Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 16 Dec 2014 22:33:27 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/16/t1418769296nn92l4yc89r74fh.htm/, Retrieved Thu, 31 Oct 2024 22:49:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=269964, Retrieved Thu, 31 Oct 2024 22:49:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Paired and Unpaired Two Samples Tests about the Mean] [] [2010-11-01 13:27:45] [b98453cac15ba1066b407e146608df68]
- RMP   [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-10-21 07:56:43] [32b17a345b130fdf5cc88718ed94a974]
- RMPD      [Multiple Regression] [proefexamen vraag 5] [2014-12-16 22:33:27] [8568a324fefbb8dbb43f697bfa8d1be6] [Current]
Feedback Forum

Post a new message
Dataseries X:
0 1 0
1 1 1
0 1 0
1 1 1
1 1 1
1 1 1
0 1 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0 1 0
0 1 0
0 0 0
1 1 1
0 1 0
0 0 1
0 1 0
1 1 1
1 1 1
0 1 0
1 1 1
1 1 1
1 1 1
0 0 1
0 0 0
1 1 1
0 1 0
0 1 0
0 1 0
1 1 1
1 1 1
1 1 1
1 1 1
0 1 0
0 0 1
1 1 1
0 1 0
1 1 1
1 1 1
1 1 1
1 1 1
0 0 1
0 1 0
1 1 1
0 0 1
0 1 0
0 0 1
0 0 1
0 0 1
1 1 1
0 0 1
1 1 1
1 1 1
0 0 0
1 1 1
0 0 0
0 0 1
1 1 1
0 1 0
0 1 0
1 1 1
0 1 0
0 0 1
0 1 0
1 1 1
1 1 1
0 0 0
0 1 0
0 1 0
0 0 0
0 0 1
0 1 0
0 1 0
0 0 1
0 1 0
0 0 0
1 1 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 1
0 0 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
1 1 1
1 1 1
1 1 1
1 1 1
0 0 0
0 0 1
1 1 1
0 1 0
1 1 1
0 1 0
0 1 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0 0 1
1 1 1
1 1 1
0 1 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0 1 0
1 1 1
0 0 1
1 1 1
1 1 1
1 1 1
0 1 0
0 1 0
1 1 1
0 1 0
0 1 0
1 1 1
0 1 0
1 1 1
1 1 1
0 1 0
0 0 1
0 0 1
1 1 1
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 1 1
0 0 0
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
1 1 1
1 1 1
0 0 1
1 1 1
0 1 0
0 0 1
0 1 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 1
0 1 0
0 0 0
0 0 0
0 0 0
1 1 1
0 0 1
0 1 0
0 0 0
1 1 1
0 0 0
1 1 1
0 0 1
0 0 0
0 0 1
0 0 1
1 1 1
0 1 0
0 0 0
0 1 0
1 1 1
0 0 1
1 1 1
0 0 1
0 0 0
0 1 0
0 0 0
1 1 1
1 1 1
0 1 0
0 0 0
0 1 0
0 0 1
1 1 1
0 1 0
0 1 0
0 1 0
0 0 1
1 1 1
1 1 1
1 1 1
0 0 0
1 1 1
1 1 1
0 0 1
0 1 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 1
0 1 0
1 1 1
0 1 0
1 1 1
1 1 1
0 1 0
0 0 1
0 0 0
1 1 1
0 0 0
0 0 1
0 1 0
0 0 0
0 0 1
0 0 1
0 0 0
0 0 1
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 1
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 1
0 1 0
0 0 0
0 0 1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
group_gender[t] = -0.260116 + 0.567526group[t] + 0.498251gender[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
group_gender[t] =  -0.260116 +  0.567526group[t] +  0.498251gender[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]group_gender[t] =  -0.260116 +  0.567526group[t] +  0.498251gender[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
group_gender[t] = -0.260116 + 0.567526group[t] + 0.498251gender[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-0.2601160.0264545-9.8339.54856e-204.77428e-20
group0.5675260.0298749195.6002e-522.8001e-52
gender0.4982510.030150916.534.4519e-432.22595e-43

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -0.260116 & 0.0264545 & -9.833 & 9.54856e-20 & 4.77428e-20 \tabularnewline
group & 0.567526 & 0.0298749 & 19 & 5.6002e-52 & 2.8001e-52 \tabularnewline
gender & 0.498251 & 0.0301509 & 16.53 & 4.4519e-43 & 2.22595e-43 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-0.260116[/C][C]0.0264545[/C][C]-9.833[/C][C]9.54856e-20[/C][C]4.77428e-20[/C][/ROW]
[ROW][C]group[/C][C]0.567526[/C][C]0.0298749[/C][C]19[/C][C]5.6002e-52[/C][C]2.8001e-52[/C][/ROW]
[ROW][C]gender[/C][C]0.498251[/C][C]0.0301509[/C][C]16.53[/C][C]4.4519e-43[/C][C]2.22595e-43[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-0.2601160.0264545-9.8339.54856e-204.77428e-20
group0.5675260.0298749195.6002e-522.8001e-52
gender0.4982510.030150916.534.4519e-432.22595e-43







Multiple Linear Regression - Regression Statistics
Multiple R0.846841
R-squared0.717139
Adjusted R-squared0.715082
F-TEST (value)348.605
F-TEST (DF numerator)2
F-TEST (DF denominator)275
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.247956
Sum Squared Residuals16.9075

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.846841 \tabularnewline
R-squared & 0.717139 \tabularnewline
Adjusted R-squared & 0.715082 \tabularnewline
F-TEST (value) & 348.605 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 275 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.247956 \tabularnewline
Sum Squared Residuals & 16.9075 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.846841[/C][/ROW]
[ROW][C]R-squared[/C][C]0.717139[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.715082[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]348.605[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]275[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.247956[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]16.9075[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.846841
R-squared0.717139
Adjusted R-squared0.715082
F-TEST (value)348.605
F-TEST (DF numerator)2
F-TEST (DF denominator)275
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.247956
Sum Squared Residuals16.9075







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.30741-0.30741
210.805660.19434
300.30741-0.30741
410.805660.19434
510.805660.19434
610.805660.19434
700.30741-0.30741
810.805660.19434
910.805660.19434
1010.805660.19434
1110.805660.19434
1210.805660.19434
1310.805660.19434
1400.30741-0.30741
1500.30741-0.30741
160-0.2601160.260116
1710.805660.19434
1800.30741-0.30741
1900.238134-0.238134
2000.30741-0.30741
2110.805660.19434
2210.805660.19434
2300.30741-0.30741
2410.805660.19434
2510.805660.19434
2610.805660.19434
2700.238134-0.238134
280-0.2601160.260116
2910.805660.19434
3000.30741-0.30741
3100.30741-0.30741
3200.30741-0.30741
3310.805660.19434
3410.805660.19434
3510.805660.19434
3610.805660.19434
3700.30741-0.30741
3800.238134-0.238134
3910.805660.19434
4000.30741-0.30741
4110.805660.19434
4210.805660.19434
4310.805660.19434
4410.805660.19434
4500.238134-0.238134
4600.30741-0.30741
4710.805660.19434
4800.238134-0.238134
4900.30741-0.30741
5000.238134-0.238134
5100.238134-0.238134
5200.238134-0.238134
5310.805660.19434
5400.238134-0.238134
5510.805660.19434
5610.805660.19434
570-0.2601160.260116
5810.805660.19434
590-0.2601160.260116
6000.238134-0.238134
6110.805660.19434
6200.30741-0.30741
6300.30741-0.30741
6410.805660.19434
6500.30741-0.30741
6600.238134-0.238134
6700.30741-0.30741
6810.805660.19434
6910.805660.19434
700-0.2601160.260116
7100.30741-0.30741
7200.30741-0.30741
730-0.2601160.260116
7400.238134-0.238134
7500.30741-0.30741
7600.30741-0.30741
7700.238134-0.238134
7800.30741-0.30741
790-0.2601160.260116
8010.805660.19434
810-0.2601160.260116
820-0.2601160.260116
830-0.2601160.260116
8400.238134-0.238134
850-0.2601160.260116
8600.238134-0.238134
8700.238134-0.238134
880-0.2601160.260116
890-0.2601160.260116
900-0.2601160.260116
9100.238134-0.238134
9200.238134-0.238134
9300.238134-0.238134
940-0.2601160.260116
9500.238134-0.238134
960-0.2601160.260116
9700.238134-0.238134
9800.238134-0.238134
9900.238134-0.238134
10000.238134-0.238134
10100.238134-0.238134
1020-0.2601160.260116
10300.238134-0.238134
10400.238134-0.238134
10500.238134-0.238134
1060-0.2601160.260116
1070-0.2601160.260116
1080-0.2601160.260116
1090-0.2601160.260116
1100-0.2601160.260116
1110-0.2601160.260116
11200.238134-0.238134
11310.805660.19434
11410.805660.19434
11510.805660.19434
11610.805660.19434
1170-0.2601160.260116
11800.238134-0.238134
11910.805660.19434
12000.30741-0.30741
12110.805660.19434
12200.30741-0.30741
12300.30741-0.30741
12410.805660.19434
12510.805660.19434
12610.805660.19434
12710.805660.19434
12810.805660.19434
12900.238134-0.238134
13010.805660.19434
13110.805660.19434
13200.30741-0.30741
13310.805660.19434
13410.805660.19434
13510.805660.19434
13610.805660.19434
13710.805660.19434
13810.805660.19434
13900.30741-0.30741
14010.805660.19434
14100.238134-0.238134
14210.805660.19434
14310.805660.19434
14410.805660.19434
14500.30741-0.30741
14600.30741-0.30741
14710.805660.19434
14800.30741-0.30741
14900.30741-0.30741
15010.805660.19434
15100.30741-0.30741
15210.805660.19434
15310.805660.19434
15400.30741-0.30741
15500.238134-0.238134
15600.238134-0.238134
15710.805660.19434
15800.30741-0.30741
1590-0.2601160.260116
1600-0.2601160.260116
1610-0.2601160.260116
16200.238134-0.238134
16300.30741-0.30741
16410.805660.19434
1650-0.2601160.260116
16600.238134-0.238134
1670-0.2601160.260116
16800.238134-0.238134
1690-0.2601160.260116
1700-0.2601160.260116
17100.238134-0.238134
1720-0.2601160.260116
17300.238134-0.238134
17410.805660.19434
17510.805660.19434
17600.238134-0.238134
17710.805660.19434
17800.30741-0.30741
17900.238134-0.238134
18000.30741-0.30741
1810-0.2601160.260116
1820-0.2601160.260116
18310.805660.19434
1840-0.2601160.260116
18500.238134-0.238134
1860-0.2601160.260116
1870-0.2601160.260116
1880-0.2601160.260116
1890-0.2601160.260116
19000.238134-0.238134
19100.238134-0.238134
19200.238134-0.238134
19300.238134-0.238134
1940-0.2601160.260116
1950-0.2601160.260116
19600.238134-0.238134
19700.30741-0.30741
1980-0.2601160.260116
1990-0.2601160.260116
2000-0.2601160.260116
20110.805660.19434
20200.238134-0.238134
20300.30741-0.30741
2040-0.2601160.260116
20510.805660.19434
2060-0.2601160.260116
20710.805660.19434
20800.238134-0.238134
2090-0.2601160.260116
21000.238134-0.238134
21100.238134-0.238134
21210.805660.19434
21300.30741-0.30741
2140-0.2601160.260116
21500.30741-0.30741
21610.805660.19434
21700.238134-0.238134
21810.805660.19434
21900.238134-0.238134
2200-0.2601160.260116
22100.30741-0.30741
2220-0.2601160.260116
22310.805660.19434
22410.805660.19434
22500.30741-0.30741
2260-0.2601160.260116
22700.30741-0.30741
22800.238134-0.238134
22910.805660.19434
23000.30741-0.30741
23100.30741-0.30741
23200.30741-0.30741
23300.238134-0.238134
23410.805660.19434
23510.805660.19434
23610.805660.19434
2370-0.2601160.260116
23810.805660.19434
23910.805660.19434
24000.238134-0.238134
24100.30741-0.30741
2420-0.2601160.260116
24300.238134-0.238134
2440-0.2601160.260116
24500.238134-0.238134
24600.238134-0.238134
24700.30741-0.30741
24810.805660.19434
24900.30741-0.30741
25010.805660.19434
25110.805660.19434
25200.30741-0.30741
25300.238134-0.238134
2540-0.2601160.260116
25510.805660.19434
2560-0.2601160.260116
25700.238134-0.238134
25800.30741-0.30741
2590-0.2601160.260116
26000.238134-0.238134
26100.238134-0.238134
2620-0.2601160.260116
26300.238134-0.238134
26400.238134-0.238134
2650-0.2601160.260116
26600.238134-0.238134
2670-0.2601160.260116
2680-0.2601160.260116
26900.238134-0.238134
27000.238134-0.238134
2710-0.2601160.260116
27200.238134-0.238134
2730-0.2601160.260116
2740-0.2601160.260116
27500.238134-0.238134
27600.30741-0.30741
2770-0.2601160.260116
27800.238134-0.238134

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 0 & 0.30741 & -0.30741 \tabularnewline
2 & 1 & 0.80566 & 0.19434 \tabularnewline
3 & 0 & 0.30741 & -0.30741 \tabularnewline
4 & 1 & 0.80566 & 0.19434 \tabularnewline
5 & 1 & 0.80566 & 0.19434 \tabularnewline
6 & 1 & 0.80566 & 0.19434 \tabularnewline
7 & 0 & 0.30741 & -0.30741 \tabularnewline
8 & 1 & 0.80566 & 0.19434 \tabularnewline
9 & 1 & 0.80566 & 0.19434 \tabularnewline
10 & 1 & 0.80566 & 0.19434 \tabularnewline
11 & 1 & 0.80566 & 0.19434 \tabularnewline
12 & 1 & 0.80566 & 0.19434 \tabularnewline
