Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 15 Dec 2008 10:52:14 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/15/t1229363908qecenfzzcdmqefr.htm/, Retrieved Fri, 01 Nov 2024 01:01:49 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=33753, Retrieved Fri, 01 Nov 2024 01:01:49 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact272
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Paper TW] [2008-12-10 11:28:34] [6610d6fd8f463fb18a844c14dc2c3579]
-   PD  [Multiple Regression] [Paper TW] [2008-12-15 17:48:10] [6610d6fd8f463fb18a844c14dc2c3579]
-    D      [Multiple Regression] [Paper TW] [2008-12-15 17:52:14] [129e79f7c2a947d1265718b3aa5cb7d5] [Current]
- R  D        [Multiple Regression] [PAPER SVD] [2008-12-22 13:19:20] [74be16979710d4c4e7c6647856088456]
- R  D        [Multiple Regression] [Paper - s0410061] [2008-12-22 17:28:18] [74be16979710d4c4e7c6647856088456]
-               [Multiple Regression] [Gilliam Schoorel] [2008-12-23 11:20:06] [74be16979710d4c4e7c6647856088456]
-               [Multiple Regression] [Sören Van Donink ...] [2008-12-24 10:40:22] [74be16979710d4c4e7c6647856088456]
- RM D        [Multiple Regression] [Paper Statistiek ...] [2009-12-20 15:11:15] [d70851d7a1b5fbddaadf8fdd99e807cd]
Feedback Forum

Post a new message
Dataseries X:
101,0	0
98,7	0
105,1	0
98,4	0
101,7	0
102,9	0
92,2	0
94,9	0
92,8	0
98,5	0
94,3	0
87,4	0
103,4	0
101,2	0
109,6	0
111,9	0
108,9	0
105,6	0
107,8	0
97,5	0
102,4	0
105,6	0
99,8	0
96,2	0
113,1	0
107,4	0
116,8	0
112,9	0
105,3	0
109,3	0
107,9	0
101,1	0
114,7	0
116,2	0
108,4	0
113,4	0
108,7	0
112,6	0
124,2	1
114,9	1
110,5	1
121,5	1
118,1	1
111,7	1
132,7	1
119,0	1
116,7	1
120,1	1
113,4	1
106,6	1
116,3	1
112,6	1
111,6	1
125,1	1
110,7	1
109,6	1
114,2	1
113,4	1
116,0	1
109,6	1
117,8	1
115,8	1
125,3	1
113,0	1
120,5	1
116,6	1
111,8	1
115,2	1
118,6	1
122,4	1
116,4	1
114,5	1
119,8	1
115,8	1
127,8	1
118,8	1
119,7	1
118,6	1
120,8	1
115,9	1
109,7	1
114,8	1
116,2	1
112,2	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 96.0952380952381 + 4.43333333333331DUM[t] + 6.0958333333333M1[t] + 3.17976190476191M2[t] + 11.9303571428572M3[t] + 5.65714285714287M4[t] + 4.85535714285714M5[t] + 7.72500000000001M6[t] + 3.20892857142858M7[t] -0.321428571428567M8[t] + 5.09107142857143M9[t] + 5.58928571428572M10[t] + 2.24464285714286M11[t] + 0.187500000000000t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  96.0952380952381 +  4.43333333333331DUM[t] +  6.0958333333333M1[t] +  3.17976190476191M2[t] +  11.9303571428572M3[t] +  5.65714285714287M4[t] +  4.85535714285714M5[t] +  7.72500000000001M6[t] +  3.20892857142858M7[t] -0.321428571428567M8[t] +  5.09107142857143M9[t] +  5.58928571428572M10[t] +  2.24464285714286M11[t] +  0.187500000000000t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  96.0952380952381 +  4.43333333333331DUM[t] +  6.0958333333333M1[t] +  3.17976190476191M2[t] +  11.9303571428572M3[t] +  5.65714285714287M4[t] +  4.85535714285714M5[t] +  7.72500000000001M6[t] +  3.20892857142858M7[t] -0.321428571428567M8[t] +  5.09107142857143M9[t] +  5.58928571428572M10[t] +  2.24464285714286M11[t] +  0.187500000000000t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 96.0952380952381 + 4.43333333333331DUM[t] + 6.0958333333333M1[t] + 3.17976190476191M2[t] + 11.9303571428572M3[t] + 5.65714285714287M4[t] + 4.85535714285714M5[t] + 7.72500000000001M6[t] + 3.20892857142858M7[t] -0.321428571428567M8[t] + 5.09107142857143M9[t] + 5.58928571428572M10[t] + 2.24464285714286M11[t] + 0.187500000000000t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)96.09523809523812.45174839.194600
DUM4.433333333333312.3799741.86280.0666920.033346
