

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 140824 & 141641.102268507 & -817.102268507171 \tabularnewline
2 & 110459 & 108196.50883672 & 2262.49116327959 \tabularnewline
3 & 105079 & 90217.636913442 & 14861.363086558 \tabularnewline
4 & 112098 & 119073.037454421 & -6975.03745442069 \tabularnewline
5 & 43929 & 72231.728853686 & -28302.728853686 \tabularnewline
6 & 76173 & 60809.0364186994 & 15363.9635813006 \tabularnewline
7 & 187326 & 156829.183322644 & 30496.816677356 \tabularnewline
8 & 22807 & 17997.9305580436 & 4809.06944195637 \tabularnewline
9 & 144408 & 115892.927670175 & 28515.0723298249 \tabularnewline
10 & 66485 & 86012.995366264 & -19527.995366264 \tabularnewline
11 & 79089 & 124900.911500947 & -45811.9115009473 \tabularnewline
12 & 81625 & 109785.130946324 & -28160.1309463243 \tabularnewline
13 & 68788 & 71987.0518701783 & -3199.05187017828 \tabularnewline
14 & 103297 & 102938.396314613 & 358.603685386712 \tabularnewline
15 & 69446 & 78222.4910504812 & -8776.49105048116 \tabularnewline
16 & 114948 & 143818.524754736 & -28870.5247547364 \tabularnewline
17 & 167949 & 140247.190542335 & 27701.809457665 \tabularnewline
18 & 125081 & 88343.3157586121 & 36737.6842413879 \tabularnewline
19 & 125818 & 106306.616897531 & 19511.383102469 \tabularnewline
20 & 136588 & 130454.989968982 & 6133.01003101796 \tabularnewline
21 & 112431 & 136631.914743867 & -24200.9147438666 \tabularnewline
22 & 103037 & 101470.011123056 & 1566.98887694428 \tabularnewline
23 & 82317 & 82217.4772692933 & 99.5227307066657 \tabularnewline
24 & 118906 & 130278.115212286 & -11372.1152122855 \tabularnewline
25 & 83515 & 109568.231105926 & -26053.2311059255 \tabularnewline
26 & 104581 & 116046.487456789 & -11465.4874567887 \tabularnewline
27 & 103129 & 120347.427050616 & -17218.4270506156 \tabularnewline
28 & 83243 & 121231.858146693 & -37988.8581466928 \tabularnewline
29 & 37110 & 65855.329177109 & -28745.329177109 \tabularnewline
30 & 113344 & 142108.744604834 & -28764.7446048336 \tabularnewline
31 & 139165 & 161130.537592256 & -21965.5375922559 \tabularnewline
32 & 86652 & 99430.9626540302 & -12778.9626540302 \tabularnewline
33 & 112302 & 156007.134621809 & -43705.1346218094 \tabularnewline
34 & 69652 & 62358.682724705 & 7293.31727529496 \tabularnewline
35 & 119442 & 145198.961069617 & -25756.9610696165 \tabularnewline
36 & 69867 & 77080.4160912034 & -7213.41609120343 \tabularnewline
37 & 101629 & 132659.15107857 & -31030.1510785697 \tabularnewline
38 & 70168 & 86255.1331910242 & -16087.1331910242 \tabularnewline
39 & 31081 & 51514.8308108997 & -20433.8308108997 \tabularnewline
40 & 103925 & 131956.800588094 & -28031.8005880938 \tabularnewline
41 & 92622 & 106825.765161477 & -14203.7651614767 \tabularnewline
42 & 79011 & 80390.2398926568 & -1379.23989265677 \tabularnewline
43 & 93487 & 109732.070694231 & -16245.070694231 \tabularnewline
44 & 64520 & 79792.6901063083 & -15272.6901063083 \tabularnewline
45 & 93473 & 77289.659743119 & 16183.340256881 \tabularnewline
46 & 114360 & 61836.0726967973 & 52523.9273032027 \tabularnewline
47 & 33032 & 54032.5234294471 & -21000.5234294471 \tabularnewline
48 & 96125 & 122987.319094174 & -26862.3190941744 \tabularnewline
49 & 151911 & 143287.749953836 & 8623.25004616382 \tabularnewline
50 & 89256 & 111041.964475959 & -21785.9644759588 \tabularnewline
51 & 95676 & 134741.041364414 & -39065.0413644137 \tabularnewline
52 & 5950 & 19046.7615776129 & -13096.7615776129 \tabularnewline
53 & 149695 & 135856.395629831 & 13838.6043701693 \tabularnewline
54 & 32551 & 37302.0768471156 & -4751.07684711561 \tabularnewline
55 & 31701 & 39940.3327595984 & -8239.33275959841 \tabularnewline
56 & 100087 & 114976.478929464 & -14889.4789294642 \tabularnewline
57 & 169707 & 177045.952901418 & -7338.95290141825 \tabularnewline
58 & 150491 & 158018.306777546 & -7527.30677754586 \tabularnewline
59 & 120192 & 151655.799809454 & -31463.7998094541 \tabularnewline
60 & 95893 & 89586.0926879577 & 6306.90731204225 \tabularnewline
61 & 151715 & 147949.398619262 & 3765.60138073796 \tabularnewline
62 & 176225 & 158322.622381743 & 17902.3776182571 \tabularnewline
63 & 59900 & 71178.933094198 & -11278.933094198 \tabularnewline
64 & 104767 & 110300.441126718 & -5533.44112671752 \tabularnewline
65 & 114799 & 131699.320506644 & -16900.3205066443 \tabularnewline
66 & 72128 & 103813.345647731 & -31685.3456477313 \tabularnewline
67 & 143592 & 112702.093684693 & 30889.906315307 \tabularnewline
68 & 89626 & 125658.359317489 & -36032.3593174892 \tabularnewline
69 & 131072 & 111081.19340439 & 19990.8065956104 \tabularnewline
70 & 126817 & 87694.9028898012 & 39122.0971101988 \tabularnewline
71 & 81351 & 101019.551311646 & -19668.5513116456 \tabularnewline
72 & 22618 & 37457.0156402204 & -14839.0156402204 \tabularnewline
73 & 88977 & 111202.895619082 & -22225.8956190821 \tabularnewline
74 & 92059 & 86347.1192077296 & 5711.88079227044 \tabularnewline
75 & 81897 & 98802.955668672 & -16905.955668672 \tabularnewline
76 & 108146 & 95061.358725891 & 13084.641274109 \tabularnewline
77 & 126372 & 127514.993474579 & -1142.993474579 \tabularnewline
78 & 249771 & 123838.026312793 & 125932.973687207 \tabularnewline
79 & 71154 & 90306.0458569506 & -19152.0458569506 \tabularnewline
80 & 71571 & 81548.2141417226 & -9977.21414172256 \tabularnewline
81 & 55918 & 79727.530216048 & -23809.530216048 \tabularnewline
82 & 160141 & 129908.654818141 & 30232.3451818594 \tabularnewline
83 & 38692 & 66004.5879785349 & -27312.5879785349 \tabularnewline
84 & 102812 & 105042.720481724 & -2230.72048172411 \tabularnewline
85 & 56622 & 45338.2516934814 & 11283.7483065186 \tabularnewline
86 & 15986 & 32060.4861665097 & -16074.4861665097 \tabularnewline
87 & 123534 & 119738.567922662 & 3795.43207733847 \tabularnewline
88 & 108535 & 93393.0767342202 & 15141.9232657798 \tabularnewline
89 & 93879 & 121892.061480648 & -28013.0614806476 \tabularnewline
90 & 144551 & 119420.601313879 & 25130.3986861208 \tabularnewline
91 & 56750 & 82253.5981959157 & -25503.5981959157 \tabularnewline
92 & 127654 & 104608.310115226 & 23045.6898847735 \tabularnewline
93 & 65594 & 76106.567480747 & -10512.5674807471 \tabularnewline
94 & 59938 & 82257.2549250543 & -22319.2549250543 \tabularnewline
95 & 146975 & 125014.017119056 & 21960.9828809436 \tabularnewline
96 & 165904 & 129465.564676397 & 36438.4353236028 \tabularnewline
97 & 169265 & 138933.696317271 & 30331.3036827292 \tabularnewline
98 & 183500 & 156189.266757155 & 27310.7332428446 \tabularnewline
99 & 165986 & 174181.583484306 & -8195.58348430622 \tabularnewline
100 & 184923 & 167609.235812352 & 17313.7641876479 \tabularnewline
101 & 140358 & 129289.814408065 & 11068.1855919346 \tabularnewline
102 & 149959 & 148350.732757626 & 1608.26724237419 \tabularnewline
103 & 57224 & 57277.1251201434 & -53.1251201434266 \tabularnewline
104 & 43750 & 43140.6131564593 & 609.386843540694 \tabularnewline
105 & 48029 & 61607.6867976128 & -13578.6867976128 \tabularnewline
106 & 104978 & 129758.348277069 & -24780.3482770688 \tabularnewline
107 & 100046 & 121233.432417949 & -21187.4324179485 \tabularnewline
108 & 101047 & 113126.395133896 & -12079.3951338961 \tabularnewline
109 & 197426 & 119930.124058418 & 77495.8759415824 \tabularnewline
110 & 160902 & 92413.757134752 & 68488.242865248 \tabularnewline
111 & 147172 & 130151.990174772 & 17020.0098252282 \tabularnewline
112 & 109432 & 98350.2607767331 & 11081.7392232669 \tabularnewline
113 & 1168 & 11744.4268822894 & -10576.4268822894 \tabularnewline
114 & 83248 & 102316.085699168 & -19068.0856991677 \tabularnewline
115 & 25162 & 28666.7372151927 & -3504.73721519267 \tabularnewline
116 & 45724 & 69319.6748924629 & -23595.6748924629 \tabularnewline
117 & 110529 & 140515.745706648 & -29986.7457066484 \tabularnewline
118 & 855 & 11719.1205075774 & -10864.1205075774 \tabularnewline
119 & 101382 & 82274.8863796744 & 19107.1136203256 \tabularnewline
120 & 14116 & 22151.5057528272 & -8035.50575282715 \tabularnewline
121 & 89506 & 119183.396213403 & -29677.3962134029 \tabularnewline
122 & 135356 & 106173.295297498 & 29182.7047025022 \tabularnewline
123 & 116066 & 54493.4498912668 & 61572.5501087332 \tabularnewline
124 & 144244 & 81303.3277504436 & 62940.6722495564 \tabularnewline
125 & 8773 & 21668.1940119069 & -12895.1940119069 \tabularnewline
126 & 102153 & 85858.74099612 & 16294.25900388 \tabularnewline