13 & 1 & 0.80566 & 0.19434 \tabularnewline
14 & 0 & 0.30741 & -0.30741 \tabularnewline
15 & 0 & 0.30741 & -0.30741 \tabularnewline
16 & 0 & -0.260116 & 0.260116 \tabularnewline
17 & 1 & 0.80566 & 0.19434 \tabularnewline
18 & 0 & 0.30741 & -0.30741 \tabularnewline
19 & 0 & 0.238134 & -0.238134 \tabularnewline
20 & 0 & 0.30741 & -0.30741 \tabularnewline
21 & 1 & 0.80566 & 0.19434 \tabularnewline
22 & 1 & 0.80566 & 0.19434 \tabularnewline
23 & 0 & 0.30741 & -0.30741 \tabularnewline
24 & 1 & 0.80566 & 0.19434 \tabularnewline
25 & 1 & 0.80566 & 0.19434 \tabularnewline
26 & 1 & 0.80566 & 0.19434 \tabularnewline
27 & 0 & 0.238134 & -0.238134 \tabularnewline
28 & 0 & -0.260116 & 0.260116 \tabularnewline
29 & 1 & 0.80566 & 0.19434 \tabularnewline
30 & 0 & 0.30741 & -0.30741 \tabularnewline
31 & 0 & 0.30741 & -0.30741 \tabularnewline
32 & 0 & 0.30741 & -0.30741 \tabularnewline
33 & 1 & 0.80566 & 0.19434 \tabularnewline
34 & 1 & 0.80566 & 0.19434 \tabularnewline
35 & 1 & 0.80566 & 0.19434 \tabularnewline
36 & 1 & 0.80566 & 0.19434 \tabularnewline
37 & 0 & 0.30741 & -0.30741 \tabularnewline
38 & 0 & 0.238134 & -0.238134 \tabularnewline
39 & 1 & 0.80566 & 0.19434 \tabularnewline
40 & 0 & 0.30741 & -0.30741 \tabularnewline
41 & 1 & 0.80566 & 0.19434 \tabularnewline
42 & 1 & 0.80566 & 0.19434 \tabularnewline
43 & 1 & 0.80566 & 0.19434 \tabularnewline
44 & 1 & 0.80566 & 0.19434 \tabularnewline
45 & 0 & 0.238134 & -0.238134 \tabularnewline
46 & 0 & 0.30741 & -0.30741 \tabularnewline
47 & 1 & 0.80566 & 0.19434 \tabularnewline
48 & 0 & 0.238134 & -0.238134 \tabularnewline
49 & 0 & 0.30741 & -0.30741 \tabularnewline
50 & 0 & 0.238134 & -0.238134 \tabularnewline
51 & 0 & 0.238134 & -0.238134 \tabularnewline
52 & 0 & 0.238134 & -0.238134 \tabularnewline
53 & 1 & 0.80566 & 0.19434 \tabularnewline
54 & 0 & 0.238134 & -0.238134 \tabularnewline
55 & 1 & 0.80566 & 0.19434 \tabularnewline
56 & 1 & 0.80566 & 0.19434 \tabularnewline
57 & 0 & -0.260116 & 0.260116 \tabularnewline
58 & 1 & 0.80566 & 0.19434 \tabularnewline
59 & 0 & -0.260116 & 0.260116 \tabularnewline
60 & 0 & 0.238134 & -0.238134 \tabularnewline
61 & 1 & 0.80566 & 0.19434 \tabularnewline
62 & 0 & 0.30741 & -0.30741 \tabularnewline
63 & 0 & 0.30741 & -0.30741 \tabularnewline
64 & 1 & 0.80566 & 0.19434 \tabularnewline
65 & 0 & 0.30741 & -0.30741 \tabularnewline
66 & 0 & 0.238134 & -0.238134 \tabularnewline
67 & 0 & 0.30741 & -0.30741 \tabularnewline
68 & 1 & 0.80566 & 0.19434 \tabularnewline
69 & 1 & 0.80566 & 0.19434 \tabularnewline
70 & 0 & -0.260116 & 0.260116 \tabularnewline
71 & 0 & 0.30741 & -0.30741 \tabularnewline
72 & 0 & 0.30741 & -0.30741 \tabularnewline
73 & 0 & -0.260116 & 0.260116 \tabularnewline
74 & 0 & 0.238134 & -0.238134 \tabularnewline
75 & 0 & 0.30741 & -0.30741 \tabularnewline
76 & 0 & 0.30741 & -0.30741 \tabularnewline
77 & 0 & 0.238134 & -0.238134 \tabularnewline
78 & 0 & 0.30741 & -0.30741 \tabularnewline
79 & 0 & -0.260116 & 0.260116 \tabularnewline
80 & 1 & 0.80566 & 0.19434 \tabularnewline
81 & 0 & -0.260116 & 0.260116 \tabularnewline
82 & 0 & -0.260116 & 0.260116 \tabularnewline
83 & 0 & -0.260116 & 0.260116 \tabularnewline
84 & 0 & 0.238134 & -0.238134 \tabularnewline
85 & 0 & -0.260116 & 0.260116 \tabularnewline
86 & 0 & 0.238134 & -0.238134 \tabularnewline
87 & 0 & 0.238134 & -0.238134 \tabularnewline
88 & 0 & -0.260116 & 0.260116 \tabularnewline
89 & 0 & -0.260116 & 0.260116 \tabularnewline
90 & 0 & -0.260116 & 0.260116 \tabularnewline
91 & 0 & 0.238134 & -0.238134 \tabularnewline
92 & 0 & 0.238134 & -0.238134 \tabularnewline
93 & 0 & 0.238134 & -0.238134 \tabularnewline
94 & 0 & -0.260116 & 0.260116 \tabularnewline
95 & 0 & 0.238134 & -0.238134 \tabularnewline
96 & 0 & -0.260116 & 0.260116 \tabularnewline
97 & 0 & 0.238134 & -0.238134 \tabularnewline
98 & 0 & 0.238134 & -0.238134 \tabularnewline
99 & 0 & 0.238134 & -0.238134 \tabularnewline
100 & 0 & 0.238134 & -0.238134 \tabularnewline
101 & 0 & 0.238134 & -0.238134 \tabularnewline
102 & 0 & -0.260116 & 0.260116 \tabularnewline
103 & 0 & 0.238134 & -0.238134 \tabularnewline
104 & 0 & 0.238134 & -0.238134 \tabularnewline
105 & 0 & 0.238134 & -0.238134 \tabularnewline
106 & 0 & -0.260116 & 0.260116 \tabularnewline
107 & 0 & -0.260116 & 0.260116 \tabularnewline
108 & 0 & -0.260116 & 0.260116 \tabularnewline
109 & 0 & -0.260116 & 0.260116 \tabularnewline
110 & 0 & -0.260116 & 0.260116 \tabularnewline
111 & 0 & -0.260116 & 0.260116 \tabularnewline
112 & 0 & 0.238134 & -0.238134 \tabularnewline
113 & 1 & 0.80566 & 0.19434 \tabularnewline
114 & 1 & 0.80566 & 0.19434 \tabularnewline
115 & 1 & 0.80566 & 0.19434 \tabularnewline
116 & 1 & 0.80566 & 0.19434 \tabularnewline
117 & 0 & -0.260116 & 0.260116 \tabularnewline
118 & 0 & 0.238134 & -0.238134 \tabularnewline
119 & 1 & 0.80566 & 0.19434 \tabularnewline
120 & 0 & 0.30741 & -0.30741 \tabularnewline
121 & 1 & 0.80566 & 0.19434 \tabularnewline
122 & 0 & 0.30741 & -0.30741 \tabularnewline
123 & 0 & 0.30741 & -0.30741 \tabularnewline
124 & 1 & 0.80566 & 0.19434 \tabularnewline
125 & 1 & 0.80566 & 0.19434 \tabularnewline
126 & 1 & 0.80566 & 0.19434 \tabularnewline
127 & 1 & 0.80566 & 0.19434 \tabularnewline
128 & 1 & 0.80566 & 0.19434 \tabularnewline
129 & 0 & 0.238134 & -0.238134 \tabularnewline
130 & 1 & 0.80566 & 0.19434 \tabularnewline
131 & 1 & 0.80566 & 0.19434 \tabularnewline
132 & 0 & 0.30741 & -0.30741 \tabularnewline
133 & 1 & 0.80566 & 0.19434 \tabularnewline
134 & 1 & 0.80566 & 0.19434 \tabularnewline
135 & 1 & 0.80566 & 0.19434 \tabularnewline
136 & 1 & 0.80566 & 0.19434 \tabularnewline
137 & 1 & 0.80566 & 0.19434 \tabularnewline
138 & 1 & 0.80566 & 0.19434 \tabularnewline
139 & 0 & 0.30741 & -0.30741 \tabularnewline
140 & 1 & 0.80566 & 0.19434 \tabularnewline
141 & 0 & 0.238134 & -0.238134 \tabularnewline
142 & 1 & 0.80566 & 0.19434 \tabularnewline
143 & 1 & 0.80566 & 0.19434 \tabularnewline
144 & 1 & 0.80566 & 0.19434 \tabularnewline
145 & 0 & 0.30741 & -0.30741 \tabularnewline
146 & 0 & 0.30741 & -0.30741 \tabularnewline
147 & 1 & 0.80566 & 0.19434 \tabularnewline
148 & 0 & 0.30741 & -0.30741 \tabularnewline
149 & 0 & 0.30741 & -0.30741 \tabularnewline
150 & 1 & 0.80566 & 0.19434 \tabularnewline
151 & 0 & 0.30741 & -0.30741 \tabularnewline
152 & 1 & 0.80566 & 0.19434 \tabularnewline
153 & 1 & 0.80566 & 0.19434 \tabularnewline
154 & 0 & 0.30741 & -0.30741 \tabularnewline
155 & 0 & 0.238134 & -0.238134 \tabularnewline
156 & 0 & 0.238134 & -0.238134 \tabularnewline
157 & 1 & 0.80566 & 0.19434 \tabularnewline
158 & 0 & 0.30741 & -0.30741 \tabularnewline
159 & 0 & -0.260116 & 0.260116 \tabularnewline
160 & 0 & -0.260116 & 0.260116 \tabularnewline
161 & 0 & -0.260116 & 0.260116 \tabularnewline
162 & 0 & 0.238134 & -0.238134 \tabularnewline
163 & 0 & 0.30741 & -0.30741 \tabularnewline
164 & 1 & 0.80566 & 0.19434 \tabularnewline
165 & 0 & -0.260116 & 0.260116 \tabularnewline
166 & 0 & 0.238134 & -0.238134 \tabularnewline
167 & 0 & -0.260116 & 0.260116 \tabularnewline
168 & 0 & 0.238134 & -0.238134 \tabularnewline
169 & 0 & -0.260116 & 0.260116 \tabularnewline
170 & 0 & -0.260116 & 0.260116 \tabularnewline
171 & 0 & 0.238134 & -0.238134 \tabularnewline
172 & 0 & -0.260116 & 0.260116 \tabularnewline
173 & 0 & 0.238134 & -0.238134 \tabularnewline
174 & 1 & 0.80566 & 0.19434 \tabularnewline
175 & 1 & 0.80566 & 0.19434 \tabularnewline
176 & 0 & 0.238134 & -0.238134 \tabularnewline
177 & 1 & 0.80566 & 0.19434 \tabularnewline
178 & 0 & 0.30741 & -0.30741 \tabularnewline
179 & 0 & 0.238134 & -0.238134 \tabularnewline
180 & 0 & 0.30741 & -0.30741 \tabularnewline
181 & 0 & -0.260116 & 0.260116 \tabularnewline
182 & 0 & -0.260116 & 0.260116 \tabularnewline
183 & 1 & 0.80566 & 0.19434 \tabularnewline
184 & 0 & -0.260116 & 0.260116 \tabularnewline
185 & 0 & 0.238134 & -0.238134 \tabularnewline
186 & 0 & -0.260116 & 0.260116 \tabularnewline
187 & 0 & -0.260116 & 0.260116 \tabularnewline
188 & 0 & -0.260116 & 0.260116 \tabularnewline
189 & 0 & -0.260116 & 0.260116 \tabularnewline
190 & 0 & 0.238134 & -0.238134 \tabularnewline
191 & 0 & 0.238134 & -0.238134 \tabularnewline
192 & 0 & 0.238134 & -0.238134 \tabularnewline
193 & 0 & 0.238134 & -0.238134 \tabularnewline
194 & 0 & -0.260116 & 0.260116 \tabularnewline
195 & 0 & -0.260116 & 0.260116 \tabularnewline
196 & 0 & 0.238134 & -0.238134 \tabularnewline
197 & 0 & 0.30741 & -0.30741 \tabularnewline
198 & 0 & -0.260116 & 0.260116 \tabularnewline
199 & 0 & -0.260116 & 0.260116 \tabularnewline
200 & 0 & -0.260116 & 0.260116 \tabularnewline
201 & 1 & 0.80566 & 0.19434 \tabularnewline
202 & 0 & 0.238134 & -0.238134 \tabularnewline
203 & 0 & 0.30741 & -0.30741 \tabularnewline
204 & 0 & -0.260116 & 0.260116 \tabularnewline
205 & 1 & 0.80566 & 0.19434 \tabularnewline
206 & 0 & -0.260116 & 0.260116 \tabularnewline
207 & 1 & 0.80566 & 0.19434 \tabularnewline
208 & 0 & 0.238134 & -0.238134 \tabularnewline
209 & 0 & -0.260116 & 0.260116 \tabularnewline
210 & 0 & 0.238134 & -0.238134 \tabularnewline
211 & 0 & 0.238134 & -0.238134 \tabularnewline
212 & 1 & 0.80566 & 0.19434 \tabularnewline
213 & 0 & 0.30741 & -0.30741 \tabularnewline
214 & 0 & -0.260116 & 0.260116 \tabularnewline
215 & 0 & 0.30741 & -0.30741 \tabularnewline
216 & 1 & 0.80566 & 0.19434 \tabularnewline
217 & 0 & 0.238134 & -0.238134 \tabularnewline
218 & 1 & 0.80566 & 0.19434 \tabularnewline
219 & 0 & 0.238134 & -0.238134 \tabularnewline
220 & 0 & -0.260116 & 0.260116 \tabularnewline
221 & 0 & 0.30741 & -0.30741 \tabularnewline
222 & 0 & -0.260116 & 0.260116 \tabularnewline
223 & 1 & 0.80566 & 0.19434 \tabularnewline
224 & 1 & 0.80566 & 0.19434 \tabularnewline
225 & 0 & 0.30741 & -0.30741 \tabularnewline
226 & 0 & -0.260116 & 0.260116 \tabularnewline
227 & 0 & 0.30741 & -0.30741 \tabularnewline
228 & 0 & 0.238134 & -0.238134 \tabularnewline
229 & 1 & 0.80566 & 0.19434 \tabularnewline
230 & 0 & 0.30741 & -0.30741 \tabularnewline
231 & 0 & 0.30741 & -0.30741 \tabularnewline
232 & 0 & 0.30741 & -0.30741 \tabularnewline
233 & 0 & 0.238134 & -0.238134 \tabularnewline
234 & 1 & 0.80566 & 0.19434 \tabularnewline
235 & 1 & 0.80566 & 0.19434 \tabularnewline
236 & 1 & 0.80566 & 0.19434 \tabularnewline
237 & 0 & -0.260116 & 0.260116 \tabularnewline
238 & 1 & 0.80566 & 0.19434 \tabularnewline
239 & 1 & 0.80566 & 0.19434 \tabularnewline
240 & 0 & 0.238134 & -0.238134 \tabularnewline
241 & 0 & 0.30741 & -0.30741 \tabularnewline
242 & 0 & -0.260116 & 0.260116 \tabularnewline
243 & 0 & 0.238134 & -0.238134 \tabularnewline
244 & 0 & -0.260116 & 0.260116 \tabularnewline
245 & 0 & 0.238134 & -0.238134 \tabularnewline
246 & 0 & 0.238134 & -0.238134 \tabularnewline
247 & 0 & 0.30741 & -0.30741 \tabularnewline
248 & 1 & 0.80566 & 0.19434 \tabularnewline
249 & 0 & 0.30741 & -0.30741 \tabularnewline
250 & 1 & 0.80566 & 0.19434 \tabularnewline
251 & 1 & 0.80566 & 0.19434 \tabularnewline
252 & 0 & 0.30741 & -0.30741 \tabularnewline
253 & 0 & 0.238134 & -0.238134 \tabularnewline
254 & 0 & -0.260116 & 0.260116 \tabularnewline
255 & 1 & 0.80566 & 0.19434 \tabularnewline
256 & 0 & -0.260116 & 0.260116 \tabularnewline
257 & 0 & 0.238134 & -0.238134 \tabularnewline
258 & 0 & 0.30741 & -0.30741 \tabularnewline
259 & 0 & -0.260116 & 0.260116 \tabularnewline
260 & 0 & 0.238134 & -0.238134 \tabularnewline
261 & 0 & 0.238134 & -0.238134 \tabularnewline
262 & 0 & -0.260116 & 0.260116 \tabularnewline
263 & 0 & 0.238134 & -0.238134 \tabularnewline
264 & 0 & 0.238134 & -0.238134 \tabularnewline
