Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 07 Dec 2012 05:42:47 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/07/t1354877008clk8nw1gud65fho.htm/, Retrieved Thu, 31 Oct 2024 23:05:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=197282, Retrieved Thu, 31 Oct 2024 23:05:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact188
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [] [2010-12-05 18:56:24] [b98453cac15ba1066b407e146608df68]
- R PD  [Multiple Regression] [WS10 Perceived] [2012-12-07 10:34:09] [d63e92c9ef4b8a0e48798c0b0ce2077f]
-           [Multiple Regression] [ws10.4] [2012-12-07 10:42:47] [e5ad38085056e4424dc3e3ce5946aa62] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	1	4	0	2
1	1	0	0	2
0	1	4	1	1.5
0	0	0	0	0
1	1	0	1	1
1	1	0	1	2
1	1	0	1	2
0	1	0	1	1
0	1	4	1	2
1	1	1	0	2
0	0	4	0	2
0	1	0	1	0
0	1	2	1	0
0	1	0	0	2
0	0	0	FALSE	FALSE
1	1	0	1	2
1	1	1	0	2
1	1	0	1	0.5
0	1	0	1	2
0	0	2	1	0
1	1	2	1	2
1	1	1	0	0
0	0	2	FALSE	FALSE
1	0	0	FALSE	FALSE
1	1	3	1	2
1	0	0	1	0
1	1	0	FALSE	FALSE
0	0	0	FALSE	FALSE
0	0	1	0	2
1	1	0	1	1
1	0	0	0	0.5
1	1	4	0	2
0	0	0	1	0.5
0	0	1	FALSE	FALSE
0	0	0	1	0.5
1	1	0	FALSE	FALSE
1	1	4	0	2
0	1	1	1	0
0	1	0	1	1
1	1	4	1	2
1	1	0	1	1
1	1	4	1	2
1	1	0	0	0
1	1	0	1	0.5
0	0	0	1	0
0	1	4	1	2
0	1	0	0	0
1	1	0	0	1
1	1	4	1	2
0	0	4	0	0.5
0	1	0	1	2
1	1	1	1	2
0	1	0	1	2
0	0	4	FALSE	FALSE
0	1	0	0	0
0	1	2	1	0
0	1	0	1	0.5
0	1	4	FALSE	FALSE
0	0	4	0	2
0	0	0	FALSE	FALSE
0	1	0	1	0
1	1	4	1	2
1	1	0	1	1
1	0	0	1	0
0	0	2	1	2
0	1	0	0	1
0	1	0	1	2
0	0	0	0	0
1	1	4	1	1
1	1	4	1	2
0	1	2	0	0
0	1	0	0	0
0	1	0	0	0
0	1	4	0	0
1	1	0	1	2
1	0	0	1	2
0	0	1	1	2
1	1	2	1	2
1	0	0	1	2
1	1	2	1	2
0	0	0	1	2
0	0	4	1	2
0	0	4	1	2
1	0	0	1	2
0	0	0	FALSE	FALSE
0	0	4	1	2
1	0	0	FALSE	FALSE
1	1	4	1	2
0	0	2	1	2
0	0	2	FALSE	FALSE
1	1	0	0	0
1	1	0	1	2
1	1	4	FALSE	FALSE
0	1	0	1	2
1	1	0	1	2
1	1	0	1	2
1	1	4	1	2
1	1	4	1	2
0	0	0	FALSE	FALSE
0	0	0	0	0
1	1	2	0	0
0	0	1	1	2
0	0	0	0	0
0	0	2	1	2
0	1	1	0	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
pre[t] = + 0.143397173040697 + 0.366634435319895post1[t] -0.0239273405447953post2[t] -0.0458517852672986post3[t] + 0.138407579476121post4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
pre[t] =  +  0.143397173040697 +  0.366634435319895post1[t] -0.0239273405447953post2[t] -0.0458517852672986post3[t] +  0.138407579476121post4[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]pre[t] =  +  0.143397173040697 +  0.366634435319895post1[t] -0.0239273405447953post2[t] -0.0458517852672986post3[t] +  0.138407579476121post4[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
pre[t] = + 0.143397173040697 + 0.366634435319895post1[t] -0.0239273405447953post2[t] -0.0458517852672986post3[t] + 0.138407579476121post4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.1433971730406970.0921591.5560.1228740.061437
post10.3666344353198950.094933.86222e-041e-04
post2-0.02392734054479530.028669-0.83460.4059320.202966
post3-0.04585178526729860.105828-0.43330.6657550.332877
post40.1384075794761210.0594872.32670.0220.011

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 0.143397173040697 & 0.092159 & 1.556 & 0.122874 & 0.061437 \tabularnewline
post1 & 0.366634435319895 & 0.09493 & 3.8622 & 2e-04 & 1e-04 \tabularnewline
post2 & -0.0239273405447953 & 0.028669 & -0.8346 & 0.405932 & 0.202966 \tabularnewline
post3 & -0.0458517852672986 & 0.105828 & -0.4333 & 0.665755 & 0.332877 \tabularnewline
post4 & 0.138407579476121 & 0.059487 & 2.3267 & 0.022 & 0.011 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]0.143397173040697[/C][C]0.092159[/C][C]1.556[/C][C]0.122874[/C][C]0.061437[/C][/ROW]
[ROW][C]post1[/C][C]0.366634435319895[/C][C]0.09493[/C][C]3.8622[/C][C]2e-04[/C][C]1e-04[/C][/ROW]
[ROW][C]post2[/C][C]-0.0239273405447953[/C][C]0.028669[/C][C]-0.8346[/C][C]0.405932[/C][C]0.202966[/C][/ROW]
[ROW][C]post3[/C][C]-0.0458517852672986[/C][C]0.105828[/C][C]-0.4333[/C][C]0.665755[/C][C]0.332877[/C][/ROW]
[ROW][C]post4[/C][C]0.138407579476121[/C][C]0.059487[/C][C]2.3267[/C][C]0.022[/C][C]0.011[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.1433971730406970.0921591.5560.1228740.061437
post10.3666344353198950.094933.86222e-041e-04
post2-0.02392734054479530.028669-0.83460.4059320.202966
post3-0.04585178526729860.105828-0.43330.6657550.332877
post40.1384075794761210.0594872.32670.0220.011







Multiple Linear Regression - Regression Statistics
Multiple R0.445518250634305
R-squared0.198486511648251
Adjusted R-squared0.166425972114181
F-TEST (value)6.19099099805618
F-TEST (DF numerator)4
F-TEST (DF denominator)100
p-value0.000171370633102019
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.457670396270712
Sum Squared Residuals20.946219162259

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.445518250634305 \tabularnewline
R-squared & 0.198486511648251 \tabularnewline
Adjusted R-squared & 0.166425972114181 \tabularnewline
F-TEST (value) & 6.19099099805618 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 100 \tabularnewline
p-value & 0.000171370633102019 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.457670396270712 \tabularnewline
Sum Squared Residuals & 20.946219162259 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.445518250634305[/C][/ROW]
[ROW][C]R-squared[/C][C]0.198486511648251[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.166425972114181[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]6.19099099805618[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]100[/C][/ROW]
[ROW][C]p-value[/C][C]0.000171370633102019[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.457670396270712[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]20.946219162259[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.445518250634305
R-squared0.198486511648251
Adjusted R-squared0.166425972114181
F-TEST (value)6.19099099805618
F-TEST (DF numerator)4
F-TEST (DF denominator)100
p-value0.000171370633102019
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.457670396270712
Sum Squared Residuals20.946219162259







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
110.6911374051336530.308862594866347
210.7868467673128350.213153232687165
300.576081830128295-0.576081830128295
400.143397173040697-0.143397173040697
510.6025874025694150.397412597430585
610.7409949820455360.259005017954464
710.7409949820455360.259005017954464
800.602587402569415-0.602587402569415
900.645285619866355-0.645285619866355
1010.762919426768040.23708057323196
1100.324502969813758-0.324502969813758
1200.464179823093294-0.464179823093294
1300.416325142003703-0.416325142003703
1400.786846767312835-0.786846767312835
1500.143397173040697-0.143397173040697
1610.7409949820455360.259005017954464
1710.762919426768040.23708057323196
1810.5333836128313540.466616387168646
1900.740994982045536-0.740994982045536
2000.0496907066838079-0.0496907066838079