127 & 117440 & 143495.999554349 & -26055.9995543491 \tabularnewline
128 & 104128 & 122452.913446352 & -18324.9134463522 \tabularnewline
129 & 134238 & 144362.218623266 & -10124.2186232664 \tabularnewline
130 & 134047 & 148606.850430257 & -14559.8504302568 \tabularnewline
131 & 279488 & 197507.840435259 & 81980.1595647407 \tabularnewline
132 & 79756 & 111609.657767436 & -31853.6577674365 \tabularnewline
133 & 66089 & 68160.2360002771 & -2071.23600027706 \tabularnewline
134 & 102070 & 95442.8817670392 & 6627.11823296078 \tabularnewline
135 & 146760 & 141331.230799556 & 5428.76920044449 \tabularnewline
136 & 154771 & 50910.4317712199 & 103860.56822878 \tabularnewline
137 & 165933 & 133913.751594381 & 32019.2484056191 \tabularnewline
138 & 64593 & 80939.5445837735 & -16346.5445837735 \tabularnewline
139 & 92280 & 129641.25424569 & -37361.2542456898 \tabularnewline
140 & 67150 & 95623.4779707979 & -28473.4779707979 \tabularnewline
141 & 128692 & 72678.1134091442 & 56013.8865908558 \tabularnewline
142 & 124089 & 98304.0831290266 & 25784.9168709734 \tabularnewline
143 & 125386 & 127895.204833847 & -2509.2048338471 \tabularnewline
144 & 37238 & 27117.4948377255 & 10120.5051622745 \tabularnewline
145 & 140015 & 131235.66328982 & 8779.33671018038 \tabularnewline
146 & 150047 & 108593.546564195 & 41453.4534358048 \tabularnewline
147 & 154451 & 122219.029282234 & 32231.9707177663 \tabularnewline
148 & 156349 & 145439.079820662 & 10909.9201793379 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]140824[/C][C]141641.102268507[/C][C]-817.102268507171[/C][/ROW]
[ROW][C]2[/C][C]110459[/C][C]108196.50883672[/C][C]2262.49116327959[/C][/ROW]
[ROW][C]3[/C][C]105079[/C][C]90217.636913442[/C][C]14861.363086558[/C][/ROW]
[ROW][C]4[/C][C]112098[/C][C]119073.037454421[/C][C]-6975.03745442069[/C][/ROW]
[ROW][C]5[/C][C]43929[/C][C]72231.728853686[/C][C]-28302.728853686[/C][/ROW]
[ROW][C]6[/C][C]76173[/C][C]60809.0364186994[/C][C]15363.9635813006[/C][/ROW]
[ROW][C]7[/C][C]187326[/C][C]156829.183322644[/C][C]30496.816677356[/C][/ROW]
[ROW][C]8[/C][C]22807[/C][C]17997.9305580436[/C][C]4809.06944195637[/C][/ROW]
[ROW][C]9[/C][C]144408[/C][C]115892.927670175[/C][C]28515.0723298249[/C][/ROW]
[ROW][C]10[/C][C]66485[/C][C]86012.995366264[/C][C]-19527.995366264[/C][/ROW]
[ROW][C]11[/C][C]79089[/C][C]124900.911500947[/C][C]-45811.9115009473[/C][/ROW]
[ROW][C]12[/C][C]81625[/C][C]109785.130946324[/C][C]-28160.1309463243[/C][/ROW]
[ROW][C]13[/C][C]68788[/C][C]71987.0518701783[/C][C]-3199.05187017828[/C][/ROW]
[ROW][C]14[/C][C]103297[/C][C]102938.396314613[/C][C]358.603685386712[/C][/ROW]
[ROW][C]15[/C][C]69446[/C][C]78222.4910504812[/C][C]-8776.49105048116[/C][/ROW]
[ROW][C]16[/C][C]114948[/C][C]143818.524754736[/C][C]-28870.5247547364[/C][/ROW]
[ROW][C]17[/C][C]167949[/C][C]140247.190542335[/C][C]27701.809457665[/C][/ROW]
[ROW][C]18[/C][C]125081[/C][C]88343.3157586121[/C][C]36737.6842413879[/C][/ROW]
[ROW][C]19[/C][C]125818[/C][C]106306.616897531[/C][C]19511.383102469[/C][/ROW]
[ROW][C]20[/C][C]136588[/C][C]130454.989968982[/C][C]6133.01003101796[/C][/ROW]
[ROW][C]21[/C][C]112431[/C][C]136631.914743867[/C][C]-24200.9147438666[/C][/ROW]
[ROW][C]22[/C][C]103037[/C][C]101470.011123056[/C][C]1566.98887694428[/C][/ROW]
[ROW][C]23[/C][C]82317[/C][C]82217.4772692933[/C][C]99.5227307066657[/C][/ROW]
[ROW][C]24[/C][C]118906[/C][C]130278.115212286[/C][C]-11372.1152122855[/C][/ROW]
[ROW][C]25[/C][C]83515[/C][C]109568.231105926[/C][C]-26053.2311059255[/C][/ROW]
[ROW][C]26[/C][C]104581[/C][C]116046.487456789[/C][C]-11465.4874567887[/C][/ROW]
[ROW][C]27[/C][C]103129[/C][C]120347.427050616[/C][C]-17218.4270506156[/C][/ROW]
[ROW][C]28[/C][C]83243[/C][C]121231.858146693[/C][C]-37988.8581466928[/C][/ROW]
[ROW][C]29[/C][C]37110[/C][C]65855.329177109[/C][C]-28745.329177109[/C][/ROW]
[ROW][C]30[/C][C]113344[/C][C]142108.744604834[/C][C]-28764.7446048336[/C][/ROW]
[ROW][C]31[/C][C]139165[/C][C]161130.537592256[/C][C]-21965.5375922559[/C][/ROW]
[ROW][C]32[/C][C]86652[/C][C]99430.9626540302[/C][C]-12778.9626540302[/C][/ROW]
[ROW][C]33[/C][C]112302[/C][C]156007.134621809[/C][C]-43705.1346218094[/C][/ROW]
[ROW][C]34[/C][C]69652[/C][C]62358.682724705[/C][C]7293.31727529496[/C][/ROW]
[ROW][C]35[/C][C]119442[/C][C]145198.961069617[/C][C]-25756.9610696165[/C][/ROW]
[ROW][C]36[/C][C]69867[/C][C]77080.4160912034[/C][C]-7213.41609120343[/C][/ROW]
[ROW][C]37[/C][C]101629[/C][C]132659.15107857[/C][C]-31030.1510785697[/C][/ROW]
[ROW][C]38[/C][C]70168[/C][C]86255.1331910242[/C][C]-16087.1331910242[/C][/ROW]
[ROW][C]39[/C][C]31081[/C][C]51514.8308108997[/C][C]-20433.8308108997[/C][/ROW]
[ROW][C]40[/C][C]103925[/C][C]131956.800588094[/C][C]-28031.8005880938[/C][/ROW]
[ROW][C]41[/C][C]92622[/C][C]106825.765161477[/C][C]-14203.7651614767[/C][/ROW]
[ROW][C]42[/C][C]79011[/C][C]80390.2398926568[/C][C]-1379.23989265677[/C][/ROW]
[ROW][C]43[/C][C]93487[/C][C]109732.070694231[/C][C]-16245.070694231[/C][/ROW]
[ROW][C]44[/C][C]64520[/C][C]79792.6901063083[/C][C]-15272.6901063083[/C][/ROW]
[ROW][C]45[/C][C]93473[/C][C]77289.659743119[/C][C]16183.340256881[/C][/ROW]
[ROW][C]46[/C][C]114360[/C][C]61836.0726967973[/C][C]52523.9273032027[/C][/ROW]
[ROW][C]47[/C][C]33032[/C][C]54032.5234294471[/C][C]-21000.5234294471[/C][/ROW]
[ROW][C]48[/C][C]96125[/C][C]122987.319094174[/C][C]-26862.3190941744[/C][/ROW]
[ROW][C]49[/C][C]151911[/C][C]143287.749953836[/C][C]8623.25004616382[/C][/ROW]
[ROW][C]50[/C][C]89256[/C][C]111041.964475959[/C][C]-21785.9644759588[/C][/ROW]
[ROW][C]51[/C][C]95676[/C][C]134741.041364414[/C][C]-39065.0413644137[/C][/ROW]
[ROW][C]52[/C][C]5950[/C][C]19046.7615776129[/C][C]-13096.7615776129[/C][/ROW]
[ROW][C]53[/C][C]149695[/C][C]135856.395629831[/C][C]13838.6043701693[/C][/ROW]
[ROW][C]54[/C][C]32551[/C][C]37302.0768471156[/C][C]-4751.07684711561[/C][/ROW]
[ROW][C]55[/C][C]31701[/C][C]39940.3327595984[/C][C]-8239.33275959841[/C][/ROW]
[ROW][C]56[/C][C]100087[/C][C]114976.478929464[/C][C]-14889.4789294642[/C][/ROW]
[ROW][C]57[/C][C]169707[/C][C]177045.952901418[/C][C]-7338.95290141825[/C][/ROW]
[ROW][C]58[/C][C]150491[/C][C]158018.306777546[/C][C]-7527.30677754586[/C][/ROW]
[ROW][C]59[/C][C]120192[/C][C]151655.799809454[/C][C]-31463.7998094541[/C][/ROW]
[ROW][C]60[/C][C]95893[/C][C]89586.0926879577[/C][C]6306.90731204225[/C][/ROW]
[ROW][C]61[/C][C]151715[/C][C]147949.398619262[/C][C]3765.60138073796[/C][/ROW]
[ROW][C]62[/C][C]176225[/C][C]158322.622381743[/C][C]17902.3776182571[/C][/ROW]
[ROW][C]63[/C][C]59900[/C][C]71178.933094198[/C][C]-11278.933094198[/C][/ROW]
[ROW][C]64[/C][C]104767[/C][C]110300.441126718[/C][C]-5533.44112671752[/C][/ROW]
[ROW][C]65[/C][C]114799[/C][C]131699.320506644[/C][C]-16900.3205066443[/C][/ROW]
[ROW][C]66[/C][C]72128[/C][C]103813.345647731[/C][C]-31685.3456477313[/C][/ROW]
[ROW][C]67[/C][C]143592[/C][C]112702.093684693[/C][C]30889.906315307[/C][/ROW]
[ROW][C]68[/C][C]89626[/C][C]125658.359317489[/C][C]-36032.3593174892[/C][/ROW]
[ROW][C]69[/C][C]131072[/C][C]111081.19340439[/C][C]19990.8065956104[/C][/ROW]
[ROW][C]70[/C][C]126817[/C][C]87694.9028898012[/C][C]39122.0971101988[/C][/ROW]
[ROW][C]71[/C][C]81351[/C][C]101019.551311646[/C][C]-19668.5513116456[/C][/ROW]
[ROW][C]72[/C][C]22618[/C][C]37457.0156402204[/C][C]-14839.0156402204[/C][/ROW]
[ROW][C]73[/C][C]88977[/C][C]111202.895619082[/C][C]-22225.8956190821[/C][/ROW]
[ROW][C]74[/C][C]92059[/C][C]86347.1192077296[/C][C]5711.88079227044[/C][/ROW]
[ROW][C]75[/C][C]81897[/C][C]98802.955668672[/C][C]-16905.955668672[/C][/ROW]
[ROW][C]76[/C][C]108146[/C][C]95061.358725891[/C][C]13084.641274109[/C][/ROW]
[ROW][C]77[/C][C]126372[/C][C]127514.993474579[/C][C]-1142.993474579[/C][/ROW]
[ROW][C]78[/C][C]249771[/C][C]123838.026312793[/C][C]125932.973687207[/C][/ROW]
[ROW][C]79[/C][C]71154[/C][C]90306.0458569506[/C][C]-19152.0458569506[/C][/ROW]
[ROW][C]80[/C][C]71571[/C][C]81548.2141417226[/C][C]-9977.21414172256[/C][/ROW]
[ROW][C]81[/C][C]55918[/C][C]79727.530216048[/C][C]-23809.530216048[/C][/ROW]
[ROW][C]82[/C][C]160141[/C][C]129908.654818141[/C][C]30232.3451818594[/C][/ROW]
[ROW][C]83[/C][C]38692[/C][C]66004.5879785349[/C][C]-27312.5879785349[/C][/ROW]
[ROW][C]84[/C][C]102812[/C][C]105042.720481724[/C][C]-2230.72048172411[/C][/ROW]
[ROW][C]85[/C][C]56622[/C][C]45338.2516934814[/C][C]11283.7483065186[/C][/ROW]
[ROW][C]86[/C][C]15986[/C][C]32060.4861665097[/C][C]-16074.4861665097[/C][/ROW]