265 & 0 & -0.260116 & 0.260116 \tabularnewline
266 & 0 & 0.238134 & -0.238134 \tabularnewline
267 & 0 & -0.260116 & 0.260116 \tabularnewline
268 & 0 & -0.260116 & 0.260116 \tabularnewline
269 & 0 & 0.238134 & -0.238134 \tabularnewline
270 & 0 & 0.238134 & -0.238134 \tabularnewline
271 & 0 & -0.260116 & 0.260116 \tabularnewline
272 & 0 & 0.238134 & -0.238134 \tabularnewline
273 & 0 & -0.260116 & 0.260116 \tabularnewline
274 & 0 & -0.260116 & 0.260116 \tabularnewline
275 & 0 & 0.238134 & -0.238134 \tabularnewline
276 & 0 & 0.30741 & -0.30741 \tabularnewline
277 & 0 & -0.260116 & 0.260116 \tabularnewline
278 & 0 & 0.238134 & -0.238134 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]2[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]3[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]4[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]5[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]6[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]7[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]8[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]9[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]10[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]11[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]12[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]13[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]17[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]18[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]19[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]20[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]21[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]22[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]23[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]24[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]25[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]26[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]27[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]28[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]29[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]30[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]31[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]32[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]33[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]34[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]35[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]36[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]37[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]38[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]39[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]40[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]42[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]43[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]44[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]45[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]47[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]48[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]49[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]51[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]52[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]53[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]54[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]55[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]56[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]58[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]60[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]61[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]62[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]63[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]64[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]66[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]67[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]68[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]69[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]70[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]71[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]72[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]74[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]75[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]76[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]77[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]78[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]79[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]80[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]81[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]82[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]83[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]84[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]85[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]86[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]87[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]88[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]89[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]90[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]91[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]92[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]93[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]94[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]95[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]96[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]97[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]98[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]99[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]100[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]101[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]102[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]103[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]104[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]105[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]106[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]107[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]108[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]109[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]110[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]111[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]112[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]113[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]114[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]115[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]116[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]117[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]118[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]119[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]120[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]121[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]122[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]123[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]124[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]125[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]126[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]127[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]128[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]129[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]130[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]131[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]132[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]133[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]134[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]135[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]136[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]137[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]138[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]139[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]140[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]141[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]142[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]143[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]144[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]145[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]146[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]147[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]148[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]149[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]150[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]151[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]152[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]153[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]154[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]155[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]156[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]157[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]158[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]159[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]160[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]161[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]162[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]163[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]164[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]165[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]166[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]167[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]168[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]169[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]170[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]171[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]172[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]173[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]174[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]175[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]176[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]177[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]178[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]179[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]180[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]181[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]182[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]183[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]184[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]185[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]186[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]187[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]188[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]189[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]190[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]191[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]192[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]193[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]194[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]195[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]196[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]197[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]198[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]199[