2110.6931403009559460.306859699044054
2210.4861042678157970.513895732184203
2300.0955424919511064-0.0955424919511064
2410.1433971730406970.856602826959303
2510.669212960411150.33078703958885
2610.09754538777339840.902454612226602
2710.5100316083605920.489968391639408
2800.143397173040697-0.143397173040697
2900.396284991448144-0.396284991448144
3010.6025874025694150.397412597430585
3110.2126009627787580.787399037221242
3210.6911374051336540.308862594866346
3300.166749177511459-0.166749177511459
3400.119469832495902-0.119469832495902
3500.166749177511459-0.166749177511459
3610.5100316083605920.489968391639408
3710.6911374051336540.308862594866346
3800.440252482548499-0.440252482548499
3900.602587402569415-0.602587402569415
4010.6452856198663550.354714380133645
4110.6025874025694150.397412597430585
4210.6452856198663550.354714380133645
4310.5100316083605920.489968391639408
4410.5333836128313540.466616387168646
4500.0975453877733984-0.0975453877733984
4600.645285619866355-0.645285619866355
4700.510031608360592-0.510031608360592
4810.6484391878367140.351560812163286
4910.6452856198663550.354714380133645
5000.116891600599577-0.116891600599577
5100.740994982045536-0.740994982045536
5210.7170676415007410.282932358499259
5300.740994982045536-0.740994982045536
5400.0476878108615159-0.0476878108615159
5500.510031608360592-0.510031608360592
5600.416325142003703-0.416325142003703
5700.533383612831355-0.533383612831355
5800.414322246181411-0.414322246181411
5900.324502969813758-0.324502969813758
6000.143397173040697-0.143397173040697
6100.464179823093294-0.464179823093294
6210.6452856198663550.354714380133645
6310.6025874025694150.397412597430585
6410.09754538777339840.902454612226602
6500.32650586563605-0.32650586563605
6600.648439187836714-0.648439187836714
6700.740994982045536-0.740994982045536
6800.143397173040697-0.143397173040697
6910.5068780403902340.493121959609766
7010.6452856198663550.354714380133645
7100.462176927271002-0.462176927271002
7200.510031608360592-0.510031608360592
7300.510031608360592-0.510031608360592
7400.414322246181411-0.414322246181411
7510.7409949820455360.259005017954464
7610.3743605467256410.625639453274359
7700.350433206180846-0.350433206180846
7810.6931403009559460.306859699044054
7910.3743605467256410.625639453274359
8010.6931403009559460.306859699044054
8100.374360546725641-0.374360546725641
8200.27865118454646-0.27865118454646
8300.27865118454646-0.27865118454646
8410.3743605467256410.625639453274359
8500.143397173040697-0.143397173040697
8600.27865118454646-0.27865118454646
8710.1433971730406970.856602826959303
8810.6452856198663550.354714380133645
8900.32650586563605-0.32650586563605
9000.0955424919511064-0.0955424919511064
9110.5100316083605920.489968391639408
9210.7409949820455360.259005017954464
9310.4143222461814110.585677753818589
9400.740994982045536-0.740994982045536
9510.7409949820455360.259005017954464
9610.7409949820455360.259005017954464
9710.6452856198663550.354714380133645
9810.6452856198663550.354714380133645
9900.143397173040697-0.143397173040697
10000.143397173040697-0.143397173040697
10110.4621769272710020.537823072728998
10200.350433206180846-0.350433206180846
10300.143397173040697-0.143397173040697
10400.32650586563605-0.32650586563605
10500.486104267815797-0.486104267815797

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1 & 0.691137405133653 & 0.308862594866347 \tabularnewline
2 & 1 & 0.786846767312835 & 0.213153232687165 \tabularnewline
3 & 0 & 0.576081830128295 & -0.576081830128295 \tabularnewline
4 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
5 & 1 & 0.602587402569415 & 0.397412597430585 \tabularnewline
6 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
7 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
8 & 0 & 0.602587402569415 & -0.602587402569415 \tabularnewline
9 & 0 & 0.645285619866355 & -0.645285619866355 \tabularnewline
10 & 1 & 0.76291942676804 & 0.23708057323196 \tabularnewline
11 & 0 & 0.324502969813758 & -0.324502969813758 \tabularnewline
12 & 0 & 0.464179823093294 & -0.464179823093294 \tabularnewline
13 & 0 & 0.416325142003703 & -0.416325142003703 \tabularnewline
14 & 0 & 0.786846767312835 & -0.786846767312835 \tabularnewline
15 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
16 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
17 & 1 & 0.76291942676804 & 0.23708057323196 \tabularnewline
18 & 1 & 0.533383612831354 & 0.466616387168646 \tabularnewline
19 & 0 & 0.740994982045536 & -0.740994982045536 \tabularnewline
20 & 0 & 0.0496907066838079 & -0.0496907066838079 \tabularnewline
21 & 1 & 0.693140300955946 & 0.306859699044054 \tabularnewline
22 & 1 & 0.486104267815797 & 0.513895732184203 \tabularnewline
23 & 0 & 0.0955424919511064 & -0.0955424919511064 \tabularnewline
24 & 1 & 0.143397173040697 & 0.856602826959303 \tabularnewline
25 & 1 & 0.66921296041115 & 0.33078703958885 \tabularnewline
26 & 1 & 0.0975453877733984 & 0.902454612226602 \tabularnewline
27 & 1 & 0.510031608360592 & 0.489968391639408 \tabularnewline
28 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
29 & 0 & 0.396284991448144 & -0.396284991448144 \tabularnewline
30 & 1 & 0.602587402569415 & 0.397412597430585 \tabularnewline
31 & 1 & 0.212600962778758 & 0.787399037221242 \tabularnewline
32 & 1 & 0.691137405133654 & 0.308862594866346 \tabularnewline
33 & 0 & 0.166749177511459 & -0.166749177511459 \tabularnewline
34 & 0 & 0.119469832495902 & -0.119469832495902 \tabularnewline
35 & 0 & 0.166749177511459 & -0.166749177511459 \tabularnewline
36 & 1 & 0.510031608360592 & 0.489968391639408 \tabularnewline
37 & 1 & 0.691137405133654 & 0.308862594866346 \tabularnewline
38 & 0 & 0.440252482548499 & -0.440252482548499 \tabularnewline
39 & 0 & 0.602587402569415 & -0.602587402569415 \tabularnewline
40 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
41 & 1 & 0.602587402569415 & 0.397412597430585 \tabularnewline
42 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
43 & 1 & 0.510031608360592 & 0.489968391639408 \tabularnewline
44 & 1 & 0.533383612831354 & 0.466616387168646 \tabularnewline
45 & 0 & 0.0975453877733984 & -0.0975453877733984 \tabularnewline
46 & 0 & 0.645285619866355 & -0.645285619866355 \tabularnewline
47 & 0 & 0.510031608360592 & -0.510031608360592 \tabularnewline
48 & 1 & 0.648439187836714 & 0.351560812163286 \tabularnewline
49 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
50 & 0 & 0.116891600599577 & -0.116891600599577 \tabularnewline
51 & 0 & 0.740994982045536 & -0.740994982045536 \tabularnewline
52 & 1 & 0.717067641500741 & 0.282932358499259 \tabularnewline
53 & 0 & 0.740994982045536 & -0.740994982045536 \tabularnewline
54 & 0 & 0.0476878108615159 & -0.0476878108615159 \tabularnewline
55 & 0 & 0.510031608360592 & -0.510031608360592 \tabularnewline