[ROW][C]87[/C][C]123534[/C][C]119738.567922662[/C][C]3795.43207733847[/C][/ROW]
[ROW][C]88[/C][C]108535[/C][C]93393.0767342202[/C][C]15141.9232657798[/C][/ROW]
[ROW][C]89[/C][C]93879[/C][C]121892.061480648[/C][C]-28013.0614806476[/C][/ROW]
[ROW][C]90[/C][C]144551[/C][C]119420.601313879[/C][C]25130.3986861208[/C][/ROW]
[ROW][C]91[/C][C]56750[/C][C]82253.5981959157[/C][C]-25503.5981959157[/C][/ROW]
[ROW][C]92[/C][C]127654[/C][C]104608.310115226[/C][C]23045.6898847735[/C][/ROW]
[ROW][C]93[/C][C]65594[/C][C]76106.567480747[/C][C]-10512.5674807471[/C][/ROW]
[ROW][C]94[/C][C]59938[/C][C]82257.2549250543[/C][C]-22319.2549250543[/C][/ROW]
[ROW][C]95[/C][C]146975[/C][C]125014.017119056[/C][C]21960.9828809436[/C][/ROW]
[ROW][C]96[/C][C]165904[/C][C]129465.564676397[/C][C]36438.4353236028[/C][/ROW]
[ROW][C]97[/C][C]169265[/C][C]138933.696317271[/C][C]30331.3036827292[/C][/ROW]
[ROW][C]98[/C][C]183500[/C][C]156189.266757155[/C][C]27310.7332428446[/C][/ROW]
[ROW][C]99[/C][C]165986[/C][C]174181.583484306[/C][C]-8195.58348430622[/C][/ROW]
[ROW][C]100[/C][C]184923[/C][C]167609.235812352[/C][C]17313.7641876479[/C][/ROW]
[ROW][C]101[/C][C]140358[/C][C]129289.814408065[/C][C]11068.1855919346[/C][/ROW]
[ROW][C]102[/C][C]149959[/C][C]148350.732757626[/C][C]1608.26724237419[/C][/ROW]
[ROW][C]103[/C][C]57224[/C][C]57277.1251201434[/C][C]-53.1251201434266[/C][/ROW]
[ROW][C]104[/C][C]43750[/C][C]43140.6131564593[/C][C]609.386843540694[/C][/ROW]
[ROW][C]105[/C][C]48029[/C][C]61607.6867976128[/C][C]-13578.6867976128[/C][/ROW]
[ROW][C]106[/C][C]104978[/C][C]129758.348277069[/C][C]-24780.3482770688[/C][/ROW]
[ROW][C]107[/C][C]100046[/C][C]121233.432417949[/C][C]-21187.4324179485[/C][/ROW]
[ROW][C]108[/C][C]101047[/C][C]113126.395133896[/C][C]-12079.3951338961[/C][/ROW]
[ROW][C]109[/C][C]197426[/C][C]119930.124058418[/C][C]77495.8759415824[/C][/ROW]
[ROW][C]110[/C][C]160902[/C][C]92413.757134752[/C][C]68488.242865248[/C][/ROW]
[ROW][C]111[/C][C]147172[/C][C]130151.990174772[/C][C]17020.0098252282[/C][/ROW]
[ROW][C]112[/C][C]109432[/C][C]98350.2607767331[/C][C]11081.7392232669[/C][/ROW]
[ROW][C]113[/C][C]1168[/C][C]11744.4268822894[/C][C]-10576.4268822894[/C][/ROW]
[ROW][C]114[/C][C]83248[/C][C]102316.085699168[/C][C]-19068.0856991677[/C][/ROW]
[ROW][C]115[/C][C]25162[/C][C]28666.7372151927[/C][C]-3504.73721519267[/C][/ROW]
[ROW][C]116[/C][C]45724[/C][C]69319.6748924629[/C][C]-23595.6748924629[/C][/ROW]
[ROW][C]117[/C][C]110529[/C][C]140515.745706648[/C][C]-29986.7457066484[/C][/ROW]
[ROW][C]118[/C][C]855[/C][C]11719.1205075774[/C][C]-10864.1205075774[/C][/ROW]
[ROW][C]119[/C][C]101382[/C][C]82274.8863796744[/C][C]19107.1136203256[/C][/ROW]
[ROW][C]120[/C][C]14116[/C][C]22151.5057528272[/C][C]-8035.50575282715[/C][/ROW]
[ROW][C]121[/C][C]89506[/C][C]119183.396213403[/C][C]-29677.3962134029[/C][/ROW]
[ROW][C]122[/C][C]135356[/C][C]106173.295297498[/C][C]29182.7047025022[/C][/ROW]
[ROW][C]123[/C][C]116066[/C][C]54493.4498912668[/C][C]61572.5501087332[/C][/ROW]
[ROW][C]124[/C][C]144244[/C][C]81303.3277504436[/C][C]62940.6722495564[/C][/ROW]
[ROW][C]125[/C][C]8773[/C][C]21668.1940119069[/C][C]-12895.1940119069[/C][/ROW]
[ROW][C]126[/C][C]102153[/C][C]85858.74099612[/C][C]16294.25900388[/C][/ROW]
[ROW][C]127[/C][C]117440[/C][C]143495.999554349[/C][C]-26055.9995543491[/C][/ROW]
[ROW][C]128[/C][C]104128[/C][C]122452.913446352[/C][C]-18324.9134463522[/C][/ROW]
[ROW][C]129[/C][C]134238[/C][C]144362.218623266[/C][C]-10124.2186232664[/C][/ROW]
[ROW][C]130[/C][C]134047[/C][C]148606.850430257[/C][C]-14559.8504302568[/C][/ROW]
[ROW][C]131[/C][C]279488[/C][C]197507.840435259[/C][C]81980.1595647407[/C][/ROW]
[ROW][C]132[/C][C]79756[/C][C]111609.657767436[/C][C]-31853.6577674365[/C][/ROW]
[ROW][C]133[/C][C]66089[/C][C]68160.2360002771[/C][C]-2071.23600027706[/C][/ROW]
[ROW][C]134[/C][C]102070[/C][C]95442.8817670392[/C][C]6627.11823296078[/C][/ROW]
[ROW][C]135[/C][C]146760[/C][C]141331.230799556[/C][C]5428.76920044449[/C][/ROW]
[ROW][C]136[/C][C]154771[/C][C]50910.4317712199[/C][C]103860.56822878[/C][/ROW]
[ROW][C]137[/C][C]165933[/C][C]133913.751594381[/C][C]32019.2484056191[/C][/ROW]
[ROW][C]138[/C][C]64593[/C][C]80939.5445837735[/C][C]-16346.5445837735[/C][/ROW]
[ROW][C]139[/C][C]92280[/C][C]129641.25424569[/C][C]-37361.2542456898[/C][/ROW]
[ROW][C]140[/C][C]67150[/C][C]95623.4779707979[/C][C]-28473.4779707979[/C][/ROW]
[ROW][C]141[/C][C]128692[/C][C]72678.1134091442[/C][C]56013.8865908558[/C][/ROW]
[ROW][C]142[/C][C]124089[/C][C]98304.0831290266[/C][C]25784.9168709734[/C][/ROW]
[ROW][C]143[/C][C]125386[/C][C]127895.204833847[/C][C]-2509.2048338471[/C][/ROW]
[ROW][C]144[/C][C]37238[/C][C]27117.4948377255[/C][C]10120.5051622745[/C][/ROW]
[ROW][C]145[/C][C]140015[/C][C]131235.66328982[/C][C]8779.33671018038[/C][/ROW]
[ROW][C]146[/C][C]150047[/C][C]108593.546564195[/C][C]41453.4534358048[/C][/ROW]
[ROW][C]147[/C][C]154451[/C][C]122219.029282234[/C][C]32231.9707177663[/C][/ROW]
[ROW][C]148[/C][C]156349[/C][C]145439.079820662[/C][C]10909.9201793379[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1140824141641.102268507-817.102268507171
2110459108196.508836722262.49116327959
310507990217.63691344214861.363086558
4112098119073.037454421-6975.03745442069
54392972231.728853686-28302.728853686
67617360809.036418699415363.9635813006
7187326156829.18332264430496.816677356
82280717997.93055804364809.06944195637
9144408115892.92767017528515.0723298249
106648586012.995366264-19527.995366264
1179089124900.911500947-45811.9115009473
1281625109785.130946324-28160.1309463243
136878871987.0518701783-3199.05187017828
14103297102938.396314613358.603685386712
156944678222.4910504812-8776.49105048116
16114948143818.524754736-28870.5247547364
17167949140247.19054233527701.809457665
1812508188343.315758612136737.6842413879
19125818106306.61689753119511.383102469
20136588130454.9899689826133.01003101796
21112431136631.914743867-24200.9147438666
22103037101470.0111230561566.98887694428
238231782217.477269293399.5227307066657
24118906130278.115212286-11372.1152122855
2583515109568.231105926-26053.2311059255
26104581116046.487456789-11465.4874567887
27103129120347.427050616-17218.4270506156
2883243121231.858146693-37988.8581466928
293711065855.329177109-28745.329177109
30113344142108.744604834-28764.7446048336
31139165161130.537592256-21965.5375922559
328665299430.9626540302-12778.9626540302
33112302156007.134621809-43705.1346218094
346965262358.6827247057293.31727529496
35119442145198.961069617-25756.9610696165
366986777080.4160912034-7213.41609120343
37101629132659.15107857-31030.1510785697
387016886255.1331910242-16087.1331910242
393108151514.8308108997-20433.8308108997
40103925131956.800588094-28031.8005880938
4192622106825.765161477-14203.7651614767
427901180390.2398926568-1379.23989265677
4393487109732.070694231-16245.070694231
446452079792.6901063083-15272.6901063083
459347377289.65974311916183.340256881
4611436061836.072696797352523.9273032027
473303254032.5234294471-21000.5234294471
4896125122987.319094174-26862.3190941744
49151911143287.7499538368623.25004616382
5089256111041.964475959-21785.9644759588
5195676134741.041364414-39065.0413644137
52595019046.7615776129-13096.7615776129
53149695135856.39562983113838.6043701693
543255137302.0768471156-4751.07684711561
553170139940.3327595984-8239.33275959841
56100087114976.478929464-14889.4789294642
57169707177045.952901418-7338.95290141825
58150491158018.306777546-7527.30677754586
59120192151655.799809454-31463.7998094541
609589389586.09268795776306.90731204225
61151715147949.3986192623765.60138073796
62176225158322.62238174317902.3776182571
635990071178.933094198-11278.933094198
64104767110300.441126718-5533.44112671752
65114799131699.320506644-16900.3205066443
6672128103813.345647731-31685.3456477313
67143592112702.09368469330889.906315307
6889626125658.359317489-36032.3593174892
69131072111081.1934043919990.8065956104
7012681787694.902889801239122.0971101988
7181351101019.551311646-19668.5513116456
722261837457.0156402204-14839.0156402204
7388977111202.895619082-22225.8956190821
749205986347.11920772965711.88079227044
758189798802.955668672-16905.955668672
7610814695061.35872589113084.641274109
77126372127514.993474579-1142.993474579
78249771123838.026312793125932.973687207
797115490306.0458569506-19152.0458569506
807157181548.2141417226-9977.21414172256