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]200[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]201[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]202[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]203[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]204[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]205[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]206[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]207[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]208[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]209[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]210[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]211[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]212[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]213[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]214[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]215[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]216[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]217[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]218[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]219[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]220[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]221[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]222[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]223[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]224[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]225[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]226[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]227[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]228[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]229[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]230[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]231[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]232[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]233[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]234[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]235[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]236[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]237[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]238[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]239[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]240[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]241[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]242[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]243[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]244[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]245[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]246[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]247[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]248[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]249[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]250[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]251[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]252[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]253[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]254[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]255[/C][C]1[/C][C]0.80566[/C][C]0.19434[/C][/ROW]
[ROW][C]256[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]257[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]258[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]259[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]260[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]261[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]262[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]263[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]264[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]265[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]266[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]267[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]268[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]269[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]270[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]271[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]272[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]273[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]274[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]275[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[ROW][C]276[/C][C]0[/C][C]0.30741[/C][C]-0.30741[/C][/ROW]
[ROW][C]277[/C][C]0[/C][C]-0.260116[/C][C]0.260116[/C][/ROW]
[ROW][C]278[/C][C]0[/C][C]0.238134[/C][C]-0.238134[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.30741-0.30741
210.805660.19434
300.30741-0.30741
410.805660.19434
510.805660.19434
610.805660.19434
700.30741-0.30741
810.805660.19434
910.805660.19434
1010.805660.19434
1110.805660.19434
1210.805660.19434
1310.805660.19434
1400.30741-0.30741
1500.30741-0.30741
160-0.2601160.260116
1710.805660.19434
1800.30741-0.30741
1900.238134-0.238134
2000.30741-0.30741
2110.805660.19434
2210.805660.19434
2300.30741-0.30741
2410.805660.19434
2510.805660.19434
2610.805660.19434
2700.238134-0.238134
280-0.2601160.260116
2910.805660.19434
3000.30741-0.30741
3100.30741-0.30741
3200.30741-0.30741
3310.805660.19434
3410.805660.19434
3510.805660.19434
3610.805660.19434
3700.30741-0.30741
3800.238134-0.238134
3910.805660.19434
4000.30741-0.30741
4110.805660.19434
4210.805660.19434
4310.805660.19434
4410.805660.19434
4500.238134-0.238134
4600.30741-0.30741
4710.805660.19434
4800.238134-0.238134
4900.30741-0.30741
5000.238134-0.238134
5100.238134-0.238134
5200.238134-0.238134
5310.805660.19434
5400.238134-0.238134
5510.805660.19434
5610.805660.19434
570-0.2601160.260116
5810.805660.19434
590-0.2601160.260116
6000.238134-0.238134
6110.805660.19434
6200.30741-0.30741
6300.30741-0.30741
6410.805660.19434
6500.30741-0.30741
6600.238134-0.238134
6700.30741-0.30741
6810.805660.19434
6910.805660.19434
700-0.2601160.260116
7100.30741-0.30741
7200.30741-0.30741
730-0.2601160.260116
7400.238134-0.238134
7500.30741-0.30741
7600.30741-0.30741
7700.238134-0.238134
7800.30741-0.30741
790-0.2601160.260116
8010.805660.19434
810-0.2601160.260116
820-0.2601160.260116
830-0.2601160.260116
8400.238134-0.238134
850-0.2601160.260116
8600.238134-0.238134
8700.238134-0.238134
880-0.2601160.260116
890-0.2601160.260116
900-0.2601160.260116
9100.238134-0.238134
9200.238134-0.238134
9300.238134-0.238134
940-0.2601160.260116
9500.238134-0.238134
960-0.2601160.260116
9700.238134-0.238134
9800.238134-0.238134
9900.238134-0.238134
10000.238134-0.238134
10100.238134-0.238134
1020-0.2601160.260116
10300.238134-0.238134
10400.238134-0.238134
10500.238134-0.238134
1060-0.2601160.260116
1070-0.2601160.260116
1080-0.2601160.260116
1090-0.2601160.260116
1100-0.2601160.260116
1110-0.2601160.260116
11200.238134-0.238134
11310.805660.19434
11410.805660.19434
11510.805660.19434
11610.805660.19434
1170-0.2601160.260116
11800.238134-0.238134
11910.805660.19434
12000.30741-0.30741
12110.805660.19434
12200.30741-0.30741
12300.30741-0.30741
12410.805660.19434
12510.805660.19434
12610.805660.19434
12710.805660.19434
12810.805660.19434
12900.238134-0.238134
13010.805660.19434
13110.805660.19434
13200.30741-0.30741
13310.805660.19434
13410.805660.19434
13510.805660.19434
13610.805660.19434
13710.805660.19434
13810.805660.19434
13900.30741-0.30741
14010.805660.19434
14100.238134-0.238134
14210.805660.19434
14310.805660.19434
14410.805660.19434
14500.30741-0.30741
14600.30741-0.30741
14710.805660.19434
14800.30741-0.30741
14900.30741-0.30741
15010.805660.19434
15100.30741-0.30741
15210.805660.19434
15310.805660.19434
15400.30741-0.30741
15500.238134-0.238134
15600.238134-0.238134
15710.805660.19434
15800.30741-0.30741
1590-0.2601160.260116
1600-0.2601160.260116
1610-0.2601160.260116
16200.238134-0.238134
16300.30741-0.30741
16410.805660.19434
1650-0.2601160.260116
16600.238134-0.238134
1670-0.2601160.260116
16800.238134-0.238134
1690-0.2601160.260116
1700-0.2601160.260116
17100.238134-0.238134
1720-0.2601160.260116
17300.238134-0.238134
17410.805660.19434
17510.805660.19434
17600.238134-0.238134
17710.805660.19434
17800.30741-0.30741
17900.238134-0.238134
18000.30741-0.30741
1810-0.2601160.260116
1820-0.2601160.260116
18310.805660.19434
1840-0.2601160.260116
18500.238134-0.238134
1860-0.2601160.260116
1870-0.2601160.260116
1880-0.2601160.260116
1890-0.2601160.260116
19000.238134-0.238134
19100.238134-0.238134
19200.238134-0.238134
19300.238134-0.238134
1940-0.2601160.260116
1950-0.2601160.260116
19600.238134-0.238134
19700.30741-0.30741
1980-0.2601160.260116
1990-0.2601160.260116
2000-0.2601160.260116
20110.805660.19434
20200.238134-0.238134
20300.30741-0.30741
2040-0.2601160.260116
20510.805660.19434
2060-0.2601160.260116
20710.805660.19434
20800.238134-0.238134
2090-0.2601160.260116
21000.238134-0.238134
21100.238134-0.238134
21210.805660.19434
21300.30741-0.30741
2140-0.2601160.260116
21500.30741-0.30741
21610.805660.19434
21700.238134-0.238134
21810.805660.19434
21900.238134-0.238134
2200-0.2601160.260116
22100.30741-0.30741
2220-0.2601160.260116
22310.805660.19434
22410.805660.19434
22500.30741-0.30741
2260-0.2601160.260116
22700.30741-0.30741
22800.238134-0.238134
22910.805660.19434
23000.30741-0.30741
23100.30741-0.30741
23200.30741-0.30741
23300.238134-0.238134
23410.805660.19434
23510.805660.19434
23610.805660.19434
2370-0.2601160.260116
23810.805660.19434
23910.805660.19434
24000.238134-0.238134
24100.30741-0.30741
2420-0.2601160.260116
24300.238134-0.238134
2440-0.2601160.260116
24500.238134-0.238134
24600.238134-0.238134
24700.30741-0.30741
24810.805660.19434
24900.30741-0.30741
25010.805660.19434
25110.805660.19434
25200.30741-0.30741
25300.238134-0.238134
2540-0.2601160.260116
25510.805660.19434
2560-0.2601160.260116
25700.238134-0.238134
25800.30741-0.30741
2590-0.2601160.260116
26000.238134-0.238134
26100.238134-0.238134
2620-0.2601160.260116
26300.238134-0.238134
26400.238134-0.238134
2650-0.2601160.260116
26600.238134-0.238134
2670-0.2601160.260116
2680-0.2601160.260116
26900.238134-0.238134
27000.238134-0.238134
2710-0.2601160.260116
27200.238134-0.238134
2730-0.2601160.260116
2740-0.2601160.260116
27500.238134-0.238134
27600.30741-0.30741
2770-0.2601160.260116
27800.238134-0.238134







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
61.91149e-463.82298e-461
71.26781e-612.53562e-611
84.83788e-769.67576e-761
95.85945e-921.17189e-911
101.29234e-1052.58469e-1051
118.56146e-1241.71229e-1231
121.02472e-1342.04944e-1341
134.80476e-1519.60951e-1511
143.91527e-1667.83054e-1661
159.31965e-1851.86393e-1841
163.38617e-1986.77234e-1981
171.41755e-2182.83511e-2181
181.82647e-2283.65293e-2281
190.0327690.0655380.967231
200.02228220.04456450.977718
210.01405920.02811840.985941
220.008672950.01734590.991327
230.00557950.0111590.994421
240.003320990.006641970.996679
250.001938020.003876040.998062
260.001109860.002219720.99889
270.004880560.009761130.995119
280.03685020.07370040.96315
290.02665330.05330650.973347
300.02080930.04161850.979191
310.01597140.03194270.984029
320.01208640.02417290.987914
330.008433470.01686690.991567
340.005808810.01161760.994191
350.003951460.007902920.996049
360.0026560.0053120.997344
370.001930560.003861120.998069
380.005916870.01183370.994083
390.004154220.008308440.995846
400.003163920.006327830.996836
410.002187160.004374330.997813
420.001497490.002994990.998503
430.001015910.002031820.998984