56 & 0 & 0.416325142003703 & -0.416325142003703 \tabularnewline
57 & 0 & 0.533383612831355 & -0.533383612831355 \tabularnewline
58 & 0 & 0.414322246181411 & -0.414322246181411 \tabularnewline
59 & 0 & 0.324502969813758 & -0.324502969813758 \tabularnewline
60 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
61 & 0 & 0.464179823093294 & -0.464179823093294 \tabularnewline
62 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
63 & 1 & 0.602587402569415 & 0.397412597430585 \tabularnewline
64 & 1 & 0.0975453877733984 & 0.902454612226602 \tabularnewline
65 & 0 & 0.32650586563605 & -0.32650586563605 \tabularnewline
66 & 0 & 0.648439187836714 & -0.648439187836714 \tabularnewline
67 & 0 & 0.740994982045536 & -0.740994982045536 \tabularnewline
68 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
69 & 1 & 0.506878040390234 & 0.493121959609766 \tabularnewline
70 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
71 & 0 & 0.462176927271002 & -0.462176927271002 \tabularnewline
72 & 0 & 0.510031608360592 & -0.510031608360592 \tabularnewline
73 & 0 & 0.510031608360592 & -0.510031608360592 \tabularnewline
74 & 0 & 0.414322246181411 & -0.414322246181411 \tabularnewline
75 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
76 & 1 & 0.374360546725641 & 0.625639453274359 \tabularnewline
77 & 0 & 0.350433206180846 & -0.350433206180846 \tabularnewline
78 & 1 & 0.693140300955946 & 0.306859699044054 \tabularnewline
79 & 1 & 0.374360546725641 & 0.625639453274359 \tabularnewline
80 & 1 & 0.693140300955946 & 0.306859699044054 \tabularnewline
81 & 0 & 0.374360546725641 & -0.374360546725641 \tabularnewline
82 & 0 & 0.27865118454646 & -0.27865118454646 \tabularnewline
83 & 0 & 0.27865118454646 & -0.27865118454646 \tabularnewline
84 & 1 & 0.374360546725641 & 0.625639453274359 \tabularnewline
85 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
86 & 0 & 0.27865118454646 & -0.27865118454646 \tabularnewline
87 & 1 & 0.143397173040697 & 0.856602826959303 \tabularnewline
88 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
89 & 0 & 0.32650586563605 & -0.32650586563605 \tabularnewline
90 & 0 & 0.0955424919511064 & -0.0955424919511064 \tabularnewline
91 & 1 & 0.510031608360592 & 0.489968391639408 \tabularnewline
92 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
93 & 1 & 0.414322246181411 & 0.585677753818589 \tabularnewline
94 & 0 & 0.740994982045536 & -0.740994982045536 \tabularnewline
95 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
96 & 1 & 0.740994982045536 & 0.259005017954464 \tabularnewline
97 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
98 & 1 & 0.645285619866355 & 0.354714380133645 \tabularnewline
99 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
100 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
101 & 1 & 0.462176927271002 & 0.537823072728998 \tabularnewline
102 & 0 & 0.350433206180846 & -0.350433206180846 \tabularnewline
103 & 0 & 0.143397173040697 & -0.143397173040697 \tabularnewline
104 & 0 & 0.32650586563605 & -0.32650586563605 \tabularnewline
105 & 0 & 0.486104267815797 & -0.486104267815797 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1[/C][C]0.691137405133653[/C][C]0.308862594866347[/C][/ROW]
[ROW][C]2[/C][C]1[/C][C]0.786846767312835[/C][C]0.213153232687165[/C][/ROW]
[ROW][C]3[/C][C]0[/C][C]0.576081830128295[/C][C]-0.576081830128295[/C][/ROW]
[ROW][C]4[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]5[/C][C]1[/C][C]0.602587402569415[/C][C]0.397412597430585[/C][/ROW]
[ROW][C]6[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]7[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]8[/C][C]0[/C][C]0.602587402569415[/C][C]-0.602587402569415[/C][/ROW]
[ROW][C]9[/C][C]0[/C][C]0.645285619866355[/C][C]-0.645285619866355[/C][/ROW]
[ROW][C]10[/C][C]1[/C][C]0.76291942676804[/C][C]0.23708057323196[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]0.324502969813758[/C][C]-0.324502969813758[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]0.464179823093294[/C][C]-0.464179823093294[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0.416325142003703[/C][C]-0.416325142003703[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0.786846767312835[/C][C]-0.786846767312835[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]16[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]17[/C][C]1[/C][C]0.76291942676804[/C][C]0.23708057323196[/C][/ROW]
[ROW][C]18[/C][C]1[/C][C]0.533383612831354[/C][C]0.466616387168646[/C][/ROW]
[ROW][C]19[/C][C]0[/C][C]0.740994982045536[/C][C]-0.740994982045536[/C][/ROW]
[ROW][C]20[/C][C]0[/C][C]0.0496907066838079[/C][C]-0.0496907066838079[/C][/ROW]
[ROW][C]21[/C][C]1[/C][C]0.693140300955946[/C][C]0.306859699044054[/C][/ROW]
[ROW][C]22[/C][C]1[/C][C]0.486104267815797[/C][C]0.513895732184203[/C][/ROW]
[ROW][C]23[/C][C]0[/C][C]0.0955424919511064[/C][C]-0.0955424919511064[/C][/ROW]
[ROW][C]24[/C][C]1[/C][C]0.143397173040697[/C][C]0.856602826959303[/C][/ROW]
[ROW][C]25[/C][C]1[/C][C]0.66921296041115[/C][C]0.33078703958885[/C][/ROW]
[ROW][C]26[/C][C]1[/C][C]0.0975453877733984[/C][C]0.902454612226602[/C][/ROW]
[ROW][C]27[/C][C]1[/C][C]0.510031608360592[/C][C]0.489968391639408[/C][/ROW]
[ROW][C]28[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]29[/C][C]0[/C][C]0.396284991448144[/C][C]-0.396284991448144[/C][/ROW]
[ROW][C]30[/C][C]1[/C][C]0.602587402569415[/C][C]0.397412597430585[/C][/ROW]
[ROW][C]31[/C][C]1[/C][C]0.212600962778758[/C][C]0.787399037221242[/C][/ROW]
[ROW][C]32[/C][C]1[/C][C]0.691137405133654[/C][C]0.308862594866346[/C][/ROW]
[ROW][C]33[/C][C]0[/C][C]0.166749177511459[/C][C]-0.166749177511459[/C][/ROW]
[ROW][C]34[/C][C]0[/C][C]0.119469832495902[/C][C]-0.119469832495902[/C][/ROW]
[ROW][C]35[/C][C]0[/C][C]0.166749177511459[/C][C]-0.166749177511459[/C][/ROW]
[ROW][C]36[/C][C]1[/C][C]0.510031608360592[/C][C]0.489968391639408[/C][/ROW]
[ROW][C]37[/C][C]1[/C][C]0.691137405133654[/C][C]0.308862594866346[/C][/ROW]
[ROW][C]38[/C][C]0[/C][C]0.440252482548499[/C][C]-0.440252482548499[/C][/ROW]
[ROW][C]39[/C][C]0[/C][C]0.602587402569415[/C][C]-0.602587402569415[/C][/ROW]
[ROW][C]40[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]0.602587402569415[/C][C]0.397412597430585[/C][/ROW]
[ROW][C]42[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]43[/C][C]1[/C][C]0.510031608360592[/C][C]0.489968391639408[/C][/ROW]
[ROW][C]44[/C][C]1[/C][C]0.533383612831354[/C][C]0.466616387168646[/C][/ROW]
[ROW][C]45[/C][C]0[/C][C]0.0975453877733984[/C][C]-0.0975453877733984[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]0.645285619866355[/C][C]-0.645285619866355[/C][/ROW]
[ROW][C]47[/C][C]0[/C][C]0.510031608360592[/C][C]-0.510031608360592[/C][/ROW]
[ROW][C]48[/C][C]1[/C][C]0.648439187836714[/C][C]0.351560812163286[/C][/ROW]