815591879727.530216048-23809.530216048
82160141129908.65481814130232.3451818594
833869266004.5879785349-27312.5879785349
84102812105042.720481724-2230.72048172411
855662245338.251693481411283.7483065186
861598632060.4861665097-16074.4861665097
87123534119738.5679226623795.43207733847
8810853593393.076734220215141.9232657798
8993879121892.061480648-28013.0614806476
90144551119420.60131387925130.3986861208
915675082253.5981959157-25503.5981959157
92127654104608.31011522623045.6898847735
936559476106.567480747-10512.5674807471
945993882257.2549250543-22319.2549250543
95146975125014.01711905621960.9828809436
96165904129465.56467639736438.4353236028
97169265138933.69631727130331.3036827292
98183500156189.26675715527310.7332428446
99165986174181.583484306-8195.58348430622
100184923167609.23581235217313.7641876479
101140358129289.81440806511068.1855919346
102149959148350.7327576261608.26724237419
1035722457277.1251201434-53.1251201434266
1044375043140.6131564593609.386843540694
1054802961607.6867976128-13578.6867976128
106104978129758.348277069-24780.3482770688
107100046121233.432417949-21187.4324179485
108101047113126.395133896-12079.3951338961
109197426119930.12405841877495.8759415824
11016090292413.75713475268488.242865248
111147172130151.99017477217020.0098252282
11210943298350.260776733111081.7392232669
113116811744.4268822894-10576.4268822894
11483248102316.085699168-19068.0856991677
1152516228666.7372151927-3504.73721519267
1164572469319.6748924629-23595.6748924629
117110529140515.745706648-29986.7457066484
11885511719.1205075774-10864.1205075774
11910138282274.886379674419107.1136203256
1201411622151.5057528272-8035.50575282715
12189506119183.396213403-29677.3962134029
122135356106173.29529749829182.7047025022
12311606654493.449891266861572.5501087332
12414424481303.327750443662940.6722495564
125877321668.1940119069-12895.1940119069
12610215385858.7409961216294.25900388
127117440143495.999554349-26055.9995543491
128104128122452.913446352-18324.9134463522
129134238144362.218623266-10124.2186232664
130134047148606.850430257-14559.8504302568
131279488197507.84043525981980.1595647407
13279756111609.657767436-31853.6577674365
1336608968160.2360002771-2071.23600027706
13410207095442.88176703926627.11823296078
135146760141331.2307995565428.76920044449
13615477150910.4317712199103860.56822878
137165933133913.75159438132019.2484056191
1386459380939.5445837735-16346.5445837735
13992280129641.25424569-37361.2542456898
1406715095623.4779707979-28473.4779707979
14112869272678.113409144256013.8865908558
14212408998304.083129026625784.9168709734
143125386127895.204833847-2509.2048338471
1443723827117.494837725510120.5051622745
145140015131235.663289828779.33671018038
146150047108593.54656419541453.4534358048
147154451122219.02928223432231.9707177663
148156349145439.07982066210909.9201793379







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
100.5170061253615340.9659877492769320.482993874638466
110.6416380678435220.7167238643129560.358361932156478
120.5669840138290310.8660319723419390.433015986170969
130.4359399886914280.8718799773828570.564060011308572
140.3186865770328640.6373731540657280.681313422967136
150.2223601265820160.4447202531640330.777639873417984
160.1597999463928860.3195998927857720.840200053607114
170.13430851092320.26861702184640.8656914890768
180.1066831537763390.2133663075526770.893316846223661
190.06905568351950190.1381113670390040.930944316480498
200.07710688903925820.1542137780785160.922893110960742
210.07928392060380010.15856784120760.9207160793962
220.05316341799485270.1063268359897050.946836582005147
230.0355141435378130.0710282870756260.964485856462187
240.03173977932202590.06347955864405170.968260220677974
250.04474725177272460.08949450354544930.955252748227275
260.02987786413660070.05975572827320130.970122135863399
270.02056885247121890.04113770494243780.979431147528781
280.02310833671521210.04621667343042420.976891663284788
290.0196495583914090.0392991167828180.980350441608591
300.01338074245856670.02676148491713340.986619257541433
310.00899237120666620.01798474241333240.991007628793334
320.006399524636812010.0127990492736240.993600475363188
330.006970520603893250.01394104120778650.993029479396107
340.01030461042197520.02060922084395040.989695389578025
350.008618846511274770.01723769302254950.991381153488725
360.005540436080687870.01108087216137570.994459563919312
370.004211220000843080.008422440001686160.995788779999157
380.003414050502701650.00682810100540330.996585949497298
390.002888397437535530.005776794875071060.997111602562464
400.002309013322636270.004618026645272530.997690986677364
410.001653746745901160.003307493491802310.998346253254099
420.001008203713644840.002016407427289670.998991796286355
430.0006841293267033820.001368258653406760.999315870673297
440.0004259931058986420.0008519862117972840.999574006894101
450.0005665042653369340.001133008530673870.999433495734663
460.002213195830881580.004426391661763150.997786804169118
470.001622205383374430.003244410766748870.998377794616626
480.001375164874832450.002750329749664910.998624835125168
490.001205574575748010.002411149151496020.998794425424252
500.0009400754180786270.001880150836157250.999059924581921
510.0009880272270975140.001976054454195030.999011972772902
520.0007467316701305870.001493463340261170.999253268329869
530.0007837211516489820.001567442303297960.999216278848351
540.0004942069619124820.0009884139238249640.999505793038088
550.000319810656483170.000639621312966340.999680189343517
560.0002141252883917510.0004282505767835020.999785874711608
570.0002137903877236860.0004275807754473710.999786209612276
580.0001558212120567530.0003116424241135060.999844178787943
590.0001375666749529330.0002751333499058660.999862433325047
608.70379484732806e-050.0001740758969465610.999912962051527
615.5011128354494e-050.0001100222567089880.999944988871646
624.48665804013997e-058.97331608027994e-050.999955133419599
632.93675528450876e-055.87351056901752e-050.999970632447155
641.72849175908789e-053.45698351817579e-050.999982715082409
651.17601441832686e-052.35202883665371e-050.999988239855817
661.40632504300407e-052.81265008600814e-050.99998593674957
672.04175227519586e-054.08350455039172e-050.999979582477248
682.77740332742339e-055.55480665484679e-050.999972225966726
691.87407784216182e-053.74815568432364e-050.999981259221578
706.84894571451229e-050.0001369789142902460.999931510542855
715.39573357435921e-050.0001079146714871840.999946042664256
723.72981643686717e-057.45963287373433e-050.999962701835631
733.2709998602275e-056.54199972045501e-050.999967290001398
741.96140688987218e-053.92281377974437e-050.999980385931101
751.55251325528172e-053.10502651056344e-050.999984474867447
769.97692442096015e-061.99538488419203e-050.999990023075579
775.72280004127928e-061.14456000825586e-050.999994277199959
780.07653980967192020.153079619343840.92346019032808
790.06923742821738090.1384748564347620.930762571782619
800.05684304645991770.1136860929198350.943156953540082
810.05400665065359530.1080133013071910.945993349346405
820.06181600299687130.1236320059937430.938183997003129
830.06554279940182090.1310855988036420.934457200598179
840.05136399761198630.1027279952239730.948636002388014
850.04083333417675350.0816666683535070.959166665823247
860.03348274617845950.06696549235691890.966517253821541
870.0275385785014450.05507715700289010.972461421498555
880.02326593775886110.04653187551772220.976734062241139
890.02291763246520950.04583526493041890.97708236753479
900.02280925792363330.04561851584726660.977190742076367
910.02190866953732470.04381733907464950.978091330462675
920.02018036342412130.04036072684824260.979819636575879
930.01613425997855050.0322685199571010.983865740021449
940.01518871086013150.0303774217202630.984811289139868
950.01331848404072220.02663696808144450.986681515959278
960.01509288278568920.03018576557137840.984907117214311
970.01495892432544520.02991784865089030.985041075674555
980.01405446492292120.02810892984584240.985945535077079
990.01188099234422760.02376198468845530.988119007655772
1000.01228552411251080.02457104822502160.987714475887489
1010.009175356022221190.01835071204444240.990824643977779
1020.006410577342554340.01282115468510870.993589422657446
1030.004404024555479240.008808049110958480.995595975444521
1040.003049053859581260.006098107719162530.996950946140419
1050.002186463625133820.004372927250267630.997813536374866