440.000683180.001366360.999317
450.001312490.002624990.998688
460.001005770.002011540.998994
470.0006899430.001379890.99931
480.000959390.001918780.999041
490.0007425560.001485110.999257
500.0008531220.001706240.999147
510.0008646250.001729250.999135
520.0008077840.001615570.999192
530.0005696040.001139210.99943
540.0005035140.001007030.999496
550.000353290.0007065790.999647
560.0002464540.0004929090.999754
570.005709970.01141990.99429
580.004410450.00882090.99559
590.02173880.04347760.978261
600.02220190.04440380.977798
610.01819510.03639020.981805
620.01678170.03356340.983218
630.01539680.03079350.984603
640.01255430.02510850.987446
650.01146990.02293970.98853
660.01152660.02305310.988473
670.01055820.02111630.989442
680.008591130.01718230.991409
690.00696750.0139350.993032
700.02442220.04884430.975578
710.02304830.04609670.976952
720.02175110.04350220.978249
730.04918750.09837510.950812
740.05187440.1037490.948126
750.05015680.1003140.949843
760.04857780.09715560.951422
770.05016960.1003390.94983
780.04887380.09774760.951126
790.08922270.1784450.910777
800.07961490.159230.920385
810.1219410.2438810.878059
820.1647840.3295680.835216
830.2049430.4098860.795057
840.2164240.4328480.783576
850.2552530.5105050.744747
860.2661170.5322330.733883
870.2737910.5475810.726209
880.3119170.6238330.688083
890.344450.6889010.65555
900.3717170.7434350.628283
910.3816640.7633280.618336
920.3886160.7772330.611384
930.3929970.7859930.607003
940.4193210.8386420.580679
950.4225350.845070.577465
960.4452980.8905960.554702
970.4474180.8948350.552582
980.4477870.8955730.552213
990.4466670.8933350.553333
1000.444290.888580.55571
1010.4408590.8817190.559141
1020.4631160.9262330.536884
1030.4593660.9187320.540634
1040.4548660.9097320.545134
1050.4497670.8995350.550233
1060.4697920.9395850.530208
1070.4865390.9730770.513461
1080.5004520.9990970.499548
1090.5119330.9761340.488067
1100.5213410.9573180.478659
1110.5289920.9420150.471008
1120.5255990.9488020.474401
1130.5112280.9775450.488772
1140.4966790.9933580.503321
1150.4820270.9640530.517973
1160.4673440.9346880.532656
1170.4744520.9489040.525548
1180.4712460.9424930.528754
1190.4568130.9136260.543187
1200.4732460.9464920.526754
1210.4589110.9178220.541089
1220.4750940.9501890.524906
1230.4912770.9825540.508723
1240.477050.9540990.52295
1250.4629480.9258960.537052
1260.449040.898080.55096
1270.4353910.8707830.564609
1280.4220670.8441350.577933
1290.4192620.8385250.580738
1300.4063670.8127330.593633
1310.3939150.7878310.606085
1320.4098110.8196210.590189
1330.3976690.7953380.602331
1340.3860720.7721450.613928
1350.3750820.7501640.624918
1360.3647590.7295190.635241
1370.3551670.7103340.644833
1380.3463690.6927380.653631
1390.3613580.7227170.638642
1400.353140.706280.64686
1410.3500280.7000550.649972
1420.3427050.685410.657295
1430.3363830.6727660.663617
1440.3311510.6623020.668849
1450.3456420.6912840.654358
1460.3610780.7221550.638922
1470.3563850.712770.643615
1480.37270.7454010.6273
1490.3905690.7811380.609431
1500.3864080.7728150.613592
1510.4057560.8115120.594244
1520.4025880.8051760.597412
1530.4010210.8020430.598979
1540.4216670.8433340.578333
1550.4169310.8338610.583069
1560.4117450.8234890.588255
1570.4111530.8223060.588847
1580.4334790.8669590.566521
1590.4419490.8838980.558051
1600.4486640.8973290.551336
1610.4538430.9076860.546157
1620.4481960.8963930.551804
1630.4731910.9463830.526809
1640.4726980.9453960.527302
1650.4763190.9526370.523681
1660.4699450.9398910.530055
1670.4724060.9448120.527594
1680.4657960.9315930.534204
1690.4672330.9344660.532767
1700.4677860.9355730.532214
1710.4609910.9219830.539009
1720.4607940.9215870.539206
1730.4538660.9077330.546134
1740.4534480.9068960.546552
1750.4552480.9104960.544752
1760.4477520.8955050.552248
1770.451770.9035410.54823
1780.4744150.948830.525585
1790.4662660.9325320.533734
1800.4918990.9837980.508101
1810.4894590.9789180.510541
1820.4864480.9728960.513552
1830.4905140.9810290.509486
1840.4867160.9734330.513284
1850.477580.955160.52242
1860.4733440.9466870.526656
1870.4689270.9378540.531073
1880.4644710.9289430.535529
1890.4601230.9202460.539877
1900.4505160.9010320.549484
1910.4411530.8823050.558847
1920.4321550.8643090.567845
1930.423650.84730.57635
1940.418710.837420.58129
1950.4141270.8282550.585873
1960.4057430.8114860.594257
1970.4266090.8532170.573391
1980.4216140.8432290.578386
1990.4172750.8345490.582725
2000.4137870.8275750.586213
2010.41250.8250.5875
2020.4026980.8053970.597302
2030.4235960.8471920.576404
2040.4193880.8387770.580612
2050.4186850.837370.581315
2060.4150220.8300430.584978
2070.4168010.8336020.583199
2080.4050510.8101030.594949
2090.4016330.8032660.598367
2100.3902740.7805480.609726
2110.3799150.7598290.620085
2120.3825050.765010.617495
2130.398830.7976590.60117
2140.3942190.7884390.605781
2150.4142170.8284340.585783
2160.4171920.8343830.582808
2170.4039540.8079070.596046
2180.4108420.8216840.589158
2190.3978840.7957680.602116
2200.3907720.7815440.609228
2210.4097150.8194310.590285
2220.4032550.8065090.596745
2230.4105950.821190.589405
2240.42470.84940.5753
2250.4445640.8891280.555436
2260.4361250.872250.563875
2270.4623570.9247150.537643
2280.4427170.8854330.557283
2290.4571580.9143160.542842
2300.4890370.9780750.510963
2310.5342280.9315450.465772
2320.5970940.8058120.402906
2330.5726340.8547320.427366
2340.5825550.834890.417445
2350.6035650.7928710.396435
2360.6395210.7209570.360479
2370.6176670.7646660.382333
2380.6724780.6550430.327522
2390.7531370.4937260.246863
2400.7252530.5494950.274747
2410.7582110.4835780.241789
2420.7336580.5326840.266342
2430.7028290.5943420.297171
2440.676330.6473410.32367
2450.6425720.7148560.357428
2460.6085480.7829030.391452
2470.6619290.6761430.338071
2480.7475510.5048980.252449
2490.8077740.3844530.192226
2500.8990440.2019120.100956
2510.9879350.02412970.0120648
2520.9911320.01773550.00886776
2530.9866950.02661030.0133052
2540.9805080.0389830.0194915
255100
256100
257100
258100
259100
260100
261100
262100
263100
264100
265100
266100
267100
268100
269100
270100
271100
272100

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 & 1.91149e-46 & 3.82298e-46 & 1 \tabularnewline
7 & 1.26781e-61 & 2.53562e-61 & 1 \tabularnewline
8 & 4.83788e-76 & 9.67576e-76 & 1 \tabularnewline
9 & 5.85945e-92 & 1.17189e-91 & 1 \tabularnewline
10 & 1.29234e-105 & 2.58469e-105 & 1 \tabularnewline
11 & 8.56146e-124 & 1.71229e-123 & 1 \tabularnewline
12 & 1.02472e-134 & 2.04944e-134 & 1 \tabularnewline
13 & 4.80476e-151 & 9.60951e-151 & 1 \tabularnewline
14 & 3.91527e-166 & 7.83054e-166 & 1 \tabularnewline
15 & 9.31965e-185 & 1.86393e-184 & 1 \tabularnewline
16 & 3.38617e-198 & 6.77234e-198 & 1 \tabularnewline
17 & 1.41755e-218 & 2.83511e-218 & 1 \tabularnewline
18 & 1.82647e-228 & 3.65293e-228 & 1 \tabularnewline
19 & 0.032769 & 0.065538 & 0.967231 \tabularnewline
20 & 0.0222822 & 0.0445645 & 0.977718 \tabularnewline
21 & 0.0140592 & 0.0281184 & 0.985941 \tabularnewline
22 & 0.00867295 & 0.0173459 & 0.991327 \tabularnewline
23 & 0.0055795 & 0.011159 & 0.994421 \tabularnewline
24 & 0.00332099 & 0.00664197 & 0.996679 \tabularnewline
25 & 0.00193802 & 0.00387604 & 0.998062 \tabularnewline
26 & 0.00110986 & 0.00221972 & 0.99889 \tabularnewline
27 & 0.00488056 & 0.00976113 & 0.995119 \tabularnewline
28 & 0.0368502 & 0.0737004 & 0.96315 \tabularnewline
29 & 0.0266533 & 0.0533065 & 0.973347 \tabularnewline
30 & 0.0208093 & 0.0416185 & 0.979191 \tabularnewline
31 & 0.0159714 & 0.0319427 & 0.984029 \tabularnewline
32 & 0.0120864 & 0.0241729 & 0.987914 \tabularnewline
33 & 0.00843347 & 0.0168669 & 0.991567 \tabularnewline
34 & 0.00580881 & 0.0116176 & 0.994191 \tabularnewline
35 & 0.00395146 & 0.00790292 & 0.996049 \tabularnewline
36 & 0.002656 & 0.005312 & 0.997344 \tabularnewline
37 & 0.00193056 & 0.00386112 & 0.998069 \tabularnewline
38 & 0.00591687 & 0.0118337 & 0.994083 \tabularnewline
39 & 0.00415422 & 0.00830844 & 0.995846 \tabularnewline
40 & 0.00316392 & 0.00632783 & 0.996836 \tabularnewline
41 & 0.00218716 & 0.00437433 & 0.997813 \tabularnewline
42 & 0.00149749 & 0.00299499 & 0.998503 \tabularnewline
43 & 0.00101591 & 0.00203182 & 0.998984 \tabularnewline
44 & 0.00068318 & 0.00136636 & 0.999317 \tabularnewline
45 & 0.00131249 & 0.00262499 & 0.998688 \tabularnewline
46 & 0.00100577 & 0.00201154 & 0.998994 \tabularnewline
47 & 0.000689943 & 0.00137989 & 0.99931 \tabularnewline
48 & 0.00095939 & 0.00191878 & 0.999041 \tabularnewline
49 & 0.000742556 & 0.00148511 & 0.999257 \tabularnewline
50 & 0.000853122 & 0.00170624 & 0.999147 \tabularnewline
51 & 0.000864625 & 0.00172925 & 0.999135 \tabularnewline
52 & 0.000807784 & 0.00161557 & 0.999192 \tabularnewline
53 & 0.000569604 & 0.00113921 & 0.99943 \tabularnewline
54 & 0.000503514 & 0.00100703 & 0.999496 \tabularnewline
55 & 0.00035329 & 0.000706579 & 0.999647 \tabularnewline
56 & 0.000246454 & 0.000492909 & 0.999754 \tabularnewline
57 & 0.00570997 & 0.0114199 & 0.99429 \tabularnewline
58 & 0.00441045 & 0.0088209 & 0.99559 \tabularnewline
59 & 0.0217388 & 0.0434776 & 0.978261 \tabularnewline
60 & 0.0222019 & 0.0444038 & 0.977798 \tabularnewline
61 & 0.0181951 & 0.0363902 & 0.981805 \tabularnewline
62 & 0.0167817 & 0.0335634 & 0.983218 \tabularnewline
63 & 0.0153968 & 0.0307935 & 0.984603 \tabularnewline
64 & 0.0125543 & 0.0251085 & 0.987446 \tabularnewline
65 & 0.0114699 & 0.0229397 & 0.98853 \tabularnewline
66 & 0.0115266 & 0.0230531 & 0.988473 \tabularnewline
67 & 0.0105582 & 0.0211163 & 0.989442 \tabularnewline
68 & 0.00859113 & 0.0171823 & 0.991409 \tabularnewline
69 & 0.0069675 & 0.013935 & 0.993032 \tabularnewline
70 & 0.0244222 & 0.0488443 & 0.975578 \tabularnewline
71 & 0.0230483 & 0.0460967 & 0.976952 \tabularnewline
72 & 0.0217511 & 0.0435022 & 0.978249 \tabularnewline
73 & 0.0491875 & 0.0983751 & 0.950812 \tabularnewline
74 & 0.0518744 & 0.103749 & 0.948126 \tabularnewline
75 & 0.0501568 & 0.100314 & 0.949843 \tabularnewline
76 & 0.0485778 & 0.0971556 & 0.951422 \tabularnewline
77 & 0.0501696 & 0.100339 & 0.94983 \tabularnewline
78 & 0.0488738 & 0.0977476 & 0.951126 \tabularnewline
79 & 0.0892227 & 0.178445 & 0.910777 \tabularnewline
80 & 0.0796149 & 0.15923 & 0.920385 \tabularnewline
81 & 0.121941 & 0.243881 & 0.878059 \tabularnewline
82 & 0.164784 & 0.329568 & 0.835216 \tabularnewline
83 & 0.204943 & 0.409886 & 0.795057 \tabularnewline
84 & 0.216424 & 0.432848 & 0.783576 \tabularnewline
85 & 0.255253 & 0.510505 & 0.744747 \tabularnewline
86 & 0.266117 & 0.532233 & 0.733883 \tabularnewline
87 & 0.273791 & 0.547581 & 0.726209 \tabularnewline
88 & 0.311917 & 0.623833 & 0.688083 \tabularnewline
89 & 0.34445 & 0.688901 & 0.65555 \tabularnewline
90 & 0.371717 & 0.743435 & 0.628283 \tabularnewline
91 & 0.381664 & 0.763328 & 0.618336 \tabularnewline
92 & 0.388616 & 0.777233 & 0.611384 \tabularnewline
93 & 0.392997 & 0.785993 & 0.607003 \tabularnewline
94 & 0.419321 & 0.838642 & 0.580679 \tabularnewline
95 & 0.422535 & 0.84507 & 0.577465 \tabularnewline
96 & 0.445298 & 0.890596 & 0.554702 \tabularnewline
97 & 0.447418 & 0.894835 & 0.552582 \tabularnewline
98 & 0.447787 & 0.895573 & 0.552213 \tabularnewline
99 & 0.446667 & 0.893335 & 0.553333 \tabularnewline
100 & 0.44429 & 0.88858 & 0.55571 \tabularnewline
101 & 0.440859 & 0.881719 & 0.559141 \tabularnewline
102 & 0.463116 & 0.926233 & 0.536884 \tabularnewline
103 & 0.459366 & 0.918732 & 0.540634 \tabularnewline
104 & 0.454866 & 0.909732 & 0.545134 \tabularnewline
105 & 0.449767 & 0.899535 & 0.550233 \tabularnewline