[ROW][C]49[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]0.116891600599577[/C][C]-0.116891600599577[/C][/ROW]
[ROW][C]51[/C][C]0[/C][C]0.740994982045536[/C][C]-0.740994982045536[/C][/ROW]
[ROW][C]52[/C][C]1[/C][C]0.717067641500741[/C][C]0.282932358499259[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]0.740994982045536[/C][C]-0.740994982045536[/C][/ROW]
[ROW][C]54[/C][C]0[/C][C]0.0476878108615159[/C][C]-0.0476878108615159[/C][/ROW]
[ROW][C]55[/C][C]0[/C][C]0.510031608360592[/C][C]-0.510031608360592[/C][/ROW]
[ROW][C]56[/C][C]0[/C][C]0.416325142003703[/C][C]-0.416325142003703[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]0.533383612831355[/C][C]-0.533383612831355[/C][/ROW]
[ROW][C]58[/C][C]0[/C][C]0.414322246181411[/C][C]-0.414322246181411[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]0.324502969813758[/C][C]-0.324502969813758[/C][/ROW]
[ROW][C]60[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]61[/C][C]0[/C][C]0.464179823093294[/C][C]-0.464179823093294[/C][/ROW]
[ROW][C]62[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]63[/C][C]1[/C][C]0.602587402569415[/C][C]0.397412597430585[/C][/ROW]
[ROW][C]64[/C][C]1[/C][C]0.0975453877733984[/C][C]0.902454612226602[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]0.32650586563605[/C][C]-0.32650586563605[/C][/ROW]
[ROW][C]66[/C][C]0[/C][C]0.648439187836714[/C][C]-0.648439187836714[/C][/ROW]
[ROW][C]67[/C][C]0[/C][C]0.740994982045536[/C][C]-0.740994982045536[/C][/ROW]
[ROW][C]68[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]69[/C][C]1[/C][C]0.506878040390234[/C][C]0.493121959609766[/C][/ROW]
[ROW][C]70[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]71[/C][C]0[/C][C]0.462176927271002[/C][C]-0.462176927271002[/C][/ROW]
[ROW][C]72[/C][C]0[/C][C]0.510031608360592[/C][C]-0.510031608360592[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]0.510031608360592[/C][C]-0.510031608360592[/C][/ROW]
[ROW][C]74[/C][C]0[/C][C]0.414322246181411[/C][C]-0.414322246181411[/C][/ROW]
[ROW][C]75[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]76[/C][C]1[/C][C]0.374360546725641[/C][C]0.625639453274359[/C][/ROW]
[ROW][C]77[/C][C]0[/C][C]0.350433206180846[/C][C]-0.350433206180846[/C][/ROW]
[ROW][C]78[/C][C]1[/C][C]0.693140300955946[/C][C]0.306859699044054[/C][/ROW]
[ROW][C]79[/C][C]1[/C][C]0.374360546725641[/C][C]0.625639453274359[/C][/ROW]
[ROW][C]80[/C][C]1[/C][C]0.693140300955946[/C][C]0.306859699044054[/C][/ROW]
[ROW][C]81[/C][C]0[/C][C]0.374360546725641[/C][C]-0.374360546725641[/C][/ROW]
[ROW][C]82[/C][C]0[/C][C]0.27865118454646[/C][C]-0.27865118454646[/C][/ROW]
[ROW][C]83[/C][C]0[/C][C]0.27865118454646[/C][C]-0.27865118454646[/C][/ROW]
[ROW][C]84[/C][C]1[/C][C]0.374360546725641[/C][C]0.625639453274359[/C][/ROW]
[ROW][C]85[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]86[/C][C]0[/C][C]0.27865118454646[/C][C]-0.27865118454646[/C][/ROW]
[ROW][C]87[/C][C]1[/C][C]0.143397173040697[/C][C]0.856602826959303[/C][/ROW]
[ROW][C]88[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]89[/C][C]0[/C][C]0.32650586563605[/C][C]-0.32650586563605[/C][/ROW]
[ROW][C]90[/C][C]0[/C][C]0.0955424919511064[/C][C]-0.0955424919511064[/C][/ROW]
[ROW][C]91[/C][C]1[/C][C]0.510031608360592[/C][C]0.489968391639408[/C][/ROW]
[ROW][C]92[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]93[/C][C]1[/C][C]0.414322246181411[/C][C]0.585677753818589[/C][/ROW]
[ROW][C]94[/C][C]0[/C][C]0.740994982045536[/C][C]-0.740994982045536[/C][/ROW]
[ROW][C]95[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]96[/C][C]1[/C][C]0.740994982045536[/C][C]0.259005017954464[/C][/ROW]
[ROW][C]97[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]98[/C][C]1[/C][C]0.645285619866355[/C][C]0.354714380133645[/C][/ROW]
[ROW][C]99[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]100[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]101[/C][C]1[/C][C]0.462176927271002[/C][C]0.537823072728998[/C][/ROW]
[ROW][C]102[/C][C]0[/C][C]0.350433206180846[/C][C]-0.350433206180846[/C][/ROW]
[ROW][C]103[/C][C]0[/C][C]0.143397173040697[/C][C]-0.143397173040697[/C][/ROW]
[ROW][C]104[/C][C]0[/C][C]0.32650586563605[/C][C]-0.32650586563605[/C][/ROW]
[ROW][C]105[/C][C]0[/C][C]0.486104267815797[/C][C]-0.486104267815797[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
110.6911374051336530.308862594866347
210.7868467673128350.213153232687165
300.576081830128295-0.576081830128295
400.143397173040697-0.143397173040697
510.6025874025694150.397412597430585
610.7409949820455360.259005017954464
710.7409949820455360.259005017954464
800.602587402569415-0.602587402569415
900.645285619866355-0.645285619866355
1010.762919426768040.23708057323196
1100.324502969813758-0.324502969813758
1200.464179823093294-0.464179823093294
1300.416325142003703-0.416325142003703
1400.786846767312835-0.786846767312835
1500.143397173040697-0.143397173040697
1610.7409949820455360.259005017954464
1710.762919426768040.23708057323196
1810.5333836128313540.466616387168646
1900.740994982045536-0.740994982045536
2000.0496907066838079-0.0496907066838079
2110.6931403009559460.306859699044054
2210.4861042678157970.513895732184203
2300.0955424919511064-0.0955424919511064
2410.1433971730406970.856602826959303
2510.669212960411150.33078703958885
2610.09754538777339840.902454612226602
2710.5100316083605920.489968391639408
2800.143397173040697-0.143397173040697
2900.396284991448144-0.396284991448144
3010.6025874025694150.397412597430585
3110.2126009627787580.787399037221242
3210.6911374051336540.308862594866346
3300.166749177511459-0.166749177511459
3400.119469832495902-0.119469832495902
3500.166749177511459-0.166749177511459
3610.5100316083605920.489968391639408
3710.6911374051336540.308862594866346
3800.440252482548499-0.440252482548499
3900.602587402569415-0.602587402569415
4010.6452856198663550.354714380133645
4110.6025874025694150.397412597430585
4210.6452856198663550.354714380133645
4310.5100316083605920.489968391639408
4410.5333836128313540.466616387168646
4500.0975453877733984-0.0975453877733984
4600.645285619866355-0.645285619866355
4700.510031608360592-0.510031608360592
4810.6484391878367140.351560812163286
4910.6452856198663550.354714380133645
5000.116891600599577-0.116891600599577
5100.740994982045536-0.740994982045536
5210.7170676415007410.282932358499259
5300.740994982045536-0.740994982045536
5400.0476878108615159-0.0476878108615159
5500.510031608360592-0.510031608360592
5600.416325142003703-0.416325142003703
5700.533383612831355-0.533383612831355
5800.414322246181411-0.414322246181411
5900.324502969813758-0.324502969813758
6000.143397173040697-0.143397173040697
6100.464179823093294-0.464179823093294
6210.6452856198663550.354714380133645
6310.6025874025694150.397412597430585
6410.09754538777339840.902454612226602
6500.32650586563605-0.32650586563605