1060.001857801516388430.003715603032776860.998142198483612
1070.001758049418427040.003516098836854080.998241950581573
1080.001309102151200660.002618204302401320.998690897848799
1090.0102363149980130.0204726299960260.989763685001987
1100.03260424945279230.06520849890558460.967395750547208
1110.02667673266032440.05335346532064880.973323267339676
1120.01943693596467460.03887387192934920.980563064035325
1130.01390167130007780.02780334260015560.986098328699922
1140.01154786101528050.02309572203056110.98845213898472
1150.007831862268431420.01566372453686280.992168137731569
1160.01332928625481520.02665857250963040.986670713745185
1170.01151211342948390.02302422685896790.988487886570516
1180.007891360762621450.01578272152524290.992108639237379
1190.006229865873033760.01245973174606750.993770134126966
1200.004075905443552980.008151810887105970.995924094556447
1210.004579977378136020.009159954756272050.995420022621864
1220.003500640380230690.007001280760461380.996499359619769
1230.005983736983765440.01196747396753090.994016263016235
1240.01758471392728340.03516942785456680.982415286072717
1250.01155738504353040.02311477008706080.98844261495647
1260.007501971188393180.01500394237678640.992498028811607
1270.008117078353933730.01623415670786750.991882921646066
1280.01719684587922530.03439369175845070.982803154120775
1290.0267191562202910.05343831244058190.973280843779709
1300.01834335132858050.0366867026571610.98165664867142
1310.1294749168165880.2589498336331750.870525083183412
1320.110147672267420.2202953445348390.88985232773258
1330.07610075159883420.1522015031976680.923899248401166
1340.1267028425061850.253405685012370.873297157493815
1350.08023134517099420.1604626903419880.919768654829006
1360.6007512181884710.7984975636230590.399248781811529
1370.4586814727890130.9173629455780250.541318527210987
1380.3044213442808160.6088426885616320.695578655719184

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 & 0.517006125361534 & 0.965987749276932 & 0.482993874638466 \tabularnewline
11 & 0.641638067843522 & 0.716723864312956 & 0.358361932156478 \tabularnewline
12 & 0.566984013829031 & 0.866031972341939 & 0.433015986170969 \tabularnewline
13 & 0.435939988691428 & 0.871879977382857 & 0.564060011308572 \tabularnewline
14 & 0.318686577032864 & 0.637373154065728 & 0.681313422967136 \tabularnewline
15 & 0.222360126582016 & 0.444720253164033 & 0.777639873417984 \tabularnewline
16 & 0.159799946392886 & 0.319599892785772 & 0.840200053607114 \tabularnewline
17 & 0.1343085109232 & 0.2686170218464 & 0.8656914890768 \tabularnewline
18 & 0.106683153776339 & 0.213366307552677 & 0.893316846223661 \tabularnewline
19 & 0.0690556835195019 & 0.138111367039004 & 0.930944316480498 \tabularnewline
20 & 0.0771068890392582 & 0.154213778078516 & 0.922893110960742 \tabularnewline
21 & 0.0792839206038001 & 0.1585678412076 & 0.9207160793962 \tabularnewline
22 & 0.0531634179948527 & 0.106326835989705 & 0.946836582005147 \tabularnewline
23 & 0.035514143537813 & 0.071028287075626 & 0.964485856462187 \tabularnewline
24 & 0.0317397793220259 & 0.0634795586440517 & 0.968260220677974 \tabularnewline
25 & 0.0447472517727246 & 0.0894945035454493 & 0.955252748227275 \tabularnewline
26 & 0.0298778641366007 & 0.0597557282732013 & 0.970122135863399 \tabularnewline
27 & 0.0205688524712189 & 0.0411377049424378 & 0.979431147528781 \tabularnewline
28 & 0.0231083367152121 & 0.0462166734304242 & 0.976891663284788 \tabularnewline
29 & 0.019649558391409 & 0.039299116782818 & 0.980350441608591 \tabularnewline
30 & 0.0133807424585667 & 0.0267614849171334 & 0.986619257541433 \tabularnewline
31 & 0.0089923712066662 & 0.0179847424133324 & 0.991007628793334 \tabularnewline
32 & 0.00639952463681201 & 0.012799049273624 & 0.993600475363188 \tabularnewline
33 & 0.00697052060389325 & 0.0139410412077865 & 0.993029479396107 \tabularnewline
34 & 0.0103046104219752 & 0.0206092208439504 & 0.989695389578025 \tabularnewline
35 & 0.00861884651127477 & 0.0172376930225495 & 0.991381153488725 \tabularnewline
36 & 0.00554043608068787 & 0.0110808721613757 & 0.994459563919312 \tabularnewline
37 & 0.00421122000084308 & 0.00842244000168616 & 0.995788779999157 \tabularnewline
38 & 0.00341405050270165 & 0.0068281010054033 & 0.996585949497298 \tabularnewline
39 & 0.00288839743753553 & 0.00577679487507106 & 0.997111602562464 \tabularnewline
40 & 0.00230901332263627 & 0.00461802664527253 & 0.997690986677364 \tabularnewline
41 & 0.00165374674590116 & 0.00330749349180231 & 0.998346253254099 \tabularnewline
42 & 0.00100820371364484 & 0.00201640742728967 & 0.998991796286355 \tabularnewline
43 & 0.000684129326703382 & 0.00136825865340676 & 0.999315870673297 \tabularnewline
44 & 0.000425993105898642 & 0.000851986211797284 & 0.999574006894101 \tabularnewline
45 & 0.000566504265336934 & 0.00113300853067387 & 0.999433495734663 \tabularnewline
46 & 0.00221319583088158 & 0.00442639166176315 & 0.997786804169118 \tabularnewline
47 & 0.00162220538337443 & 0.00324441076674887 & 0.998377794616626 \tabularnewline
48 & 0.00137516487483245 & 0.00275032974966491 & 0.998624835125168 \tabularnewline
49 & 0.00120557457574801 & 0.00241114915149602 & 0.998794425424252 \tabularnewline
50 & 0.000940075418078627 & 0.00188015083615725 & 0.999059924581921 \tabularnewline
51 & 0.000988027227097514 & 0.00197605445419503 & 0.999011972772902 \tabularnewline
52 & 0.000746731670130587 & 0.00149346334026117 & 0.999253268329869 \tabularnewline
53 & 0.000783721151648982 & 0.00156744230329796 & 0.999216278848351 \tabularnewline
54 & 0.000494206961912482 & 0.000988413923824964 & 0.999505793038088 \tabularnewline
55 & 0.00031981065648317 & 0.00063962131296634 & 0.999680189343517 \tabularnewline
56 & 0.000214125288391751 & 0.000428250576783502 & 0.999785874711608 \tabularnewline
57 & 0.000213790387723686 & 0.000427580775447371 & 0.999786209612276 \tabularnewline
58 & 0.000155821212056753 & 0.000311642424113506 & 0.999844178787943 \tabularnewline
59 & 0.000137566674952933 & 0.000275133349905866 & 0.999862433325047 \tabularnewline
60 & 8.70379484732806e-05 & 0.000174075896946561 & 0.999912962051527 \tabularnewline
61 & 5.5011128354494e-05 & 0.000110022256708988 & 0.999944988871646 \tabularnewline
62 & 4.48665804013997e-05 & 8.97331608027994e-05 & 0.999955133419599 \tabularnewline
63 & 2.93675528450876e-05 & 5.87351056901752e-05 & 0.999970632447155 \tabularnewline
64 & 1.72849175908789e-05 & 3.45698351817579e-05 & 0.999982715082409 \tabularnewline
65 & 1.17601441832686e-05 & 2.35202883665371e-05 & 0.999988239855817 \tabularnewline
66 & 1.40632504300407e-05 & 2.81265008600814e-05 & 0.99998593674957 \tabularnewline
67 & 2.04175227519586e-05 & 4.08350455039172e-05 & 0.999979582477248 \tabularnewline
68 & 2.77740332742339e-05 & 5.55480665484679e-05 & 0.999972225966726 \tabularnewline
69 & 1.87407784216182e-05 & 3.74815568432364e-05 & 0.999981259221578 \tabularnewline
70 & 6.84894571451229e-05 & 0.000136978914290246 & 0.999931510542855 \tabularnewline
71 & 5.39573357435921e-05 & 0.000107914671487184 & 0.999946042664256 \tabularnewline
72 & 3.72981643686717e-05 & 7.45963287373433e-05 & 0.999962701835631 \tabularnewline
73 & 3.2709998602275e-05 & 6.54199972045501e-05 & 0.999967290001398 \tabularnewline
74 & 1.96140688987218e-05 & 3.92281377974437e-05 & 0.999980385931101 \tabularnewline
75 & 1.55251325528172e-05 & 3.10502651056344e-05 & 0.999984474867447 \tabularnewline
76 & 9.97692442096015e-06 & 1.99538488419203e-05 & 0.999990023075579 \tabularnewline
77 & 5.72280004127928e-06 & 1.14456000825586e-05 & 0.999994277199959 \tabularnewline
78 & 0.0765398096719202 & 0.15307961934384 & 0.92346019032808 \tabularnewline
79 & 0.0692374282173809 & 0.138474856434762 & 0.930762571782619 \tabularnewline
80 & 0.0568430464599177 & 0.113686092919835 & 0.943156953540082 \tabularnewline
81 & 0.0540066506535953 & 0.108013301307191 & 0.945993349346405 \tabularnewline
82 & 0.0618160029968713 & 0.123632005993743 & 0.938183997003129 \tabularnewline
83 & 0.0655427994018209 & 0.131085598803642 & 0.934457200598179 \tabularnewline
84 & 0.0513639976119863 & 0.102727995223973 & 0.948636002388014 \tabularnewline
85 & 0.0408333341767535 & 0.081666668353507 & 0.959166665823247 \tabularnewline
86 & 0.0334827461784595 & 0.0669654923569189 & 0.966517253821541 \tabularnewline
87 & 0.027538578501445 & 0.0550771570028901 & 0.972461421498555 \tabularnewline