106 & 0.469792 & 0.939585 & 0.530208 \tabularnewline
107 & 0.486539 & 0.973077 & 0.513461 \tabularnewline
108 & 0.500452 & 0.999097 & 0.499548 \tabularnewline
109 & 0.511933 & 0.976134 & 0.488067 \tabularnewline
110 & 0.521341 & 0.957318 & 0.478659 \tabularnewline
111 & 0.528992 & 0.942015 & 0.471008 \tabularnewline
112 & 0.525599 & 0.948802 & 0.474401 \tabularnewline
113 & 0.511228 & 0.977545 & 0.488772 \tabularnewline
114 & 0.496679 & 0.993358 & 0.503321 \tabularnewline
115 & 0.482027 & 0.964053 & 0.517973 \tabularnewline
116 & 0.467344 & 0.934688 & 0.532656 \tabularnewline
117 & 0.474452 & 0.948904 & 0.525548 \tabularnewline
118 & 0.471246 & 0.942493 & 0.528754 \tabularnewline
119 & 0.456813 & 0.913626 & 0.543187 \tabularnewline
120 & 0.473246 & 0.946492 & 0.526754 \tabularnewline
121 & 0.458911 & 0.917822 & 0.541089 \tabularnewline
122 & 0.475094 & 0.950189 & 0.524906 \tabularnewline
123 & 0.491277 & 0.982554 & 0.508723 \tabularnewline
124 & 0.47705 & 0.954099 & 0.52295 \tabularnewline
125 & 0.462948 & 0.925896 & 0.537052 \tabularnewline
126 & 0.44904 & 0.89808 & 0.55096 \tabularnewline
127 & 0.435391 & 0.870783 & 0.564609 \tabularnewline
128 & 0.422067 & 0.844135 & 0.577933 \tabularnewline
129 & 0.419262 & 0.838525 & 0.580738 \tabularnewline
130 & 0.406367 & 0.812733 & 0.593633 \tabularnewline
131 & 0.393915 & 0.787831 & 0.606085 \tabularnewline
132 & 0.409811 & 0.819621 & 0.590189 \tabularnewline
133 & 0.397669 & 0.795338 & 0.602331 \tabularnewline
134 & 0.386072 & 0.772145 & 0.613928 \tabularnewline
135 & 0.375082 & 0.750164 & 0.624918 \tabularnewline
136 & 0.364759 & 0.729519 & 0.635241 \tabularnewline
137 & 0.355167 & 0.710334 & 0.644833 \tabularnewline
138 & 0.346369 & 0.692738 & 0.653631 \tabularnewline
139 & 0.361358 & 0.722717 & 0.638642 \tabularnewline
140 & 0.35314 & 0.70628 & 0.64686 \tabularnewline
141 & 0.350028 & 0.700055 & 0.649972 \tabularnewline
142 & 0.342705 & 0.68541 & 0.657295 \tabularnewline
143 & 0.336383 & 0.672766 & 0.663617 \tabularnewline
144 & 0.331151 & 0.662302 & 0.668849 \tabularnewline
145 & 0.345642 & 0.691284 & 0.654358 \tabularnewline
146 & 0.361078 & 0.722155 & 0.638922 \tabularnewline
147 & 0.356385 & 0.71277 & 0.643615 \tabularnewline
148 & 0.3727 & 0.745401 & 0.6273 \tabularnewline
149 & 0.390569 & 0.781138 & 0.609431 \tabularnewline
150 & 0.386408 & 0.772815 & 0.613592 \tabularnewline
151 & 0.405756 & 0.811512 & 0.594244 \tabularnewline
152 & 0.402588 & 0.805176 & 0.597412 \tabularnewline
153 & 0.401021 & 0.802043 & 0.598979 \tabularnewline
154 & 0.421667 & 0.843334 & 0.578333 \tabularnewline
155 & 0.416931 & 0.833861 & 0.583069 \tabularnewline
156 & 0.411745 & 0.823489 & 0.588255 \tabularnewline
157 & 0.411153 & 0.822306 & 0.588847 \tabularnewline
158 & 0.433479 & 0.866959 & 0.566521 \tabularnewline
159 & 0.441949 & 0.883898 & 0.558051 \tabularnewline
160 & 0.448664 & 0.897329 & 0.551336 \tabularnewline
161 & 0.453843 & 0.907686 & 0.546157 \tabularnewline
162 & 0.448196 & 0.896393 & 0.551804 \tabularnewline
163 & 0.473191 & 0.946383 & 0.526809 \tabularnewline
164 & 0.472698 & 0.945396 & 0.527302 \tabularnewline
165 & 0.476319 & 0.952637 & 0.523681 \tabularnewline
166 & 0.469945 & 0.939891 & 0.530055 \tabularnewline
167 & 0.472406 & 0.944812 & 0.527594 \tabularnewline
168 & 0.465796 & 0.931593 & 0.534204 \tabularnewline
169 & 0.467233 & 0.934466 & 0.532767 \tabularnewline
170 & 0.467786 & 0.935573 & 0.532214 \tabularnewline
171 & 0.460991 & 0.921983 & 0.539009 \tabularnewline
172 & 0.460794 & 0.921587 & 0.539206 \tabularnewline
173 & 0.453866 & 0.907733 & 0.546134 \tabularnewline
174 & 0.453448 & 0.906896 & 0.546552 \tabularnewline
175 & 0.455248 & 0.910496 & 0.544752 \tabularnewline
176 & 0.447752 & 0.895505 & 0.552248 \tabularnewline
177 & 0.45177 & 0.903541 & 0.54823 \tabularnewline
178 & 0.474415 & 0.94883 & 0.525585 \tabularnewline
179 & 0.466266 & 0.932532 & 0.533734 \tabularnewline
180 & 0.491899 & 0.983798 & 0.508101 \tabularnewline
181 & 0.489459 & 0.978918 & 0.510541 \tabularnewline
182 & 0.486448 & 0.972896 & 0.513552 \tabularnewline
183 & 0.490514 & 0.981029 & 0.509486 \tabularnewline
184 & 0.486716 & 0.973433 & 0.513284 \tabularnewline
185 & 0.47758 & 0.95516 & 0.52242 \tabularnewline
186 & 0.473344 & 0.946687 & 0.526656 \tabularnewline
187 & 0.468927 & 0.937854 & 0.531073 \tabularnewline
188 & 0.464471 & 0.928943 & 0.535529 \tabularnewline
189 & 0.460123 & 0.920246 & 0.539877 \tabularnewline
190 & 0.450516 & 0.901032 & 0.549484 \tabularnewline
191 & 0.441153 & 0.882305 & 0.558847 \tabularnewline
192 & 0.432155 & 0.864309 & 0.567845 \tabularnewline
193 & 0.42365 & 0.8473 & 0.57635 \tabularnewline
194 & 0.41871 & 0.83742 & 0.58129 \tabularnewline
195 & 0.414127 & 0.828255 & 0.585873 \tabularnewline
196 & 0.405743 & 0.811486 & 0.594257 \tabularnewline
197 & 0.426609 & 0.853217 & 0.573391 \tabularnewline
198 & 0.421614 & 0.843229 & 0.578386 \tabularnewline
199 & 0.417275 & 0.834549 & 0.582725 \tabularnewline
200 & 0.413787 & 0.827575 & 0.586213 \tabularnewline
201 & 0.4125 & 0.825 & 0.5875 \tabularnewline
202 & 0.402698 & 0.805397 & 0.597302 \tabularnewline
203 & 0.423596 & 0.847192 & 0.576404 \tabularnewline
204 & 0.419388 & 0.838777 & 0.580612 \tabularnewline
205 & 0.418685 & 0.83737 & 0.581315 \tabularnewline
206 & 0.415022 & 0.830043 & 0.584978 \tabularnewline
207 & 0.416801 & 0.833602 & 0.583199 \tabularnewline
208 & 0.405051 & 0.810103 & 0.594949 \tabularnewline
209 & 0.401633 & 0.803266 & 0.598367 \tabularnewline
210 & 0.390274 & 0.780548 & 0.609726 \tabularnewline
211 & 0.379915 & 0.759829 & 0.620085 \tabularnewline
212 & 0.382505 & 0.76501 & 0.617495 \tabularnewline
213 & 0.39883 & 0.797659 & 0.60117 \tabularnewline
214 & 0.394219 & 0.788439 & 0.605781 \tabularnewline
215 & 0.414217 & 0.828434 & 0.585783 \tabularnewline
216 & 0.417192 & 0.834383 & 0.582808 \tabularnewline
217 & 0.403954 & 0.807907 & 0.596046 \tabularnewline
218 & 0.410842 & 0.821684 & 0.589158 \tabularnewline
219 & 0.397884 & 0.795768 & 0.602116 \tabularnewline
220 & 0.390772 & 0.781544 & 0.609228 \tabularnewline
221 & 0.409715 & 0.819431 & 0.590285 \tabularnewline
222 & 0.403255 & 0.806509 & 0.596745 \tabularnewline
223 & 0.410595 & 0.82119 & 0.589405 \tabularnewline
224 & 0.4247 & 0.8494 & 0.5753 \tabularnewline
225 & 0.444564 & 0.889128 & 0.555436 \tabularnewline
226 & 0.436125 & 0.87225 & 0.563875 \tabularnewline
227 & 0.462357 & 0.924715 & 0.537643 \tabularnewline
228 & 0.442717 & 0.885433 & 0.557283 \tabularnewline
229 & 0.457158 & 0.914316 & 0.542842 \tabularnewline
230 & 0.489037 & 0.978075 & 0.510963 \tabularnewline
231 & 0.534228 & 0.931545 & 0.465772 \tabularnewline
232 & 0.597094 & 0.805812 & 0.402906 \tabularnewline
233 & 0.572634 & 0.854732 & 0.427366 \tabularnewline
234 & 0.582555 & 0.83489 & 0.417445 \tabularnewline
235 & 0.603565 & 0.792871 & 0.396435 \tabularnewline
236 & 0.639521 & 0.720957 & 0.360479 \tabularnewline
237 & 0.617667 & 0.764666 & 0.382333 \tabularnewline
238 & 0.672478 & 0.655043 & 0.327522 \tabularnewline
239 & 0.753137 & 0.493726 & 0.246863 \tabularnewline
240 & 0.725253 & 0.549495 & 0.274747 \tabularnewline
241 & 0.758211 & 0.483578 & 0.241789 \tabularnewline
242 & 0.733658 & 0.532684 & 0.266342 \tabularnewline
243 & 0.702829 & 0.594342 & 0.297171 \tabularnewline
244 & 0.67633 & 0.647341 & 0.32367 \tabularnewline
245 & 0.642572 & 0.714856 & 0.357428 \tabularnewline
246 & 0.608548 & 0.782903 & 0.391452 \tabularnewline
247 & 0.661929 & 0.676143 & 0.338071 \tabularnewline
248 & 0.747551 & 0.504898 & 0.252449 \tabularnewline
249 & 0.807774 & 0.384453 & 0.192226 \tabularnewline
250 & 0.899044 & 0.201912 & 0.100956 \tabularnewline
251 & 0.987935 & 0.0241297 & 0.0120648 \tabularnewline
252 & 0.991132 & 0.0177355 & 0.00886776 \tabularnewline
253 & 0.986695 & 0.0266103 & 0.0133052 \tabularnewline
254 & 0.980508 & 0.038983 & 0.0194915 \tabularnewline
255 & 1 & 0 & 0 \tabularnewline
256 & 1 & 0 & 0 \tabularnewline
257 & 1 & 0 & 0 \tabularnewline
258 & 1 & 0 & 0 \tabularnewline
259 & 1 & 0 & 0 \tabularnewline
260 & 1 & 0 & 0 \tabularnewline
261 & 1 & 0 & 0 \tabularnewline
262 & 1 & 0 & 0 \tabularnewline
263 & 1 & 0 & 0 \tabularnewline
264 & 1 & 0 & 0 \tabularnewline
265 & 1 & 0 & 0 \tabularnewline
266 & 1 & 0 & 0 \tabularnewline
267 & 1 & 0 & 0 \tabularnewline
268 & 1 & 0 & 0 \tabularnewline
269 & 1 & 0 & 0 \tabularnewline
270 & 1 & 0 & 0 \tabularnewline
271 & 1 & 0 & 0 \tabularnewline
272 & 1 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C]1.91149e-46[/C][C]3.82298e-46[/C][C]1[/C][/ROW]
[ROW][C]7[/C][C]1.26781e-61[/C][C]2.53562e-61[/C][C]1[/C][/ROW]
[ROW][C]8[/C][C]4.83788e-76[/C][C]9.67576e-76[/C][C]1[/C][/ROW]
[ROW][C]9[/C][C]5.85945e-92[/C][C]1.17189e-91[/C][C]1[/C][/ROW]
[ROW][C]10[/C][C]1.29234e-105[/C][C]2.58469e-105[/C][C]1[/C][/ROW]
[ROW][C]11[/C][C]8.56146e-124[/C][C]1.71229e-123[/C][C]1[/C][/ROW]
[ROW][C]12[/C][C]1.02472e-134[/C][C]2.04944e-134[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]4.80476e-151[/C][C]9.60951e-151[/C][C]1[/C][/ROW]
[ROW][C]14[/C][C]3.91527e-166[/C][C]7.83054e-166[/C][C]1[/C][/ROW]
[ROW][C]15[/C][C]9.31965e-185[/C][C]1.86393e-184[/C][C]1[/C][/ROW]
[ROW][C]16[/C][C]3.38617e-198[/C][C]6.77234e-198[/C][C]1[/C][/ROW]
[ROW][C]17[/C][C]1.41755e-218[/C][C]2.83511e-218[/C][C]1[/C][/ROW]
[ROW][C]18[/C][C]1.82647e-228[/C][C]3.65293e-228[/C][C]1[/C][/ROW]
[ROW][C]19[/C][C]0.032769[/C][C]0.065538[/C][C]0.967231[/C][/ROW]
[ROW][C]20[/C][C]0.0222822[/C][C]0.0445645[/C][C]0.977718[/C][/ROW]
[ROW][C]21[/C][C]0.0140592[/C][C]0.0281184[/C][C]0.985941[/C][/ROW]
[ROW][C]22[/C][C]0.00867295[/C][C]0.0173459[/C][C]0.991327[/C][/ROW]
[ROW][C]23[/C][C]0.0055795[/C][C]0.011159[/C][C]0.994421[/C][/ROW]
[ROW][C]24[/C][C]0.00332099[/C][C]0.00664197[/C][C]0.996679[/C][/ROW]
[ROW][C]25[/C][C]0.00193802[/C][C]0.00387604[/C][C]0.998062[/C][/ROW]
[ROW][C]26[/C][C]0.00110986[/C][C]0.00221972[/C][C]0.99889[/C][/ROW]
[ROW][C]27[/C][C]0.00488056[/C][C]0.00976113[/C][C]0.995119[/C][/ROW]
[ROW][C]28[/C][C]0.0368502[/C][C]0.0737004[/C][C]0.96315[/C][/ROW]
[ROW][C]29[/C][C]0.0266533[/C][C]0.0533065[/C][C]0.973347[/C][/ROW]
[ROW][C]30[/C][C]0.0208093[/C][C]0.0416185[/C][C]0.979191[/C][/ROW]
[ROW][C]31[/C][C]0.0159714[/C][C]0.0319427[/C][C]0.984029[/C][/ROW]
[ROW][C]32[/C][C]0.0120864[/C][C]0.0241729[/C][C]0.987914[/C][/ROW]
[ROW][C]33[/C][C]0.00843347[/C][C]0.0168669[/C][C]0.991567[/C][/ROW]
[ROW][C]34[/C][C]0.00580881[/C][C]0.0116176[/C][C]0.994191[/C][/ROW]
[ROW][C]35[/C][C]0.00395146[/C][C]0.00790292[/C][C]0.996049[/C][/ROW]
[ROW][C]36[/C][C]0.002656[/C][C]0.005312[/C][C]0.997344[/C][/ROW]
[ROW][C]37[/C][C]0.00193056[/C][C]0.00386112[/C][C]0.998069[/C][/ROW]
[ROW][C]38[/C][C]0.00591687[/C][C]0.0118337[/C][C]0.994083[/C][/ROW]
[ROW][C]39[/C][C]0.00415422[/C][C]0.00830844[/C][C]0.995846[/C][/ROW]
[ROW][C]40[/C][C]0.00316392[/C][C]0.00632783[/C][C]0.996836[/C][/ROW]
[ROW][C]41[/C][C]0.00218716[/C][C]0.00437433[/C][C]0.997813[/C][/ROW]
[ROW][C]42[/C][C]0.00149749[/C][C]0.00299499[/C][C]0.998503[/C][/ROW]
[ROW][C]43[/C][C]0.00101591[/C][C]0.00203182[/C][C]0.998984[/C][/ROW]
[ROW][C]44[/C][C]0.00068318[/C][C]0.00136636[/C][C]0.999317[/C][/ROW]
[ROW][C]45[/C][C]0.00131249[/C][C]0.00262499[/C][C]0.998688[/C][/ROW]
[ROW][C]46[/C][C]0.00100577[/C][C]0.00201154[/C][C]0.998994[/C][/ROW]
[ROW][C]47[/C][C]0.000689943[/C][C]0.00137989[/C][C]0.99931[/C][/ROW]
[ROW][C]48[/C][C]0.00095939[/C][C]0.00191878[/C][C]0.999041[/C][/ROW]
[ROW][C]49[/C][C]0.000742556[/C][C]0.00148511[/C][C]0.999257[/C][/ROW]