6600.648439187836714-0.648439187836714
6700.740994982045536-0.740994982045536
6800.143397173040697-0.143397173040697
6910.5068780403902340.493121959609766
7010.6452856198663550.354714380133645
7100.462176927271002-0.462176927271002
7200.510031608360592-0.510031608360592
7300.510031608360592-0.510031608360592
7400.414322246181411-0.414322246181411
7510.7409949820455360.259005017954464
7610.3743605467256410.625639453274359
7700.350433206180846-0.350433206180846
7810.6931403009559460.306859699044054
7910.3743605467256410.625639453274359
8010.6931403009559460.306859699044054
8100.374360546725641-0.374360546725641
8200.27865118454646-0.27865118454646
8300.27865118454646-0.27865118454646
8410.3743605467256410.625639453274359
8500.143397173040697-0.143397173040697
8600.27865118454646-0.27865118454646
8710.1433971730406970.856602826959303
8810.6452856198663550.354714380133645
8900.32650586563605-0.32650586563605
9000.0955424919511064-0.0955424919511064
9110.5100316083605920.489968391639408
9210.7409949820455360.259005017954464
9310.4143222461814110.585677753818589
9400.740994982045536-0.740994982045536
9510.7409949820455360.259005017954464
9610.7409949820455360.259005017954464
9710.6452856198663550.354714380133645
9810.6452856198663550.354714380133645
9900.143397173040697-0.143397173040697
10000.143397173040697-0.143397173040697
10110.4621769272710020.537823072728998
10200.350433206180846-0.350433206180846
10300.143397173040697-0.143397173040697
10400.32650586563605-0.32650586563605
10500.486104267815797-0.486104267815797







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
80.6235075567387810.7529848865224390.376492443261219
90.5518954733581550.896209053283690.448104526641845
100.4165334956902470.8330669913804930.583466504309754
110.2940743990731920.5881487981463830.705925600926808
120.2071615467459360.4143230934918730.792838453254064
130.1476385876649650.2952771753299290.852361412335035
140.5750424169772520.8499151660454960.424957583022748
150.4787008587692010.9574017175384010.521299141230799
160.4076274769335810.8152549538671620.592372523066419
170.338467741630080.676935483260160.66153225836992
180.4061636033479910.8123272066959830.593836396652009
190.5463131250267860.9073737499464280.453686874973214
200.500344730681050.9993105386378990.49965526931895
210.4882788720246080.9765577440492160.511721127975392
220.5057322758121280.9885354483757440.494267724187872
230.4309332015850020.8618664031700040.569066798414998
240.5787193683687220.8425612632625560.421280631631278
250.5905767602676410.8188464794647170.409423239732359
260.7315196631367480.5369606737265040.268480336863252
270.7131017040162160.5737965919675680.286898295983784
280.6814652271694930.6370695456610140.318534772830507
290.6626539384462770.6746921231074460.337346061553723
300.6353673681067650.7292652637864690.364632631893235
310.7072398442687430.5855203114625140.292760155731257
320.6912110092488770.6175779815022470.308788990751123
330.6424507757189870.7150984485620260.357549224281013
340.5957422581109280.8085154837781430.404257741889072
350.540617442957020.918765114085960.45938255704298
360.5182260935312190.9635478129375620.481773906468781
370.4898942711663910.9797885423327820.510105728833609
380.5029959217219630.9940081565560750.497004078278037
390.5519853904085160.8960292191829680.448014609591484
400.5513104266355520.8973791467288950.448689573364448
410.5317889974640910.9364220050718190.468211002535909
420.5187458496090060.9625083007819880.481254150390994
430.5125004152038080.9749991695923850.487499584796192
440.502815570488380.9943688590232390.49718442951162
450.447863416563730.8957268331274590.55213658343627
460.4918414164146970.9836828328293930.508158583585303
470.5415953308685840.9168093382628310.458404669131416
480.5315201079790860.9369597840418280.468479892020914
490.5154692319565880.9690615360868240.484530768043412
500.4605029430157340.9210058860314680.539497056984266
510.5367053414078920.9265893171842160.463294658592108
520.5074356504722460.9851286990555080.492564349527754
530.5806067201743010.8387865596513970.419393279825699
540.5258185111072750.948362977785450.474181488892725
550.5498547099276270.9002905801447450.450145290072373
560.5666997081498310.8666005837003370.433300291850169
570.6261299129114720.7477401741770570.373870087088528
580.618747093731730.762505812536540.38125290626827
590.5751587369619840.8496825260760320.424841263038016
600.5223055708924830.9553888582150340.477694429107517
610.695560499575860.6088790008482790.30443950042414
620.6767721212764050.646455757447190.323227878723595
630.6438492421427180.7123015157145650.356150757857282
640.670898681007010.6582026379859790.32910131899299
650.6407418686331850.7185162627336310.359258131366815
660.6317444736261510.7365110527476980.368255526373849
670.7438022534346440.5123954931307110.256197746565356
680.6949489385564040.6101021228871910.305051061443596
690.6620077810421530.6759844379156930.337992218957847
700.6294587798048310.7410824403903370.370541220195169
710.6337663205695810.7324673588608380.366233679430419
720.6698101898859780.6603796202280450.330189810114022
730.7294577776196320.5410844447607360.270542222380368
740.7527264397757120.4945471204485760.247273560224288
750.7025651449581450.5948697100837090.297434855041855
760.7716342507047960.4567314985904070.228365749295204
770.7412795879724270.5174408240551460.258720412027573
780.6920180051129390.6159639897741210.307981994887061
790.7919438644447540.4161122711104930.208056135555246
800.7471613368666780.5056773262666440.252838663133322
810.7064398642983260.5871202714033480.293560135701674
820.65269989575010.69460020849980.3473001042499
830.5974650734875410.8050698530249170.402534926512459
840.7711505218916420.4576989562167160.228849478108358
850.7079735203525190.5840529592949620.292026479647481
860.6486860502419120.7026278995161760.351313949758088
870.9054865149859650.1890269700280690.0945134850140345
880.8639621053052090.2720757893895820.136037894694791
890.8107283316351710.3785433367296580.189271668364829
900.736979514385250.52604097122950.26302048561475
910.7165589720113240.5668820559773510.283441027988676
920.6831917279668730.6336165440662550.316808272033127
930.5962250198185220.8075499603629550.403774980181478
940.8106083817377830.3787832365244330.189391618262217
950.7148170690517420.5703658618965160.285182930948258
960.8855647357890110.2288705284219790.114435264210989
970.7645376605341110.4709246789317790.235462339465889

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 & 0.623507556738781 & 0.752984886522439 & 0.376492443261219 \tabularnewline
9 & 0.551895473358155 & 0.89620905328369 & 0.448104526641845 \tabularnewline
10 & 0.416533495690247 & 0.833066991380493 & 0.583466504309754 \tabularnewline
11 & 0.294074399073192 & 0.588148798146383 & 0.705925600926808 \tabularnewline