88 & 0.0232659377588611 & 0.0465318755177222 & 0.976734062241139 \tabularnewline
89 & 0.0229176324652095 & 0.0458352649304189 & 0.97708236753479 \tabularnewline
90 & 0.0228092579236333 & 0.0456185158472666 & 0.977190742076367 \tabularnewline
91 & 0.0219086695373247 & 0.0438173390746495 & 0.978091330462675 \tabularnewline
92 & 0.0201803634241213 & 0.0403607268482426 & 0.979819636575879 \tabularnewline
93 & 0.0161342599785505 & 0.032268519957101 & 0.983865740021449 \tabularnewline
94 & 0.0151887108601315 & 0.030377421720263 & 0.984811289139868 \tabularnewline
95 & 0.0133184840407222 & 0.0266369680814445 & 0.986681515959278 \tabularnewline
96 & 0.0150928827856892 & 0.0301857655713784 & 0.984907117214311 \tabularnewline
97 & 0.0149589243254452 & 0.0299178486508903 & 0.985041075674555 \tabularnewline
98 & 0.0140544649229212 & 0.0281089298458424 & 0.985945535077079 \tabularnewline
99 & 0.0118809923442276 & 0.0237619846884553 & 0.988119007655772 \tabularnewline
100 & 0.0122855241125108 & 0.0245710482250216 & 0.987714475887489 \tabularnewline
101 & 0.00917535602222119 & 0.0183507120444424 & 0.990824643977779 \tabularnewline
102 & 0.00641057734255434 & 0.0128211546851087 & 0.993589422657446 \tabularnewline
103 & 0.00440402455547924 & 0.00880804911095848 & 0.995595975444521 \tabularnewline
104 & 0.00304905385958126 & 0.00609810771916253 & 0.996950946140419 \tabularnewline
105 & 0.00218646362513382 & 0.00437292725026763 & 0.997813536374866 \tabularnewline
106 & 0.00185780151638843 & 0.00371560303277686 & 0.998142198483612 \tabularnewline
107 & 0.00175804941842704 & 0.00351609883685408 & 0.998241950581573 \tabularnewline
108 & 0.00130910215120066 & 0.00261820430240132 & 0.998690897848799 \tabularnewline
109 & 0.010236314998013 & 0.020472629996026 & 0.989763685001987 \tabularnewline
110 & 0.0326042494527923 & 0.0652084989055846 & 0.967395750547208 \tabularnewline
111 & 0.0266767326603244 & 0.0533534653206488 & 0.973323267339676 \tabularnewline
112 & 0.0194369359646746 & 0.0388738719293492 & 0.980563064035325 \tabularnewline
113 & 0.0139016713000778 & 0.0278033426001556 & 0.986098328699922 \tabularnewline
114 & 0.0115478610152805 & 0.0230957220305611 & 0.98845213898472 \tabularnewline
115 & 0.00783186226843142 & 0.0156637245368628 & 0.992168137731569 \tabularnewline
116 & 0.0133292862548152 & 0.0266585725096304 & 0.986670713745185 \tabularnewline
117 & 0.0115121134294839 & 0.0230242268589679 & 0.988487886570516 \tabularnewline
118 & 0.00789136076262145 & 0.0157827215252429 & 0.992108639237379 \tabularnewline
119 & 0.00622986587303376 & 0.0124597317460675 & 0.993770134126966 \tabularnewline
120 & 0.00407590544355298 & 0.00815181088710597 & 0.995924094556447 \tabularnewline
121 & 0.00457997737813602 & 0.00915995475627205 & 0.995420022621864 \tabularnewline
122 & 0.00350064038023069 & 0.00700128076046138 & 0.996499359619769 \tabularnewline
123 & 0.00598373698376544 & 0.0119674739675309 & 0.994016263016235 \tabularnewline
124 & 0.0175847139272834 & 0.0351694278545668 & 0.982415286072717 \tabularnewline
125 & 0.0115573850435304 & 0.0231147700870608 & 0.98844261495647 \tabularnewline
126 & 0.00750197118839318 & 0.0150039423767864 & 0.992498028811607 \tabularnewline
127 & 0.00811707835393373 & 0.0162341567078675 & 0.991882921646066 \tabularnewline
128 & 0.0171968458792253 & 0.0343936917584507 & 0.982803154120775 \tabularnewline
129 & 0.026719156220291 & 0.0534383124405819 & 0.973280843779709 \tabularnewline
130 & 0.0183433513285805 & 0.036686702657161 & 0.98165664867142 \tabularnewline
131 & 0.129474916816588 & 0.258949833633175 & 0.870525083183412 \tabularnewline
132 & 0.11014767226742 & 0.220295344534839 & 0.88985232773258 \tabularnewline
133 & 0.0761007515988342 & 0.152201503197668 & 0.923899248401166 \tabularnewline
134 & 0.126702842506185 & 0.25340568501237 & 0.873297157493815 \tabularnewline
135 & 0.0802313451709942 & 0.160462690341988 & 0.919768654829006 \tabularnewline
136 & 0.600751218188471 & 0.798497563623059 & 0.399248781811529 \tabularnewline
137 & 0.458681472789013 & 0.917362945578025 & 0.541318527210987 \tabularnewline
138 & 0.304421344280816 & 0.608842688561632 & 0.695578655719184 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C]0.517006125361534[/C][C]0.965987749276932[/C][C]0.482993874638466[/C][/ROW]
[ROW][C]11[/C][C]0.641638067843522[/C][C]0.716723864312956[/C][C]0.358361932156478[/C][/ROW]
[ROW][C]12[/C][C]0.566984013829031[/C][C]0.866031972341939[/C][C]0.433015986170969[/C][/ROW]
[ROW][C]13[/C][C]0.435939988691428[/C][C]0.871879977382857[/C][C]0.564060011308572[/C][/ROW]
[ROW][C]14[/C][C]0.318686577032864[/C][C]0.637373154065728[/C][C]0.681313422967136[/C][/ROW]
[ROW][C]15[/C][C]0.222360126582016[/C][C]0.444720253164033[/C][C]0.777639873417984[/C][/ROW]
[ROW][C]16[/C][C]0.159799946392886[/C][C]0.319599892785772[/C][C]0.840200053607114[/C][/ROW]
[ROW][C]17[/C][C]0.1343085109232[/C][C]0.2686170218464[/C][C]0.8656914890768[/C][/ROW]
[ROW][C]18[/C][C]0.106683153776339[/C][C]0.213366307552677[/C][C]0.893316846223661[/C][/ROW]
[ROW][C]19[/C][C]0.0690556835195019[/C][C]0.138111367039004[/C][C]0.930944316480498[/C][/ROW]
[ROW][C]20[/C][C]0.0771068890392582[/C][C]0.154213778078516[/C][C]0.922893110960742[/C][/ROW]
[ROW][C]21[/C][C]0.0792839206038001[/C][C]0.1585678412076[/C][C]0.9207160793962[/C][/ROW]
[ROW][C]22[/C][C]0.0531634179948527[/C][C]0.106326835989705[/C][C]0.946836582005147[/C][/ROW]
[ROW][C]23[/C][C]0.035514143537813[/C][C]0.071028287075626[/C][C]0.964485856462187[/C][/ROW]
[ROW][C]24[/C][C]0.0317397793220259[/C][C]0.0634795586440517[/C][C]0.968260220677974[/C][/ROW]
[ROW][C]25[/C][C]0.0447472517727246[/C][C]0.0894945035454493[/C][C]0.955252748227275[/C][/ROW]
[ROW][C]26[/C][C]0.0298778641366007[/C][C]0.0597557282732013[/C][C]0.970122135863399[/C][/ROW]
[ROW][C]27[/C][C]0.0205688524712189[/C][C]0.0411377049424378[/C][C]0.979431147528781[/C][/ROW]
[ROW][C]28[/C][C]0.0231083367152121[/C][C]0.0462166734304242[/C][C]0.976891663284788[/C][/ROW]
[ROW][C]29[/C][C]0.019649558391409[/C][C]0.039299116782818[/C][C]0.980350441608591[/C][/ROW]
[ROW][C]30[/C][C]0.0133807424585667[/C][C]0.0267614849171334[/C][C]0.986619257541433[/C][/ROW]
[ROW][C]31[/C][C]0.0089923712066662[/C][C]0.0179847424133324[/C][C]0.991007628793334[/C][/ROW]
[ROW][C]32[/C][C]0.00639952463681201[/C][C]0.012799049273624[/C][C]0.993600475363188[/C][/ROW]
[ROW][C]33[/C][C]0.00697052060389325[/C][C]0.0139410412077865[/C][C]0.993029479396107[/C][/ROW]
[ROW][C]34[/C][C]0.0103046104219752[/C][C]0.0206092208439504[/C][C]0.989695389578025[/C][/ROW]
[ROW][C]35[/C][C]0.00861884651127477[/C][C]0.0172376930225495[/C][C]0.991381153488725[/C][/ROW]
[ROW][C]36[/C][C]0.00554043608068787[/C][C]0.0110808721613757[/C][C]0.994459563919312[/C][/ROW]
[ROW][C]37[/C][C]0.00421122000084308[/C][C]0.00842244000168616[/C][C]0.995788779999157[/C][/ROW]
[ROW][C]38[/C][C]0.00341405050270165[/C][C]0.0068281010054033[/C][C]0.996585949497298[/C][/ROW]
[ROW][C]39[/C][C]0.00288839743753553[/C][C]0.00577679487507106[/C][C]0.997111602562464[/C][/ROW]
[ROW][C]40[/C][C]0.00230901332263627[/C][C]0.00461802664527253[/C][C]0.997690986677364[/C][/ROW]
[ROW][C]41[/C][C]0.00165374674590116[/C][C]0.00330749349180231[/C][C]0.998346253254099[/C][/ROW]
[ROW][C]42[/C][C]0.00100820371364484[/C][C]0.00201640742728967[/C][C]0.998991796286355[/C][/ROW]
[ROW][C]43[/C][C]0.000684129326703382[/C][C]0.00136825865340676[/C][C]0.999315870673297[/C][/ROW]
[ROW][C]44[/C][C]0.000425993105898642[/C][C]0.000851986211797284[/C][C]0.999574006894101[/C][/ROW]
[ROW][C]45[/C][C]0.000566504265336934[/C][C]0.00113300853067387[/C][C]0.999433495734663[/C][/ROW]
[ROW][C]46[/C][C]0.00221319583088158[/C][C]0.00442639166176315[/C][C]0.997786804169118[/C][/ROW]
[ROW][C]47[/C][C]0.00162220538337443[/C][C]0.00324441076674887[/C][C]0.998377794616626[/C][/ROW]
[ROW][C]48[/C][C]0.00137516487483245[/C][C]0.00275032974966491[/C][C]0.998624835125168[/C][/ROW]
[ROW][C]49[/C][C]0.00120557457574801[/C][C]0.00241114915149602[/C][C]0.998794425424252[/C][/ROW]
[ROW][C]50[/C][C]0.000940075418078627[/C][C]0.00188015083615725[/C][C]0.999059924581921[/C][/ROW]
[ROW][C]51[/C][C]0.000988027227097514[/C][C]0.00197605445419503[/C][C]0.999011972772902[/C][/ROW]
[ROW][C]52[/C][C]0.000746731670130587[/C][C]0.00149346334026117[/C][C]0.999253268329869[/C][/ROW]