[ROW][C]50[/C][C]0.000853122[/C][C]0.00170624[/C][C]0.999147[/C][/ROW]
[ROW][C]51[/C][C]0.000864625[/C][C]0.00172925[/C][C]0.999135[/C][/ROW]
[ROW][C]52[/C][C]0.000807784[/C][C]0.00161557[/C][C]0.999192[/C][/ROW]
[ROW][C]53[/C][C]0.000569604[/C][C]0.00113921[/C][C]0.99943[/C][/ROW]
[ROW][C]54[/C][C]0.000503514[/C][C]0.00100703[/C][C]0.999496[/C][/ROW]
[ROW][C]55[/C][C]0.00035329[/C][C]0.000706579[/C][C]0.999647[/C][/ROW]
[ROW][C]56[/C][C]0.000246454[/C][C]0.000492909[/C][C]0.999754[/C][/ROW]
[ROW][C]57[/C][C]0.00570997[/C][C]0.0114199[/C][C]0.99429[/C][/ROW]
[ROW][C]58[/C][C]0.00441045[/C][C]0.0088209[/C][C]0.99559[/C][/ROW]
[ROW][C]59[/C][C]0.0217388[/C][C]0.0434776[/C][C]0.978261[/C][/ROW]
[ROW][C]60[/C][C]0.0222019[/C][C]0.0444038[/C][C]0.977798[/C][/ROW]
[ROW][C]61[/C][C]0.0181951[/C][C]0.0363902[/C][C]0.981805[/C][/ROW]
[ROW][C]62[/C][C]0.0167817[/C][C]0.0335634[/C][C]0.983218[/C][/ROW]
[ROW][C]63[/C][C]0.0153968[/C][C]0.0307935[/C][C]0.984603[/C][/ROW]
[ROW][C]64[/C][C]0.0125543[/C][C]0.0251085[/C][C]0.987446[/C][/ROW]
[ROW][C]65[/C][C]0.0114699[/C][C]0.0229397[/C][C]0.98853[/C][/ROW]
[ROW][C]66[/C][C]0.0115266[/C][C]0.0230531[/C][C]0.988473[/C][/ROW]
[ROW][C]67[/C][C]0.0105582[/C][C]0.0211163[/C][C]0.989442[/C][/ROW]
[ROW][C]68[/C][C]0.00859113[/C][C]0.0171823[/C][C]0.991409[/C][/ROW]
[ROW][C]69[/C][C]0.0069675[/C][C]0.013935[/C][C]0.993032[/C][/ROW]
[ROW][C]70[/C][C]0.0244222[/C][C]0.0488443[/C][C]0.975578[/C][/ROW]
[ROW][C]71[/C][C]0.0230483[/C][C]0.0460967[/C][C]0.976952[/C][/ROW]
[ROW][C]72[/C][C]0.0217511[/C][C]0.0435022[/C][C]0.978249[/C][/ROW]
[ROW][C]73[/C][C]0.0491875[/C][C]0.0983751[/C][C]0.950812[/C][/ROW]
[ROW][C]74[/C][C]0.0518744[/C][C]0.103749[/C][C]0.948126[/C][/ROW]
[ROW][C]75[/C][C]0.0501568[/C][C]0.100314[/C][C]0.949843[/C][/ROW]
[ROW][C]76[/C][C]0.0485778[/C][C]0.0971556[/C][C]0.951422[/C][/ROW]
[ROW][C]77[/C][C]0.0501696[/C][C]0.100339[/C][C]0.94983[/C][/ROW]
[ROW][C]78[/C][C]0.0488738[/C][C]0.0977476[/C][C]0.951126[/C][/ROW]
[ROW][C]79[/C][C]0.0892227[/C][C]0.178445[/C][C]0.910777[/C][/ROW]
[ROW][C]80[/C][C]0.0796149[/C][C]0.15923[/C][C]0.920385[/C][/ROW]
[ROW][C]81[/C][C]0.121941[/C][C]0.243881[/C][C]0.878059[/C][/ROW]
[ROW][C]82[/C][C]0.164784[/C][C]0.329568[/C][C]0.835216[/C][/ROW]
[ROW][C]83[/C][C]0.204943[/C][C]0.409886[/C][C]0.795057[/C][/ROW]
[ROW][C]84[/C][C]0.216424[/C][C]0.432848[/C][C]0.783576[/C][/ROW]
[ROW][C]85[/C][C]0.255253[/C][C]0.510505[/C][C]0.744747[/C][/ROW]
[ROW][C]86[/C][C]0.266117[/C][C]0.532233[/C][C]0.733883[/C][/ROW]
[ROW][C]87[/C][C]0.273791[/C][C]0.547581[/C][C]0.726209[/C][/ROW]
[ROW][C]88[/C][C]0.311917[/C][C]0.623833[/C][C]0.688083[/C][/ROW]
[ROW][C]89[/C][C]0.34445[/C][C]0.688901[/C][C]0.65555[/C][/ROW]
[ROW][C]90[/C][C]0.371717[/C][C]0.743435[/C][C]0.628283[/C][/ROW]
[ROW][C]91[/C][C]0.381664[/C][C]0.763328[/C][C]0.618336[/C][/ROW]
[ROW][C]92[/C][C]0.388616[/C][C]0.777233[/C][C]0.611384[/C][/ROW]
[ROW][C]93[/C][C]0.392997[/C][C]0.785993[/C][C]0.607003[/C][/ROW]
[ROW][C]94[/C][C]0.419321[/C][C]0.838642[/C][C]0.580679[/C][/ROW]
[ROW][C]95[/C][C]0.422535[/C][C]0.84507[/C][C]0.577465[/C][/ROW]
[ROW][C]96[/C][C]0.445298[/C][C]0.890596[/C][C]0.554702[/C][/ROW]
[ROW][C]97[/C][C]0.447418[/C][C]0.894835[/C][C]0.552582[/C][/ROW]
[ROW][C]98[/C][C]0.447787[/C][C]0.895573[/C][C]0.552213[/C][/ROW]
[ROW][C]99[/C][C]0.446667[/C][C]0.893335[/C][C]0.553333[/C][/ROW]
[ROW][C]100[/C][C]0.44429[/C][C]0.88858[/C][C]0.55571[/C][/ROW]
[ROW][C]101[/C][C]0.440859[/C][C]0.881719[/C][C]0.559141[/C][/ROW]
[ROW][C]102[/C][C]0.463116[/C][C]0.926233[/C][C]0.536884[/C][/ROW]
[ROW][C]103[/C][C]0.459366[/C][C]0.918732[/C][C]0.540634[/C][/ROW]
[ROW][C]104[/C][C]0.454866[/C][C]0.909732[/C][C]0.545134[/C][/ROW]
[ROW][C]105[/C][C]0.449767[/C][C]0.899535[/C][C]0.550233[/C][/ROW]
[ROW][C]106[/C][C]0.469792[/C][C]0.939585[/C][C]0.530208[/C][/ROW]
[ROW][C]107[/C][C]0.486539[/C][C]0.973077[/C][C]0.513461[/C][/ROW]
[ROW][C]108[/C][C]0.500452[/C][C]0.999097[/C][C]0.499548[/C][/ROW]
[ROW][C]109[/C][C]0.511933[/C][C]0.976134[/C][C]0.488067[/C][/ROW]
[ROW][C]110[/C][C]0.521341[/C][C]0.957318[/C][C]0.478659[/C][/ROW]
[ROW][C]111[/C][C]0.528992[/C][C]0.942015[/C][C]0.471008[/C][/ROW]
[ROW][C]112[/C][C]0.525599[/C][C]0.948802[/C][C]0.474401[/C][/ROW]
[ROW][C]113[/C][C]0.511228[/C][C]0.977545[/C][C]0.488772[/C][/ROW]
[ROW][C]114[/C][C]0.496679[/C][C]0.993358[/C][C]0.503321[/C][/ROW]
[ROW][C]115[/C][C]0.482027[/C][C]0.964053[/C][C]0.517973[/C][/ROW]
[ROW][C]116[/C][C]0.467344[/C][C]0.934688[/C][C]0.532656[/C][/ROW]
[ROW][C]117[/C][C]0.474452[/C][C]0.948904[/C][C]0.525548[/C][/ROW]
[ROW][C]118[/C][C]0.471246[/C][C]0.942493[/C][C]0.528754[/C][/ROW]
[ROW][C]119[/C][C]0.456813[/C][C]0.913626[/C][C]0.543187[/C][/ROW]
[ROW][C]120[/C][C]0.473246[/C][C]0.946492[/C][C]0.526754[/C][/ROW]
[ROW][C]121[/C][C]0.458911[/C][C]0.917822[/C][C]0.541089[/C][/ROW]
[ROW][C]122[/C][C]0.475094[/C][C]0.950189[/C][C]0.524906[/C][/ROW]
[ROW][C]123[/C][C]0.491277[/C][C]0.982554[/C][C]0.508723[/C][/ROW]
[ROW][C]124[/C][C]0.47705[/C][C]0.954099[/C][C]0.52295[/C][/ROW]
[ROW][C]125[/C][C]0.462948[/C][C]0.925896[/C][C]0.537052[/C][/ROW]
[ROW][C]126[/C][C]0.44904[/C][C]0.89808[/C][C]0.55096[/C][/ROW]
[ROW][C]127[/C][C]0.435391[/C][C]0.870783[/C][C]0.564609[/C][/ROW]
[ROW][C]128[/C][C]0.422067[/C][C]0.844135[/C][C]0.577933[/C][/ROW]
[ROW][C]129[/C][C]0.419262[/C][C]0.838525[/C][C]0.580738[/C][/ROW]
[ROW][C]130[/C][C]0.406367[/C][C]0.812733[/C][C]0.593633[/C][/ROW]
[ROW][C]131[/C][C]0.393915[/C][C]0.787831[/C][C]0.606085[/C][/ROW]
[ROW][C]132[/C][C]0.409811[/C][C]0.819621[/C][C]0.590189[/C][/ROW]
[ROW][C]133[/C][C]0.397669[/C][C]0.795338[/C][C]0.602331[/C][/ROW]
[ROW][C]134[/C][C]0.386072[/C][C]0.772145[/C][C]0.613928[/C][/ROW]
[ROW][C]135[/C][C]0.375082[/C][C]0.750164[/C][C]0.624918[/C][/ROW]
[ROW][C]136[/C][C]0.364759[/C][C]0.729519[/C][C]0.635241[/C][/ROW]
[ROW][C]137[/C][C]0.355167[/C][C]0.710334[/C][C]0.644833[/C][/ROW]
[ROW][C]138[/C][C]0.346369[/C][C]0.692738[/C][C]0.653631[/C][/ROW]
[ROW][C]139[/C][C]0.361358[/C][C]0.722717[/C][C]0.638642[/C][/ROW]
[ROW][C]140[/C][C]0.35314[/C][C]0.70628[/C][C]0.64686[/C][/ROW]
[ROW][C]141[/C][C]0.350028[/C][C]0.700055[/C][C]0.649972[/C][/ROW]
[ROW][C]142[/C][C]0.342705[/C][C]0.68541[/C][C]0.657295[/C][/ROW]
[ROW][C]143[/C][C]0.336383[/C][C]0.672766[/C][C]0.663617[/C][/ROW]
[ROW][C]144[/C][C]0.331151[/C][C]0.662302[/C][C]0.668849[/C][/ROW]
[ROW][C]145[/C][C]0.345642[/C][C]0.691284[/C][C]0.654358[/C][/ROW]
[ROW][C]146[/C][C]0.361078[/C][C]0.722155[/C][C]0.638922[/C][/ROW]
[ROW][C]147[/C][C]0.356385[/C][C]0.71277[/C][C]0.643615[/C][/ROW]
[ROW][C]148[/C][C]0.3727[/C][C]0.745401[/C][C]0.6273[/C][/ROW]
[ROW][C]149[/C][C]0.390569[/C][C]0.781138[/C][C]0.609431[/C][/ROW]
[ROW][C]150[/C][C]0.386408[/C][C]0.772815[/C][C]0.613592[/C][/ROW]
[ROW][C]151[/C][C]0.405756[/C][C]0.811512[/C][C]0.594244[/C][/ROW]
[ROW][C]152[/C][C]0.402588[/C][C]0.805176[/C][C]0.597412[/C][/ROW]
[ROW][C]153[/C][C]0.401021[/C][C]0.802043[/C][C]0.598979[/C][/ROW]
[ROW][C]154[/C][C]0.421667[/C][C]0.843334[/C][C]0.578333[/C][/ROW]
[ROW][C]155[/C][C]0.416931[/C][C]0.833861[/C][C]0.583069[/C][/ROW]
[ROW][C]156[/C][C]0.411745[/C][C]0.823489[/C][C]0.588255[/C][/ROW]
[ROW][C]157[/C][C]0.411153[/C][C]0.822306[/C][C]0.588847[/C][/ROW]
[ROW][C]158[/C][C]0.433479[/C][C]0.866959[/C][C]0.566521[/C][/ROW]
[ROW][C]159[/C][C]0.441949[/C][C]0.883898[/C][C]0.558051[/C][/ROW]
[ROW][C]160[/C][C]0.448664[/C][C]0.897329[/C][C]0.551336[/C][/ROW]
[ROW][C]161[/C][C]0.453843[/C][C]0.907686[/C][C]0.546157[/C][/ROW]
[ROW][C]162[/C][C]0.448196[/C][C]0.896393[/C][C]0.551804[/C][/ROW]
[ROW][C]163[/C][C]0.473191[/C][C]0.946383[/C][C]0.526809[/C][/ROW]
[ROW][C]164[/C][C]0.472698[/C][C]0.945396[/C][C]0.527302[/C][/ROW]
[ROW][C]165[/C][C]0.476319[/C][C]0.952637[/C][C]0.523681[/C][/ROW]
[ROW][C]166[/C][C]0.469945[/C][C]0.939891[/C][C]0.530055[/C][/ROW]
[ROW][C]167[/C][C]0.472406[/C][C]0.944812[/C][C]0.527594[/C][/ROW]
[ROW][C]168[/C][C]0.465796[/C][C]0.931593[/C][C]0.534204[/C][/ROW]
[ROW][C]169[/C][C]0.467233[/C][C]0.934466[/C][C]0.532767[/C][/ROW]
[ROW][C]170[/C][C]0.467786[/C][C]0.935573[/C][C]0.532214[/C][/ROW]
[ROW][C]171[/C][C]0.460991[/C][C]0.921983[/C][C]0.539009[/C][/ROW]
[ROW][C]172[/C][C]0.460794[/C][C]0.921587[/C][C]0.539206[/C][/ROW]
[ROW][C]173[/C][C]0.453866[/C][C]0.907733[/C][C]0.546134[/C][/ROW]
[ROW][C]174[/C][C]0.453448[/C][C]0.906896[/C][C]0.546552[/C][/ROW]
[ROW][C]175[/C][C]0.455248[/C][C]0.910496[/C][C]0.544752[/C][/ROW]
[ROW][C]176[/C][C]0.447752[/C][C]0.895505[/C][C]0.552248[/C][/ROW]
[ROW][C]177[/C][C]0.45177[/C][C]0.903541[/C][C]0.54823[/C][/ROW]
[ROW][C]178[/C][C]0.474415[/C][C]0.94883[/C][C]0.525585[/C][/ROW]
[ROW][C]179[/C][C]0.466266[/C][C]0.932532[/C][C]0.533734[/C][/ROW]
[ROW][C]180[/C][C]0.491899[/C][C]0.983798[/C][C]0.508101[/C][/ROW]
[ROW][C]181[/C][C]0.489459[/C][C]0.978918[/C][C]0.510541[/C][/ROW]
[ROW][C]182[/C][C]0.486448[/C][C]0.972896[/C][C]0.513552[/C][/ROW]
[ROW][C]183[/C][C]0.490514[/C][C]0.981029[/C][C]0.509486[/C][/ROW]
[ROW][C]184[/C][C]0.486716[/C][C]0.973433[/C][C]0.513284[/C][/ROW]
[ROW][C]185[/C][C]0.47758[/C][C]0.95516[/C][C]0.52242[/C][/ROW]
[ROW][C]186[/C][C]0.473344[/C][C]0.946687[/C][C]0.526656[/C][/ROW]
[ROW][C]187[/C][C]0.468927[/C][C]0.937854[/C][C]0.531073[/C][/ROW]
[ROW][C]188[/C][C]0.464471[/C][C]0.928943[/C][C]0.535529[/C][/ROW]
[ROW][C]189[/C][C]0.460123[/C][C]0.920246[/C][C]0.539877[/C][/ROW]
[ROW][C]190[/C][C]0.450516[/C][C]0.901032[/C][C]0.549484[/C][/ROW]
[ROW][C]191[/C][C]0.441153[/C][C]0.882305[/C][C]0.558847[/C][/ROW]
[ROW][C]192[/C][C]0.432155[/C][C]0.864309[/C][C]0.567845[/C][/ROW]
[ROW][C]193[/C][C]0.42365[/C][C]0.8473[/C][C]0.57635[/C][/ROW]
[ROW][C]194[/C][C]0.41871[/C][C]0.83742[/C][C]0.58129[/C][/ROW]
[ROW][C]195[/C][C]0.414127[/C][C]0.828255[/C][C]0.585873[/C][/ROW]
[ROW][C]196[/C][C]0.405743[/C][C]0.811486[/C][C]0.594257[/C][/ROW]
[ROW][C]197[/C][C]0.426609[/C][C]0.853217[/C][C]0.573391[/C][/ROW]
[ROW][C]198[/C][C]0.421614[/C][C]0.843229[/C][C]0.578386[/C][/ROW]
[ROW][C]199[/C][C]0.417275[/C][C]0.834549[/C][C]0.582725[/C][/ROW]
[ROW][C]200[/C][C]0.413787[/C][C]0.827575[/C][C]0.586213[/C][/ROW]
[ROW][C]201[/C][C]0.4125[/C][C]0.825[/C][C]0.5875[/C][/ROW]
[ROW][C]202[/C][C]0.402698[/C][C]0.805397[/C][C]0.597302[/C][/ROW]
[ROW][C]203[/C][C]0.423596[/C][C]0.847192[/C][C]0.576404[/C][/ROW]
[ROW][C]204[/C][C]0.419388[/C][C]0.838777[/C][C]0.580612[/C][/ROW]
[ROW][C]205[/C][C]0.418685[/C][C]0.83737[/C][C]0.581315[/C][/ROW]
[ROW][C]206[/C][C]0.415022[/C][C]0.830043[/C][C]0.584978[/C][/ROW]
[ROW][C]207[/C][C]0.416801[/C][C]0.833602[/C][C]0.583199[/C][/ROW]
[ROW][C]208[/C][C]0.405051[/C][C]0.810103[/C][C]0.594949[/C][/ROW]
[ROW][C]209[/C][C]0.401633[/C][C]0.803266[/C][C]0.598367[/C][/ROW]
[ROW][C]210[/C][C]0.390274[/C][C]0.780548[/C][C]0.609726[/C][/ROW]
[ROW][C]211[/C][C]0.379915[/C][C]0.759829[/C][C]0.620085[/C][/ROW]
[ROW][C]212[/C][C]0.382505[/C][C]0.76501[/C][C]0.617495[/C][/ROW]
[ROW][C]213[/C][C]0.39883[/C][C]0.797659[/C][C]0.60117[/C][/ROW]
[ROW][C]214[/C][C]0.394219[/C][C]0.788439[/C][C]0.605781[/C][/ROW]
[ROW][C]215[/C][C]0.414217[/C][C]0.828434[/C][C]0.585783[/C][/ROW]
[ROW][C]216[/C][C]0.417192[/C][C]0.834383[/C][C]0.582808[/C][/ROW]
[ROW][C]217[/C][C]0.403954[/C][C]0.807907[/C][C]0.596046[/C][/ROW]
[ROW][C]218[/C][C]0.410842[/C][C]0.821684[/C][C]0.589158[/C][/ROW]
[ROW][C]219[/C][C]0.397884[/C][C]0.795768[/C][C]0.602116[/C][/ROW]
[ROW][C]220[/C][C]0.390772[/C][C]0.781544[/C][C]0.609228[/C][/ROW]