12 & 0.207161546745936 & 0.414323093491873 & 0.792838453254064 \tabularnewline
13 & 0.147638587664965 & 0.295277175329929 & 0.852361412335035 \tabularnewline
14 & 0.575042416977252 & 0.849915166045496 & 0.424957583022748 \tabularnewline
15 & 0.478700858769201 & 0.957401717538401 & 0.521299141230799 \tabularnewline
16 & 0.407627476933581 & 0.815254953867162 & 0.592372523066419 \tabularnewline
17 & 0.33846774163008 & 0.67693548326016 & 0.66153225836992 \tabularnewline
18 & 0.406163603347991 & 0.812327206695983 & 0.593836396652009 \tabularnewline
19 & 0.546313125026786 & 0.907373749946428 & 0.453686874973214 \tabularnewline
20 & 0.50034473068105 & 0.999310538637899 & 0.49965526931895 \tabularnewline
21 & 0.488278872024608 & 0.976557744049216 & 0.511721127975392 \tabularnewline
22 & 0.505732275812128 & 0.988535448375744 & 0.494267724187872 \tabularnewline
23 & 0.430933201585002 & 0.861866403170004 & 0.569066798414998 \tabularnewline
24 & 0.578719368368722 & 0.842561263262556 & 0.421280631631278 \tabularnewline
25 & 0.590576760267641 & 0.818846479464717 & 0.409423239732359 \tabularnewline
26 & 0.731519663136748 & 0.536960673726504 & 0.268480336863252 \tabularnewline
27 & 0.713101704016216 & 0.573796591967568 & 0.286898295983784 \tabularnewline
28 & 0.681465227169493 & 0.637069545661014 & 0.318534772830507 \tabularnewline
29 & 0.662653938446277 & 0.674692123107446 & 0.337346061553723 \tabularnewline
30 & 0.635367368106765 & 0.729265263786469 & 0.364632631893235 \tabularnewline
31 & 0.707239844268743 & 0.585520311462514 & 0.292760155731257 \tabularnewline
32 & 0.691211009248877 & 0.617577981502247 & 0.308788990751123 \tabularnewline
33 & 0.642450775718987 & 0.715098448562026 & 0.357549224281013 \tabularnewline
34 & 0.595742258110928 & 0.808515483778143 & 0.404257741889072 \tabularnewline
35 & 0.54061744295702 & 0.91876511408596 & 0.45938255704298 \tabularnewline
36 & 0.518226093531219 & 0.963547812937562 & 0.481773906468781 \tabularnewline
37 & 0.489894271166391 & 0.979788542332782 & 0.510105728833609 \tabularnewline
38 & 0.502995921721963 & 0.994008156556075 & 0.497004078278037 \tabularnewline
39 & 0.551985390408516 & 0.896029219182968 & 0.448014609591484 \tabularnewline
40 & 0.551310426635552 & 0.897379146728895 & 0.448689573364448 \tabularnewline
41 & 0.531788997464091 & 0.936422005071819 & 0.468211002535909 \tabularnewline
42 & 0.518745849609006 & 0.962508300781988 & 0.481254150390994 \tabularnewline
43 & 0.512500415203808 & 0.974999169592385 & 0.487499584796192 \tabularnewline
44 & 0.50281557048838 & 0.994368859023239 & 0.49718442951162 \tabularnewline
45 & 0.44786341656373 & 0.895726833127459 & 0.55213658343627 \tabularnewline
46 & 0.491841416414697 & 0.983682832829393 & 0.508158583585303 \tabularnewline
47 & 0.541595330868584 & 0.916809338262831 & 0.458404669131416 \tabularnewline
48 & 0.531520107979086 & 0.936959784041828 & 0.468479892020914 \tabularnewline
49 & 0.515469231956588 & 0.969061536086824 & 0.484530768043412 \tabularnewline
50 & 0.460502943015734 & 0.921005886031468 & 0.539497056984266 \tabularnewline
51 & 0.536705341407892 & 0.926589317184216 & 0.463294658592108 \tabularnewline
52 & 0.507435650472246 & 0.985128699055508 & 0.492564349527754 \tabularnewline
53 & 0.580606720174301 & 0.838786559651397 & 0.419393279825699 \tabularnewline
54 & 0.525818511107275 & 0.94836297778545 & 0.474181488892725 \tabularnewline
55 & 0.549854709927627 & 0.900290580144745 & 0.450145290072373 \tabularnewline
56 & 0.566699708149831 & 0.866600583700337 & 0.433300291850169 \tabularnewline
57 & 0.626129912911472 & 0.747740174177057 & 0.373870087088528 \tabularnewline
58 & 0.61874709373173 & 0.76250581253654 & 0.38125290626827 \tabularnewline
59 & 0.575158736961984 & 0.849682526076032 & 0.424841263038016 \tabularnewline
60 & 0.522305570892483 & 0.955388858215034 & 0.477694429107517 \tabularnewline
61 & 0.69556049957586 & 0.608879000848279 & 0.30443950042414 \tabularnewline
62 & 0.676772121276405 & 0.64645575744719 & 0.323227878723595 \tabularnewline
63 & 0.643849242142718 & 0.712301515714565 & 0.356150757857282 \tabularnewline
64 & 0.67089868100701 & 0.658202637985979 & 0.32910131899299 \tabularnewline
65 & 0.640741868633185 & 0.718516262733631 & 0.359258131366815 \tabularnewline
66 & 0.631744473626151 & 0.736511052747698 & 0.368255526373849 \tabularnewline
67 & 0.743802253434644 & 0.512395493130711 & 0.256197746565356 \tabularnewline
68 & 0.694948938556404 & 0.610102122887191 & 0.305051061443596 \tabularnewline
69 & 0.662007781042153 & 0.675984437915693 & 0.337992218957847 \tabularnewline
70 & 0.629458779804831 & 0.741082440390337 & 0.370541220195169 \tabularnewline
71 & 0.633766320569581 & 0.732467358860838 & 0.366233679430419 \tabularnewline
72 & 0.669810189885978 & 0.660379620228045 & 0.330189810114022 \tabularnewline
73 & 0.729457777619632 & 0.541084444760736 & 0.270542222380368 \tabularnewline
74 & 0.752726439775712 & 0.494547120448576 & 0.247273560224288 \tabularnewline
75 & 0.702565144958145 & 0.594869710083709 & 0.297434855041855 \tabularnewline
76 & 0.771634250704796 & 0.456731498590407 & 0.228365749295204 \tabularnewline
77 & 0.741279587972427 & 0.517440824055146 & 0.258720412027573 \tabularnewline
78 & 0.692018005112939 & 0.615963989774121 & 0.307981994887061 \tabularnewline
79 & 0.791943864444754 & 0.416112271110493 & 0.208056135555246 \tabularnewline
80 & 0.747161336866678 & 0.505677326266644 & 0.252838663133322 \tabularnewline
81 & 0.706439864298326 & 0.587120271403348 & 0.293560135701674 \tabularnewline
82 & 0.6526998957501 & 0.6946002084998 & 0.3473001042499 \tabularnewline
83 & 0.597465073487541 & 0.805069853024917 & 0.402534926512459 \tabularnewline
84 & 0.771150521891642 & 0.457698956216716 & 0.228849478108358 \tabularnewline
85 & 0.707973520352519 & 0.584052959294962 & 0.292026479647481 \tabularnewline
86 & 0.648686050241912 & 0.702627899516176 & 0.351313949758088 \tabularnewline
87 & 0.905486514985965 & 0.189026970028069 & 0.0945134850140345 \tabularnewline
88 & 0.863962105305209 & 0.272075789389582 & 0.136037894694791 \tabularnewline
89 & 0.810728331635171 & 0.378543336729658 & 0.189271668364829 \tabularnewline
90 & 0.73697951438525 & 0.5260409712295 & 0.26302048561475 \tabularnewline
91 & 0.716558972011324 & 0.566882055977351 & 0.283441027988676 \tabularnewline
92 & 0.683191727966873 & 0.633616544066255 & 0.316808272033127 \tabularnewline
93 & 0.596225019818522 & 0.807549960362955 & 0.403774980181478 \tabularnewline
94 & 0.810608381737783 & 0.378783236524433 & 0.189391618262217 \tabularnewline
95 & 0.714817069051742 & 0.570365861896516 & 0.285182930948258 \tabularnewline
96 & 0.885564735789011 & 0.228870528421979 & 0.114435264210989 \tabularnewline