[ROW][C]53[/C][C]0.000783721151648982[/C][C]0.00156744230329796[/C][C]0.999216278848351[/C][/ROW]
[ROW][C]54[/C][C]0.000494206961912482[/C][C]0.000988413923824964[/C][C]0.999505793038088[/C][/ROW]
[ROW][C]55[/C][C]0.00031981065648317[/C][C]0.00063962131296634[/C][C]0.999680189343517[/C][/ROW]
[ROW][C]56[/C][C]0.000214125288391751[/C][C]0.000428250576783502[/C][C]0.999785874711608[/C][/ROW]
[ROW][C]57[/C][C]0.000213790387723686[/C][C]0.000427580775447371[/C][C]0.999786209612276[/C][/ROW]
[ROW][C]58[/C][C]0.000155821212056753[/C][C]0.000311642424113506[/C][C]0.999844178787943[/C][/ROW]
[ROW][C]59[/C][C]0.000137566674952933[/C][C]0.000275133349905866[/C][C]0.999862433325047[/C][/ROW]
[ROW][C]60[/C][C]8.70379484732806e-05[/C][C]0.000174075896946561[/C][C]0.999912962051527[/C][/ROW]
[ROW][C]61[/C][C]5.5011128354494e-05[/C][C]0.000110022256708988[/C][C]0.999944988871646[/C][/ROW]
[ROW][C]62[/C][C]4.48665804013997e-05[/C][C]8.97331608027994e-05[/C][C]0.999955133419599[/C][/ROW]
[ROW][C]63[/C][C]2.93675528450876e-05[/C][C]5.87351056901752e-05[/C][C]0.999970632447155[/C][/ROW]
[ROW][C]64[/C][C]1.72849175908789e-05[/C][C]3.45698351817579e-05[/C][C]0.999982715082409[/C][/ROW]
[ROW][C]65[/C][C]1.17601441832686e-05[/C][C]2.35202883665371e-05[/C][C]0.999988239855817[/C][/ROW]
[ROW][C]66[/C][C]1.40632504300407e-05[/C][C]2.81265008600814e-05[/C][C]0.99998593674957[/C][/ROW]
[ROW][C]67[/C][C]2.04175227519586e-05[/C][C]4.08350455039172e-05[/C][C]0.999979582477248[/C][/ROW]
[ROW][C]68[/C][C]2.77740332742339e-05[/C][C]5.55480665484679e-05[/C][C]0.999972225966726[/C][/ROW]
[ROW][C]69[/C][C]1.87407784216182e-05[/C][C]3.74815568432364e-05[/C][C]0.999981259221578[/C][/ROW]
[ROW][C]70[/C][C]6.84894571451229e-05[/C][C]0.000136978914290246[/C][C]0.999931510542855[/C][/ROW]
[ROW][C]71[/C][C]5.39573357435921e-05[/C][C]0.000107914671487184[/C][C]0.999946042664256[/C][/ROW]
[ROW][C]72[/C][C]3.72981643686717e-05[/C][C]7.45963287373433e-05[/C][C]0.999962701835631[/C][/ROW]
[ROW][C]73[/C][C]3.2709998602275e-05[/C][C]6.54199972045501e-05[/C][C]0.999967290001398[/C][/ROW]
[ROW][C]74[/C][C]1.96140688987218e-05[/C][C]3.92281377974437e-05[/C][C]0.999980385931101[/C][/ROW]
[ROW][C]75[/C][C]1.55251325528172e-05[/C][C]3.10502651056344e-05[/C][C]0.999984474867447[/C][/ROW]
[ROW][C]76[/C][C]9.97692442096015e-06[/C][C]1.99538488419203e-05[/C][C]0.999990023075579[/C][/ROW]
[ROW][C]77[/C][C]5.72280004127928e-06[/C][C]1.14456000825586e-05[/C][C]0.999994277199959[/C][/ROW]
[ROW][C]78[/C][C]0.0765398096719202[/C][C]0.15307961934384[/C][C]0.92346019032808[/C][/ROW]
[ROW][C]79[/C][C]0.0692374282173809[/C][C]0.138474856434762[/C][C]0.930762571782619[/C][/ROW]
[ROW][C]80[/C][C]0.0568430464599177[/C][C]0.113686092919835[/C][C]0.943156953540082[/C][/ROW]
[ROW][C]81[/C][C]0.0540066506535953[/C][C]0.108013301307191[/C][C]0.945993349346405[/C][/ROW]
[ROW][C]82[/C][C]0.0618160029968713[/C][C]0.123632005993743[/C][C]0.938183997003129[/C][/ROW]
[ROW][C]83[/C][C]0.0655427994018209[/C][C]0.131085598803642[/C][C]0.934457200598179[/C][/ROW]
[ROW][C]84[/C][C]0.0513639976119863[/C][C]0.102727995223973[/C][C]0.948636002388014[/C][/ROW]
[ROW][C]85[/C][C]0.0408333341767535[/C][C]0.081666668353507[/C][C]0.959166665823247[/C][/ROW]
[ROW][C]86[/C][C]0.0334827461784595[/C][C]0.0669654923569189[/C][C]0.966517253821541[/C][/ROW]
[ROW][C]87[/C][C]0.027538578501445[/C][C]0.0550771570028901[/C][C]0.972461421498555[/C][/ROW]
[ROW][C]88[/C][C]0.0232659377588611[/C][C]0.0465318755177222[/C][C]0.976734062241139[/C][/ROW]
[ROW][C]89[/C][C]0.0229176324652095[/C][C]0.0458352649304189[/C][C]0.97708236753479[/C][/ROW]
[ROW][C]90[/C][C]0.0228092579236333[/C][C]0.0456185158472666[/C][C]0.977190742076367[/C][/ROW]
[ROW][C]91[/C][C]0.0219086695373247[/C][C]0.0438173390746495[/C][C]0.978091330462675[/C][/ROW]
[ROW][C]92[/C][C]0.0201803634241213[/C][C]0.0403607268482426[/C][C]0.979819636575879[/C][/ROW]
[ROW][C]93[/C][C]0.0161342599785505[/C][C]0.032268519957101[/C][C]0.983865740021449[/C][/ROW]
[ROW][C]94[/C][C]0.0151887108601315[/C][C]0.030377421720263[/C][C]0.984811289139868[/C][/ROW]
[ROW][C]95[/C][C]0.0133184840407222[/C][C]0.0266369680814445[/C][C]0.986681515959278[/C][/ROW]
[ROW][C]96[/C][C]0.0150928827856892[/C][C]0.0301857655713784[/C][C]0.984907117214311[/C][/ROW]
[ROW][C]97[/C][C]0.0149589243254452[/C][C]0.0299178486508903[/C][C]0.985041075674555[/C][/ROW]
[ROW][C]98[/C][C]0.0140544649229212[/C][C]0.0281089298458424[/C][C]0.985945535077079[/C][/ROW]
[ROW][C]99[/C][C]0.0118809923442276[/C][C]0.0237619846884553[/C][C]0.988119007655772[/C][/ROW]
[ROW][C]100[/C][C]0.0122855241125108[/C][C]0.0245710482250216[/C][C]0.987714475887489[/C][/ROW]
[ROW][C]101[/C][C]0.00917535602222119[/C][C]0.0183507120444424[/C][C]0.990824643977779[/C][/ROW]
[ROW][C]102[/C][C]0.00641057734255434[/C][C]0.0128211546851087[/C][C]0.993589422657446[/C][/ROW]
[ROW][C]103[/C][C]0.00440402455547924[/C][C]0.00880804911095848[/C][C]0.995595975444521[/C][/ROW]
[ROW][C]104[/C][C]0.00304905385958126[/C][C]0.00609810771916253[/C][C]0.996950946140419[/C][/ROW]
[ROW][C]105[/C][C]0.00218646362513382[/C][C]0.00437292725026763[/C][C]0.997813536374866[/C][/ROW]
[ROW][C]106[/C][C]0.00185780151638843[/C][C]0.00371560303277686[/C][C]0.998142198483612[/C][/ROW]
[ROW][C]107[/C][C]0.00175804941842704[/C][C]0.00351609883685408[/C][C]0.998241950581573[/C][/ROW]
[ROW][C]108[/C][C]0.00130910215120066[/C][C]0.00261820430240132[/C][C]0.998690897848799[/C][/ROW]
[ROW][C]109[/C][C]0.010236314998013[/C][C]0.020472629996026[/C][C]0.989763685001987[/C][/ROW]
[ROW][C]110[/C][C]0.0326042494527923[/C][C]0.0652084989055846[/C][C]0.967395750547208[/C][/ROW]
[ROW][C]111[/C][C]0.0266767326603244[/C][C]0.0533534653206488[/C][C]0.973323267339676[/C][/ROW]
[ROW][C]112[/C][C]0.0194369359646746[/C][C]0.0388738719293492[/C][C]0.980563064035325[/C][/ROW]
[ROW][C]113[/C][C]0.0139016713000778[/C][C]0.0278033426001556[/C][C]0.986098328699922[/C][/ROW]
[ROW][C]114[/C][C]0.0115478610152805[/C][C]0.0230957220305611[/C][C]0.98845213898472[/C][/ROW]
[ROW][C]115[/C][C]0.00783186226843142[/C][C]0.0156637245368628[/C][C]0.992168137731569[/C][/ROW]
[ROW][C]116[/C][C]0.0133292862548152[/C][C]0.0266585725096304[/C][C]0.986670713745185[/C][/ROW]
[ROW][C]117[/C][C]0.0115121134294839[/C][C]0.0230242268589679[/C][C]0.988487886570516[/C][/ROW]
[ROW][C]118[/C][C]0.00789136076262145[/C][C]0.0157827215252429[/C][C]0.992108639237379[/C][/ROW]
[ROW][C]119[/C][C]0.00622986587303376[/C][C]0.0124597317460675[/C][C]0.993770134126966[/C][/ROW]
[ROW][C]120[/C][C]0.00407590544355298[/C][C]0.00815181088710597[/C][C]0.995924094556447[/C][/ROW]
[ROW][C]121[/C][C]0.00457997737813602[/C][C]0.00915995475627205[/C][C]0.995420022621864[/C][/ROW]
[ROW][C]122[/C][C]0.00350064038023069[/C][C]0.00700128076046138[/C][C]0.996499359619769[/C][/ROW]
[ROW][C]123[/C][C]0.00598373698376544[/C][C]0.0119674739675309[/C][C]0.994016263016235[/C][/ROW]
[ROW][C]124[/C][C]0.0175847139272834[/C][C]0.0351694278545668[/C][C]0.982415286072717[/C][/ROW]
[ROW][C]125[/C][C]0.0115573850435304[/C][C]0.0231147700870608[/C][C]0.98844261495647[/C][/ROW]
[ROW][C]126[/C][C]0.00750197118839318[/C][C]0.0150039423767864[/C][C]0.992498028811607[/C][/ROW]
[ROW][C]127[/C][C]0.00811707835393373[/C][C]0.0162341567078675[/C][C]0.991882921646066[/C][/ROW]
[ROW][C]128[/C][C]0.0171968458792253[/C][C]0.0343936917584507[/C][C]0.982803154120775[/C][/ROW]
[ROW][C]129[/C][C]0.026719156220291[/C][C]0.0534383124405819[/C][C]0.973280843779709[/C][/ROW]
[ROW][C]130[/C][C]0.0183433513285805[/C][C]0.036686702657161[/C][C]0.98165664867142[/C][/ROW]
[ROW][C]131[/C][C]0.129474916816588[/C][C]0.258949833633175[/C][C]0.870525083183412[/C][/ROW]
[ROW][C]132[/C][C]0.11014767226742[/C][C]0.220295344534839[/C][C]0.88985232773258[/C][/ROW]
[ROW][C]133[/C][C]0.0761007515988342[/C][C]0.152201503197668[/C][C]0.923899248401166[/C][/ROW]
[ROW][C]134[/C][C]0.126702842506185[/C][C]0.25340568501237[/C][C]0.873297157493815[/C][/ROW]
[ROW][C]135[/C][C]0.0802313451709942[/C][C]0.160462690341988[/C][C]0.919768654829006[/C][/ROW]
[ROW][C]136[/C][C]0.600751218188471[/C][C]0.798497563623059[/C][C]0.399248781811529[/C][/ROW]
[ROW][C]137[/C][C]0.458681472789013[/C][C]0.917362945578025[/C][C]0.541318527210987[/C][/ROW]
[ROW][C]138[/C][C]0.304421344280816[/C][C]0.608842688561632[/C][C]0.695578655719184[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
100.5170061253615340.9659877492769320.482993874638466