[ROW][C]221[/C][C]0.409715[/C][C]0.819431[/C][C]0.590285[/C][/ROW]
[ROW][C]222[/C][C]0.403255[/C][C]0.806509[/C][C]0.596745[/C][/ROW]
[ROW][C]223[/C][C]0.410595[/C][C]0.82119[/C][C]0.589405[/C][/ROW]
[ROW][C]224[/C][C]0.4247[/C][C]0.8494[/C][C]0.5753[/C][/ROW]
[ROW][C]225[/C][C]0.444564[/C][C]0.889128[/C][C]0.555436[/C][/ROW]
[ROW][C]226[/C][C]0.436125[/C][C]0.87225[/C][C]0.563875[/C][/ROW]
[ROW][C]227[/C][C]0.462357[/C][C]0.924715[/C][C]0.537643[/C][/ROW]
[ROW][C]228[/C][C]0.442717[/C][C]0.885433[/C][C]0.557283[/C][/ROW]
[ROW][C]229[/C][C]0.457158[/C][C]0.914316[/C][C]0.542842[/C][/ROW]
[ROW][C]230[/C][C]0.489037[/C][C]0.978075[/C][C]0.510963[/C][/ROW]
[ROW][C]231[/C][C]0.534228[/C][C]0.931545[/C][C]0.465772[/C][/ROW]
[ROW][C]232[/C][C]0.597094[/C][C]0.805812[/C][C]0.402906[/C][/ROW]
[ROW][C]233[/C][C]0.572634[/C][C]0.854732[/C][C]0.427366[/C][/ROW]
[ROW][C]234[/C][C]0.582555[/C][C]0.83489[/C][C]0.417445[/C][/ROW]
[ROW][C]235[/C][C]0.603565[/C][C]0.792871[/C][C]0.396435[/C][/ROW]
[ROW][C]236[/C][C]0.639521[/C][C]0.720957[/C][C]0.360479[/C][/ROW]
[ROW][C]237[/C][C]0.617667[/C][C]0.764666[/C][C]0.382333[/C][/ROW]
[ROW][C]238[/C][C]0.672478[/C][C]0.655043[/C][C]0.327522[/C][/ROW]
[ROW][C]239[/C][C]0.753137[/C][C]0.493726[/C][C]0.246863[/C][/ROW]
[ROW][C]240[/C][C]0.725253[/C][C]0.549495[/C][C]0.274747[/C][/ROW]
[ROW][C]241[/C][C]0.758211[/C][C]0.483578[/C][C]0.241789[/C][/ROW]
[ROW][C]242[/C][C]0.733658[/C][C]0.532684[/C][C]0.266342[/C][/ROW]
[ROW][C]243[/C][C]0.702829[/C][C]0.594342[/C][C]0.297171[/C][/ROW]
[ROW][C]244[/C][C]0.67633[/C][C]0.647341[/C][C]0.32367[/C][/ROW]
[ROW][C]245[/C][C]0.642572[/C][C]0.714856[/C][C]0.357428[/C][/ROW]
[ROW][C]246[/C][C]0.608548[/C][C]0.782903[/C][C]0.391452[/C][/ROW]
[ROW][C]247[/C][C]0.661929[/C][C]0.676143[/C][C]0.338071[/C][/ROW]
[ROW][C]248[/C][C]0.747551[/C][C]0.504898[/C][C]0.252449[/C][/ROW]
[ROW][C]249[/C][C]0.807774[/C][C]0.384453[/C][C]0.192226[/C][/ROW]
[ROW][C]250[/C][C]0.899044[/C][C]0.201912[/C][C]0.100956[/C][/ROW]
[ROW][C]251[/C][C]0.987935[/C][C]0.0241297[/C][C]0.0120648[/C][/ROW]
[ROW][C]252[/C][C]0.991132[/C][C]0.0177355[/C][C]0.00886776[/C][/ROW]
[ROW][C]253[/C][C]0.986695[/C][C]0.0266103[/C][C]0.0133052[/C][/ROW]
[ROW][C]254[/C][C]0.980508[/C][C]0.038983[/C][C]0.0194915[/C][/ROW]
[ROW][C]255[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]256[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]257[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]258[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]259[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]260[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]261[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]262[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]263[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]264[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]265[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]266[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]267[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]268[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]269[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]270[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]271[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]272[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
61.91149e-463.82298e-461
71.26781e-612.53562e-611
84.83788e-769.67576e-761
95.85945e-921.17189e-911
101.29234e-1052.58469e-1051
118.56146e-1241.71229e-1231
121.02472e-1342.04944e-1341
134.80476e-1519.60951e-1511
143.91527e-1667.83054e-1661
159.31965e-1851.86393e-1841
163.38617e-1986.77234e-1981
171.41755e-2182.83511e-2181
181.82647e-2283.65293e-2281
190.0327690.0655380.967231
200.02228220.04456450.977718
210.01405920.02811840.985941
220.008672950.01734590.991327
230.00557950.0111590.994421
240.003320990.006641970.996679
250.001938020.003876040.998062
260.001109860.002219720.99889
270.004880560.009761130.995119
280.03685020.07370040.96315
290.02665330.05330650.973347
300.02080930.04161850.979191
310.01597140.03194270.984029
320.01208640.02417290.987914
330.008433470.01686690.991567
340.005808810.01161760.994191
350.003951460.007902920.996049
360.0026560.0053120.997344
370.001930560.003861120.998069
380.005916870.01183370.994083
390.004154220.008308440.995846
400.003163920.006327830.996836
410.002187160.004374330.997813
420.001497490.002994990.998503
430.001015910.002031820.998984
440.000683180.001366360.999317
450.001312490.002624990.998688
460.001005770.002011540.998994
470.0006899430.001379890.99931
480.000959390.001918780.999041
490.0007425560.001485110.999257
500.0008531220.001706240.999147
510.0008646250.001729250.999135
520.0008077840.001615570.999192
530.0005696040.001139210.99943
540.0005035140.001007030.999496
550.000353290.0007065790.999647
560.0002464540.0004929090.999754
570.005709970.01141990.99429
580.004410450.00882090.99559
590.02173880.04347760.978261
600.02220190.04440380.977798
610.01819510.03639020.981805
620.01678170.03356340.983218
630.01539680.03079350.984603
640.01255430.02510850.987446
650.01146990.02293970.98853
660.01152660.02305310.988473
670.01055820.02111630.989442
680.008591130.01718230.991409
690.00696750.0139350.993032
700.02442220.04884430.975578
710.02304830.04609670.976952
720.02175110.04350220.978249
730.04918750.09837510.950812
740.05187440.1037490.948126
750.05015680.1003140.949843
760.04857780.09715560.951422
770.05016960.1003390.94983
780.04887380.09774760.951126
790.08922270.1784450.910777
800.07961490.159230.920385
810.1219410.2438810.878059
820.1647840.3295680.835216
830.2049430.4098860.795057
840.2164240.4328480.783576
850.2552530.5105050.744747
860.2661170.5322330.733883
870.2737910.5475810.726209
880.3119170.6238330.688083
890.344450.6889010.65555
900.3717170.7434350.628283
910.3816640.7633280.618336
920.3886160.7772330.611384
930.3929970.7859930.607003
940.4193210.8386420.580679
950.4225350.845070.577465
960.4452980.8905960.554702
970.4474180.8948350.552582
980.4477870.8955730.552213
990.4466670.8933350.553333
1000.444290.888580.55571
1010.4408590.8817190.559141
1020.4631160.9262330.536884
1030.4593660.9187320.540634
1040.4548660.9097320.545134
1050.4497670.8995350.550233
1060.4697920.9395850.530208
1070.4865390.9730770.513461
1080.5004520.9990970.499548
1090.5119330.9761340.488067
1100.5213410.9573180.478659
1110.5289920.9420150.471008
1120.5255990.9488020.474401
1130.5112280.9775450.488772
1140.4966790.9933580.503321
1150.4820270.9640530.517973
1160.4673440.9346880.532656
1170.4744520.9489040.525548
1180.4712460.9424930.528754
1190.4568130.9136260.543187
1200.4732460.9464920.526754
1210.4589110.9178220.541089
1220.4750940.9501890.524906
1230.4912770.9825540.508723
1240.477050.9540990.52295
1250.4629480.9258960.537052
1260.449040.898080.55096
1270.4353910.8707830.564609
1280.4220670.8441350.577933
1290.4192620.8385250.580738
1300.4063670.8127330.593633
1310.3939150.7878310.606085
1320.4098110.8196210.590189
1330.3976690.7953380.602331
1340.3860720.7721450.613928
1350.3750820.7501640.624918
1360.3647590.7295190.635241
1370.3551670.7103340.644833
1380.3463690.6927380.653631
1390.3613580.7227170.638642
1400.353140.706280.64686
1410.3500280.7000550.649972
1420.3427050.685410.657295
1430.3363830.6727660.663617
1440.3311510.6623020.668849
1450.3456420.6912840.654358
1460.3610780.7221550.638922
1470.3563850.712770.643615
1480.37270.7454010.6273
1490.3905690.7811380.609431
1500.3864080.7728150.613592
1510.4057560.8115120.594244
1520.4025880.8051760.597412
1530.4010210.8020430.598979
1540.4216670.8433340.578333
1550.4169310.8338610.583069
1560.4117450.8234890.588255
1570.4111530.8223060.588847
1580.4334790.8669590.566521
1590.4419490.8838980.558051
1600.4486640.8973290.551336
1610.4538430.9076860.546157
1620.4481960.8963930.551804
1630.4731910.9463830.526809
1640.4726980.9453960.527302
1650.4763190.9526370.523681
1660.4699450.9398910.530055
1670.4724060.9448120.527594
1680.4657960.9315930.534204
1690.4672330.9344660.532767
1700.4677860.9355730.532214
1710.4609910.9219830.539009
1720.4607940.9215870.539206
1730.4538660.9077330.546134
1740.4534480.9068960.546552
1750.4552480.9104960.544752
1760.4477520.8955050.552248
1770.451770.9035410.54823
1780.4744150.948830.525585
1790.4662660.9325320.533734
1800.4918990.9837980.508101
1810.4894590.9789180.510541
1820.4864480.9728960.513552
1830.4905140.9810290.509486
1840.4867160.9734330.513284
1850.477580.955160.52242
1860.4733440.9466870.526656
1870.4689270.9378540.531073
1880.4644710.9289430.535529
1890.4601230.9202460.539877
1900.4505160.9010320.549484
1910.4411530.8823050.558847
1920.4321550.8643090.567845
1930.423650.84730.57635
1940.418710.837420.58129
1950.4141270.8282550.585873
1960.4057430.8114860.594257
1970.4266090.8532170.573391
1980.4216140.8432290.578386
1990.4172750.8345490.582725
2000.4137870.8275750.586213
2010.41250.8250.5875
2020.4026980.8053970.597302
2030.4235960.8471920.576404
2040.4193880.8387770.580612
2050.4186850.837370.581315
2060.4150220.8300430.584978
2070.4168010.8336020.583199
2080.4050510.8101030.594949
2090.4016330.8032660.598367
2100.3902740.7805480.609726
2110.3799150.7598290.620085
2120.3825050.765010.617495
2130.398830.7976590.60117
2140.3942190.7884390.605781
2150.4142170.8284340.585783
2160.4171920.8343830.582808
2170.4039540.8079070.596046
2180.4108420.8216840.589158
2190.3978840.7957680.602116
2200.3907720.7815440.609228
2210.4097150.8194310.590285
2220.4032550.8065090.596745
2230.4105950.821190.589405
2240.42470.84940.5753
2250.4445640.8891280.555436
2260.4361250.872250.563875
2270.4623570.9247150.537643
2280.4427170.8854330.557283
2290.4571580.9143160.542842
2300.4890370.9780750.510963
2310.5342280.9315450.465772
2320.5970940.8058120.402906
2330.5726340.8547320.427366
2340.5825550.834890.417445
2350.6035650.7928710.396435
2360.6395210.7209570.360479
2370.6176670.7646660.382333
2380.6724780.6550430.327522
2390.7531370.4937260.246863
2400.7252530.5494950.274747
2410.7582110.4835780.241789
2420.7336580.5326840.266342
2430.7028290.5943420.297171
2440.676330.6473410.32367
2450.6425720.7148560.357428
2460.6085480.7829030.391452
2470.6619290.6761430.338071
2480.7475510.5048980.252449
2490.8077740.3844530.192226
2500.8990440.2019120.100956
2510.9879350.02412970.0120648
2520.9911320.01773550.00886776
2530.9866950.02661030.0133052
2540.9805080.0389830.0194915
255100
256100
257100
258100
259100
260100
261100
262100
263100
264100
265100
266100
267100
268100
269100
270100
271100
272100







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level570.213483NOK
5% type I error level860.322097NOK
10% type I error level920.344569NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 57 & 0.213483 & NOK \tabularnewline
5% type I error level & 86 & 0.322097 & NOK \tabularnewline
10% type I error level & 92 & 0.344569 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269964&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]57[/C][C]0.213483[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]86[/C][C]0.322097[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]92[/C][C]0.344569[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269964&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269964&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level570.213483NOK
5% type I error level860.322097NOK
10% type I error level920.344569NOK



Parameters (Session):
par2 = grey ; par3 = FALSE ; par4 = Unknown ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}