97 & 0.764537660534111 & 0.470924678931779 & 0.235462339465889 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C]0.623507556738781[/C][C]0.752984886522439[/C][C]0.376492443261219[/C][/ROW]
[ROW][C]9[/C][C]0.551895473358155[/C][C]0.89620905328369[/C][C]0.448104526641845[/C][/ROW]
[ROW][C]10[/C][C]0.416533495690247[/C][C]0.833066991380493[/C][C]0.583466504309754[/C][/ROW]
[ROW][C]11[/C][C]0.294074399073192[/C][C]0.588148798146383[/C][C]0.705925600926808[/C][/ROW]
[ROW][C]12[/C][C]0.207161546745936[/C][C]0.414323093491873[/C][C]0.792838453254064[/C][/ROW]
[ROW][C]13[/C][C]0.147638587664965[/C][C]0.295277175329929[/C][C]0.852361412335035[/C][/ROW]
[ROW][C]14[/C][C]0.575042416977252[/C][C]0.849915166045496[/C][C]0.424957583022748[/C][/ROW]
[ROW][C]15[/C][C]0.478700858769201[/C][C]0.957401717538401[/C][C]0.521299141230799[/C][/ROW]
[ROW][C]16[/C][C]0.407627476933581[/C][C]0.815254953867162[/C][C]0.592372523066419[/C][/ROW]
[ROW][C]17[/C][C]0.33846774163008[/C][C]0.67693548326016[/C][C]0.66153225836992[/C][/ROW]
[ROW][C]18[/C][C]0.406163603347991[/C][C]0.812327206695983[/C][C]0.593836396652009[/C][/ROW]
[ROW][C]19[/C][C]0.546313125026786[/C][C]0.907373749946428[/C][C]0.453686874973214[/C][/ROW]
[ROW][C]20[/C][C]0.50034473068105[/C][C]0.999310538637899[/C][C]0.49965526931895[/C][/ROW]
[ROW][C]21[/C][C]0.488278872024608[/C][C]0.976557744049216[/C][C]0.511721127975392[/C][/ROW]
[ROW][C]22[/C][C]0.505732275812128[/C][C]0.988535448375744[/C][C]0.494267724187872[/C][/ROW]
[ROW][C]23[/C][C]0.430933201585002[/C][C]0.861866403170004[/C][C]0.569066798414998[/C][/ROW]
[ROW][C]24[/C][C]0.578719368368722[/C][C]0.842561263262556[/C][C]0.421280631631278[/C][/ROW]
[ROW][C]25[/C][C]0.590576760267641[/C][C]0.818846479464717[/C][C]0.409423239732359[/C][/ROW]
[ROW][C]26[/C][C]0.731519663136748[/C][C]0.536960673726504[/C][C]0.268480336863252[/C][/ROW]
[ROW][C]27[/C][C]0.713101704016216[/C][C]0.573796591967568[/C][C]0.286898295983784[/C][/ROW]
[ROW][C]28[/C][C]0.681465227169493[/C][C]0.637069545661014[/C][C]0.318534772830507[/C][/ROW]
[ROW][C]29[/C][C]0.662653938446277[/C][C]0.674692123107446[/C][C]0.337346061553723[/C][/ROW]
[ROW][C]30[/C][C]0.635367368106765[/C][C]0.729265263786469[/C][C]0.364632631893235[/C][/ROW]
[ROW][C]31[/C][C]0.707239844268743[/C][C]0.585520311462514[/C][C]0.292760155731257[/C][/ROW]
[ROW][C]32[/C][C]0.691211009248877[/C][C]0.617577981502247[/C][C]0.308788990751123[/C][/ROW]
[ROW][C]33[/C][C]0.642450775718987[/C][C]0.715098448562026[/C][C]0.357549224281013[/C][/ROW]
[ROW][C]34[/C][C]0.595742258110928[/C][C]0.808515483778143[/C][C]0.404257741889072[/C][/ROW]
[ROW][C]35[/C][C]0.54061744295702[/C][C]0.91876511408596[/C][C]0.45938255704298[/C][/ROW]
[ROW][C]36[/C][C]0.518226093531219[/C][C]0.963547812937562[/C][C]0.481773906468781[/C][/ROW]
[ROW][C]37[/C][C]0.489894271166391[/C][C]0.979788542332782[/C][C]0.510105728833609[/C][/ROW]
[ROW][C]38[/C][C]0.502995921721963[/C][C]0.994008156556075[/C][C]0.497004078278037[/C][/ROW]
[ROW][C]39[/C][C]0.551985390408516[/C][C]0.896029219182968[/C][C]0.448014609591484[/C][/ROW]
[ROW][C]40[/C][C]0.551310426635552[/C][C]0.897379146728895[/C][C]0.448689573364448[/C][/ROW]
[ROW][C]41[/C][C]0.531788997464091[/C][C]0.936422005071819[/C][C]0.468211002535909[/C][/ROW]
[ROW][C]42[/C][C]0.518745849609006[/C][C]0.962508300781988[/C][C]0.481254150390994[/C][/ROW]
[ROW][C]43[/C][C]0.512500415203808[/C][C]0.974999169592385[/C][C]0.487499584796192[/C][/ROW]
[ROW][C]44[/C][C]0.50281557048838[/C][C]0.994368859023239[/C][C]0.49718442951162[/C][/ROW]
[ROW][C]45[/C][C]0.44786341656373[/C][C]0.895726833127459[/C][C]0.55213658343627[/C][/ROW]
[ROW][C]46[/C][C]0.491841416414697[/C][C]0.983682832829393[/C][C]0.508158583585303[/C][/ROW]
[ROW][C]47[/C][C]0.541595330868584[/C][C]0.916809338262831[/C][C]0.458404669131416[/C][/ROW]
[ROW][C]48[/C][C]0.531520107979086[/C][C]0.936959784041828[/C][C]0.468479892020914[/C][/ROW]
[ROW][C]49[/C][C]0.515469231956588[/C][C]0.969061536086824[/C][C]0.484530768043412[/C][/ROW]
[ROW][C]50[/C][C]0.460502943015734[/C][C]0.921005886031468[/C][C]0.539497056984266[/C][/ROW]
[ROW][C]51[/C][C]0.536705341407892[/C][C]0.926589317184216[/C][C]0.463294658592108[/C][/ROW]
[ROW][C]52[/C][C]0.507435650472246[/C][C]0.985128699055508[/C][C]0.492564349527754[/C][/ROW]
[ROW][C]53[/C][C]0.580606720174301[/C][C]0.838786559651397[/C][C]0.419393279825699[/C][/ROW]
[ROW][C]54[/C][C]0.525818511107275[/C][C]0.94836297778545[/C][C]0.474181488892725[/C][/ROW]
[ROW][C]55[/C][C]0.549854709927627[/C][C]0.900290580144745[/C][C]0.450145290072373[/C][/ROW]
[ROW][C]56[/C][C]0.566699708149831[/C][C]0.866600583700337[/C][C]0.433300291850169[/C][/ROW]
[ROW][C]57[/C][C]0.626129912911472[/C][C]0.747740174177057[/C][C]0.373870087088528[/C][/ROW]
[ROW][C]58[/C][C]0.61874709373173[/C][C]0.76250581253654[/C][C]0.38125290626827[/C][/ROW]
[ROW][C]59[/C][C]0.575158736961984[/C][C]0.849682526076032[/C][C]0.424841263038016[/C][/ROW]
[ROW][C]60[/C][C]0.522305570892483[/C][C]0.955388858215034[/C][C]0.477694429107517[/C][/ROW]
[ROW][C]61[/C][C]0.69556049957586[/C][C]0.608879000848279[/C][C]0.30443950042414[/C][/ROW]
[ROW][C]62[/C][C]0.676772121276405[/C][C]0.64645575744719[/C][C]0.323227878723595[/C][/ROW]
[ROW][C]63[/C][C]0.643849242142718[/C][C]0.712301515714565[/C][C]0.356150757857282[/C][/ROW]
[ROW][C]64[/C][C]0.67089868100701[/C][C]0.658202637985979[/C][C]0.32910131899299[/C][/ROW]
[ROW][C]65[/C][C]0.640741868633185[/C][C]0.718516262733631[/C][C]0.359258131366815[/C][/ROW]
[ROW][C]66[/C][C]0.631744473626151[/C][C]0.736511052747698[/C][C]0.368255526373849[/C][/ROW]
[ROW][C]67[/C][C]0.743802253434644[/C][C]0.512395493130711[/C][C]0.256197746565356[/C][/ROW]
[ROW][C]68[/C][C]0.694948938556404[/C][C]0.610102122887191[/C][C]0.305051061443596[/C][/ROW]
[ROW][C]69[/C][C]0.662007781042153[/C][C]0.675984437915693[/C][C]0.337992218957847[/C][/ROW]
[ROW][C]70[/C][C]0.629458779804831[/C][C]0.741082440390337[/C][C]0.370541220195169[/C][/ROW]
[ROW][C]71[/C][C]0.633766320569581[/C][C]0.732467358860838[/C][C]0.366233679430419[/C][/ROW]
[ROW][C]72[/C][C]0.669810189885978[/C][C]0.660379620228045[/C][C]0.330189810114022[/C][/ROW]
[ROW][C]73[/C][C]0.729457777619632[/C][C]0.541084444760736[/C][C]0.270542222380368[/C][/ROW]
[ROW][C]74[/C][C]0.752726439775712[/C][C]0.494547120448576[/C][C]0.247273560224288[/C][/ROW]
[ROW][C]75[/C][C]0.702565144958145[/C][C]0.594869710083709[/C][C]0.297434855041855[/C][/ROW]
[ROW][C]76[/C][C]0.771634250704796[/C][C]0.456731498590407[/C][C]0.228365749295204[/C][/ROW]
[ROW][C]77[/C][C]0.741279587972427[/C][C]0.517440824055146[/C][C]0.258720412027573[/C][/ROW]
[ROW][C]78[/C][C]0.692018005112939[/C][C]0.615963989774121[/C][C]0.307981994887061[/C][/ROW]
[ROW][C]79[/C][C]0.791943864444754[/C][C]0.416112271110493[/C][C]0.208056135555246[/C][/ROW]