110.6416380678435220.7167238643129560.358361932156478
120.5669840138290310.8660319723419390.433015986170969
130.4359399886914280.8718799773828570.564060011308572
140.3186865770328640.6373731540657280.681313422967136
150.2223601265820160.4447202531640330.777639873417984
160.1597999463928860.3195998927857720.840200053607114
170.13430851092320.26861702184640.8656914890768
180.1066831537763390.2133663075526770.893316846223661
190.06905568351950190.1381113670390040.930944316480498
200.07710688903925820.1542137780785160.922893110960742
210.07928392060380010.15856784120760.9207160793962
220.05316341799485270.1063268359897050.946836582005147
230.0355141435378130.0710282870756260.964485856462187
240.03173977932202590.06347955864405170.968260220677974
250.04474725177272460.08949450354544930.955252748227275
260.02987786413660070.05975572827320130.970122135863399
270.02056885247121890.04113770494243780.979431147528781
280.02310833671521210.04621667343042420.976891663284788
290.0196495583914090.0392991167828180.980350441608591
300.01338074245856670.02676148491713340.986619257541433
310.00899237120666620.01798474241333240.991007628793334
320.006399524636812010.0127990492736240.993600475363188
330.006970520603893250.01394104120778650.993029479396107
340.01030461042197520.02060922084395040.989695389578025
350.008618846511274770.01723769302254950.991381153488725
360.005540436080687870.01108087216137570.994459563919312
370.004211220000843080.008422440001686160.995788779999157
380.003414050502701650.00682810100540330.996585949497298
390.002888397437535530.005776794875071060.997111602562464
400.002309013322636270.004618026645272530.997690986677364
410.001653746745901160.003307493491802310.998346253254099
420.001008203713644840.002016407427289670.998991796286355
430.0006841293267033820.001368258653406760.999315870673297
440.0004259931058986420.0008519862117972840.999574006894101
450.0005665042653369340.001133008530673870.999433495734663
460.002213195830881580.004426391661763150.997786804169118
470.001622205383374430.003244410766748870.998377794616626
480.001375164874832450.002750329749664910.998624835125168
490.001205574575748010.002411149151496020.998794425424252
500.0009400754180786270.001880150836157250.999059924581921
510.0009880272270975140.001976054454195030.999011972772902
520.0007467316701305870.001493463340261170.999253268329869
530.0007837211516489820.001567442303297960.999216278848351
540.0004942069619124820.0009884139238249640.999505793038088
550.000319810656483170.000639621312966340.999680189343517
560.0002141252883917510.0004282505767835020.999785874711608
570.0002137903877236860.0004275807754473710.999786209612276
580.0001558212120567530.0003116424241135060.999844178787943
590.0001375666749529330.0002751333499058660.999862433325047
608.70379484732806e-050.0001740758969465610.999912962051527
615.5011128354494e-050.0001100222567089880.999944988871646
624.48665804013997e-058.97331608027994e-050.999955133419599
632.93675528450876e-055.87351056901752e-050.999970632447155
641.72849175908789e-053.45698351817579e-050.999982715082409
651.17601441832686e-052.35202883665371e-050.999988239855817
661.40632504300407e-052.81265008600814e-050.99998593674957
672.04175227519586e-054.08350455039172e-050.999979582477248
682.77740332742339e-055.55480665484679e-050.999972225966726
691.87407784216182e-053.74815568432364e-050.999981259221578
706.84894571451229e-050.0001369789142902460.999931510542855
715.39573357435921e-050.0001079146714871840.999946042664256
723.72981643686717e-057.45963287373433e-050.999962701835631
733.2709998602275e-056.54199972045501e-050.999967290001398
741.96140688987218e-053.92281377974437e-050.999980385931101
751.55251325528172e-053.10502651056344e-050.999984474867447
769.97692442096015e-061.99538488419203e-050.999990023075579
775.72280004127928e-061.14456000825586e-050.999994277199959
780.07653980967192020.153079619343840.92346019032808
790.06923742821738090.1384748564347620.930762571782619
800.05684304645991770.1136860929198350.943156953540082
810.05400665065359530.1080133013071910.945993349346405
820.06181600299687130.1236320059937430.938183997003129
830.06554279940182090.1310855988036420.934457200598179
840.05136399761198630.1027279952239730.948636002388014
850.04083333417675350.0816666683535070.959166665823247
860.03348274617845950.06696549235691890.966517253821541
870.0275385785014450.05507715700289010.972461421498555
880.02326593775886110.04653187551772220.976734062241139
890.02291763246520950.04583526493041890.97708236753479
900.02280925792363330.04561851584726660.977190742076367
910.02190866953732470.04381733907464950.978091330462675
920.02018036342412130.04036072684824260.979819636575879
930.01613425997855050.0322685199571010.983865740021449
940.01518871086013150.0303774217202630.984811289139868
950.01331848404072220.02663696808144450.986681515959278
960.01509288278568920.03018576557137840.984907117214311
970.01495892432544520.02991784865089030.985041075674555
980.01405446492292120.02810892984584240.985945535077079
990.01188099234422760.02376198468845530.988119007655772
1000.01228552411251080.02457104822502160.987714475887489
1010.009175356022221190.01835071204444240.990824643977779
1020.006410577342554340.01282115468510870.993589422657446
1030.004404024555479240.008808049110958480.995595975444521
1040.003049053859581260.006098107719162530.996950946140419
1050.002186463625133820.004372927250267630.997813536374866
1060.001857801516388430.003715603032776860.998142198483612
1070.001758049418427040.003516098836854080.998241950581573
1080.001309102151200660.002618204302401320.998690897848799
1090.0102363149980130.0204726299960260.989763685001987
1100.03260424945279230.06520849890558460.967395750547208
1110.02667673266032440.05335346532064880.973323267339676
1120.01943693596467460.03887387192934920.980563064035325
1130.01390167130007780.02780334260015560.986098328699922
1140.01154786101528050.02309572203056110.98845213898472
1150.007831862268431420.01566372453686280.992168137731569
1160.01332928625481520.02665857250963040.986670713745185
1170.01151211342948390.02302422685896790.988487886570516
1180.007891360762621450.01578272152524290.992108639237379
1190.006229865873033760.01245973174606750.993770134126966
1200.004075905443552980.008151810887105970.995924094556447
1210.004579977378136020.009159954756272050.995420022621864
1220.003500640380230690.007001280760461380.996499359619769
1230.005983736983765440.01196747396753090.994016263016235
1240.01758471392728340.03516942785456680.982415286072717
1250.01155738504353040.02311477008706080.98844261495647
1260.007501971188393180.01500394237678640.992498028811607
1270.008117078353933730.01623415670786750.991882921646066
1280.01719684587922530.03439369175845070.982803154120775
1290.0267191562202910.05343831244058190.973280843779709
1300.01834335132858050.0366867026571610.98165664867142
1310.1294749168165880.2589498336331750.870525083183412
1320.110147672267420.2202953445348390.88985232773258
1330.07610075159883420.1522015031976680.923899248401166
1340.1267028425061850.253405685012370.873297157493815
1350.08023134517099420.1604626903419880.919768654829006
1360.6007512181884710.7984975636230590.399248781811529
1370.4586814727890130.9173629455780250.541318527210987
1380.3044213442808160.6088426885616320.695578655719184







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level500.387596899224806NOK
5% type I error level910.705426356589147NOK
10% type I error level1010.782945736434108NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 50 & 0.387596899224806 & NOK \tabularnewline
5% type I error level & 91 & 0.705426356589147 & NOK \tabularnewline
10% type I error level & 101 & 0.782945736434108 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160311&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]50[/C][C]0.387596899224806[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]91[/C][C]0.705426356589147[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]101[/C][C]0.782945736434108[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160311&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160311&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level500.387596899224806NOK
5% type I error level910.705426356589147NOK
10% type I error level1010.782945736434108NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}