[ROW][C]80[/C][C]0.747161336866678[/C][C]0.505677326266644[/C][C]0.252838663133322[/C][/ROW]
[ROW][C]81[/C][C]0.706439864298326[/C][C]0.587120271403348[/C][C]0.293560135701674[/C][/ROW]
[ROW][C]82[/C][C]0.6526998957501[/C][C]0.6946002084998[/C][C]0.3473001042499[/C][/ROW]
[ROW][C]83[/C][C]0.597465073487541[/C][C]0.805069853024917[/C][C]0.402534926512459[/C][/ROW]
[ROW][C]84[/C][C]0.771150521891642[/C][C]0.457698956216716[/C][C]0.228849478108358[/C][/ROW]
[ROW][C]85[/C][C]0.707973520352519[/C][C]0.584052959294962[/C][C]0.292026479647481[/C][/ROW]
[ROW][C]86[/C][C]0.648686050241912[/C][C]0.702627899516176[/C][C]0.351313949758088[/C][/ROW]
[ROW][C]87[/C][C]0.905486514985965[/C][C]0.189026970028069[/C][C]0.0945134850140345[/C][/ROW]
[ROW][C]88[/C][C]0.863962105305209[/C][C]0.272075789389582[/C][C]0.136037894694791[/C][/ROW]
[ROW][C]89[/C][C]0.810728331635171[/C][C]0.378543336729658[/C][C]0.189271668364829[/C][/ROW]
[ROW][C]90[/C][C]0.73697951438525[/C][C]0.5260409712295[/C][C]0.26302048561475[/C][/ROW]
[ROW][C]91[/C][C]0.716558972011324[/C][C]0.566882055977351[/C][C]0.283441027988676[/C][/ROW]
[ROW][C]92[/C][C]0.683191727966873[/C][C]0.633616544066255[/C][C]0.316808272033127[/C][/ROW]
[ROW][C]93[/C][C]0.596225019818522[/C][C]0.807549960362955[/C][C]0.403774980181478[/C][/ROW]
[ROW][C]94[/C][C]0.810608381737783[/C][C]0.378783236524433[/C][C]0.189391618262217[/C][/ROW]
[ROW][C]95[/C][C]0.714817069051742[/C][C]0.570365861896516[/C][C]0.285182930948258[/C][/ROW]
[ROW][C]96[/C][C]0.885564735789011[/C][C]0.228870528421979[/C][C]0.114435264210989[/C][/ROW]
[ROW][C]97[/C][C]0.764537660534111[/C][C]0.470924678931779[/C][C]0.235462339465889[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
80.6235075567387810.7529848865224390.376492443261219
90.5518954733581550.896209053283690.448104526641845
100.4165334956902470.8330669913804930.583466504309754
110.2940743990731920.5881487981463830.705925600926808
120.2071615467459360.4143230934918730.792838453254064
130.1476385876649650.2952771753299290.852361412335035
140.5750424169772520.8499151660454960.424957583022748
150.4787008587692010.9574017175384010.521299141230799
160.4076274769335810.8152549538671620.592372523066419
170.338467741630080.676935483260160.66153225836992
180.4061636033479910.8123272066959830.593836396652009
190.5463131250267860.9073737499464280.453686874973214
200.500344730681050.9993105386378990.49965526931895
210.4882788720246080.9765577440492160.511721127975392
220.5057322758121280.9885354483757440.494267724187872
230.4309332015850020.8618664031700040.569066798414998
240.5787193683687220.8425612632625560.421280631631278
250.5905767602676410.8188464794647170.409423239732359
260.7315196631367480.5369606737265040.268480336863252
270.7131017040162160.5737965919675680.286898295983784
280.6814652271694930.6370695456610140.318534772830507
290.6626539384462770.6746921231074460.337346061553723
300.6353673681067650.7292652637864690.364632631893235
310.7072398442687430.5855203114625140.292760155731257
320.6912110092488770.6175779815022470.308788990751123
330.6424507757189870.7150984485620260.357549224281013
340.5957422581109280.8085154837781430.404257741889072
350.540617442957020.918765114085960.45938255704298
360.5182260935312190.9635478129375620.481773906468781
370.4898942711663910.9797885423327820.510105728833609
380.5029959217219630.9940081565560750.497004078278037
390.5519853904085160.8960292191829680.448014609591484
400.5513104266355520.8973791467288950.448689573364448
410.5317889974640910.9364220050718190.468211002535909
420.5187458496090060.9625083007819880.481254150390994
430.5125004152038080.9749991695923850.487499584796192
440.502815570488380.9943688590232390.49718442951162
450.447863416563730.8957268331274590.55213658343627
460.4918414164146970.9836828328293930.508158583585303
470.5415953308685840.9168093382628310.458404669131416
480.5315201079790860.9369597840418280.468479892020914
490.5154692319565880.9690615360868240.484530768043412
500.4605029430157340.9210058860314680.539497056984266
510.5367053414078920.9265893171842160.463294658592108
520.5074356504722460.9851286990555080.492564349527754
530.5806067201743010.8387865596513970.419393279825699
540.5258185111072750.948362977785450.474181488892725
550.5498547099276270.9002905801447450.450145290072373
560.5666997081498310.8666005837003370.433300291850169
570.6261299129114720.7477401741770570.373870087088528
580.618747093731730.762505812536540.38125290626827
590.5751587369619840.8496825260760320.424841263038016
600.5223055708924830.9553888582150340.477694429107517
610.695560499575860.6088790008482790.30443950042414
620.6767721212764050.646455757447190.323227878723595
630.6438492421427180.7123015157145650.356150757857282
640.670898681007010.6582026379859790.32910131899299
650.6407418686331850.7185162627336310.359258131366815
660.6317444736261510.7365110527476980.368255526373849
670.7438022534346440.5123954931307110.256197746565356
680.6949489385564040.6101021228871910.305051061443596
690.6620077810421530.6759844379156930.337992218957847
700.6294587798048310.7410824403903370.370541220195169
710.6337663205695810.7324673588608380.366233679430419
720.6698101898859780.6603796202280450.330189810114022
730.7294577776196320.5410844447607360.270542222380368
740.7527264397757120.4945471204485760.247273560224288
750.7025651449581450.5948697100837090.297434855041855
760.7716342507047960.4567314985904070.228365749295204
770.7412795879724270.5174408240551460.258720412027573
780.6920180051129390.6159639897741210.307981994887061
790.7919438644447540.4161122711104930.208056135555246
800.7471613368666780.5056773262666440.252838663133322
810.7064398642983260.5871202714033480.293560135701674
820.65269989575010.69460020849980.3473001042499
830.5974650734875410.8050698530249170.402534926512459
840.7711505218916420.4576989562167160.228849478108358
850.7079735203525190.5840529592949620.292026479647481
860.6486860502419120.7026278995161760.351313949758088
870.9054865149859650.1890269700280690.0945134850140345
880.8639621053052090.2720757893895820.136037894694791
890.8107283316351710.3785433367296580.189271668364829
900.736979514385250.52604097122950.26302048561475
910.7165589720113240.5668820559773510.283441027988676
920.6831917279668730.6336165440662550.316808272033127
930.5962250198185220.8075499603629550.403774980181478
940.8106083817377830.3787832365244330.189391618262217
950.7148170690517420.5703658618965160.285182930948258
960.8855647357890110.2288705284219790.114435264210989
970.7645376605341110.4709246789317790.235462339465889







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197282&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197282&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197282&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}