M16.09583333333332.9003672.10170.0391760.019588
M23.179761904761912.8966281.09770.2760770.138039
M311.93035714285722.9185774.08770.0001155.7e-05
M45.657142857142872.9115551.9430.0560390.028019
M54.855357142857142.9053441.67120.0991510.049576
M67.725000000000012.8999512.66380.0095810.00479
M73.208928571428582.895381.10830.2715290.135764
M8-0.3214285714285672.891635-0.11120.9118090.455905
M95.091071428571432.8887191.76240.0823670.041184
M105.589285714285722.8866341.93630.0568740.028437
M112.244642857142862.8853820.77790.4392280.219614
t0.1875000000000000.0490743.82070.0002850.000143

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 96.0952380952381 & 2.451748 & 39.1946 & 0 & 0 \tabularnewline
DUM & 4.43333333333331 & 2.379974 & 1.8628 & 0.066692 & 0.033346 \tabularnewline
M1 & 6.0958333333333 & 2.900367 & 2.1017 & 0.039176 & 0.019588 \tabularnewline
M2 & 3.17976190476191 & 2.896628 & 1.0977 & 0.276077 & 0.138039 \tabularnewline
M3 & 11.9303571428572 & 2.918577 & 4.0877 & 0.000115 & 5.7e-05 \tabularnewline
M4 & 5.65714285714287 & 2.911555 & 1.943 & 0.056039 & 0.028019 \tabularnewline
M5 & 4.85535714285714 & 2.905344 & 1.6712 & 0.099151 & 0.049576 \tabularnewline
M6 & 7.72500000000001 & 2.899951 & 2.6638 & 0.009581 & 0.00479 \tabularnewline
M7 & 3.20892857142858 & 2.89538 & 1.1083 & 0.271529 & 0.135764 \tabularnewline
M8 & -0.321428571428567 & 2.891635 & -0.1112 & 0.911809 & 0.455905 \tabularnewline
M9 & 5.09107142857143 & 2.888719 & 1.7624 & 0.082367 & 0.041184 \tabularnewline
M10 & 5.58928571428572 & 2.886634 & 1.9363 & 0.056874 & 0.028437 \tabularnewline
M11 & 2.24464285714286 & 2.885382 & 0.7779 & 0.439228 & 0.219614 \tabularnewline
t & 0.187500000000000 & 0.049074 & 3.8207 & 0.000285 & 0.000143 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]96.0952380952381[/C][C]2.451748[/C][C]39.1946[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]DUM[/C][C]4.43333333333331[/C][C]2.379974[/C][C]1.8628[/C][C]0.066692[/C][C]0.033346[/C][/ROW]
[ROW][C]M1[/C][C]6.0958333333333[/C][C]2.900367[/C][C]2.1017[/C][C]0.039176[/C][C]0.019588[/C][/ROW]
[ROW][C]M2[/C][C]3.17976190476191[/C][C]2.896628[/C][C]1.0977[/C][C]0.276077[/C][C]0.138039[/C][/ROW]
[ROW][C]M3[/C][C]11.9303571428572[/C][C]2.918577[/C][C]4.0877[/C][C]0.000115[/C][C]5.7e-05[/C][/ROW]
[ROW][C]M4[/C][C]5.65714285714287[/C][C]2.911555[/C][C]1.943[/C][C]0.056039[/C][C]0.028019[/C][/ROW]
[ROW][C]M5[/C][C]4.85535714285714[/C][C]2.905344[/C][C]1.6712[/C][C]0.099151[/C][C]0.049576[/C][/ROW]
[ROW][C]M6[/C][C]7.72500000000001[/C][C]2.899951[/C][C]2.6638[/C][C]0.009581[/C][C]0.00479[/C][/ROW]
[ROW][C]M7[/C][C]3.20892857142858[/C][C]2.89538[/C][C]1.1083[/C][C]0.271529[/C][C]0.135764[/C][/ROW]
[ROW][C]M8[/C][C]-0.321428571428567[/C][C]2.891635[/C][C]-0.1112[/C][C]0.911809[/C][C]0.455905[/C][/ROW]
[ROW][C]M9[/C][C]5.09107142857143[/C][C]2.888719[/C][C]1.7624[/C][C]0.082367[/C][C]0.041184[/C][/ROW]
[ROW][C]M10[/C][C]5.58928571428572[/C][C]2.886634[/C][C]1.9363[/C][C]0.056874[/C][C]0.028437[/C][/ROW]
[ROW][C]M11[/C][C]2.24464285714286[/C][C]2.885382[/C][C]0.7779[/C][C]0.439228[/C][C]0.219614[/C][/ROW]
[ROW][C]t[/C][C]0.187500000000000[/C][C]0.049074[/C][C]3.8207[/C][C]0.000285[/C][C]0.000143[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)96.09523809523812.45174839.194600
DUM4.433333333333312.3799741.86280.0666920.033346
M16.09583333333332.9003672.10170.0391760.019588
M23.179761904761912.8966281.09770.2760770.138039
M311.93035714285722.9185774.08770.0001155.7e-05
M45.657142857142872.9115551.9430.0560390.028019
M54.855357142857142.9053441.67120.0991510.049576
M67.725000000000012.8999512.66380.0095810.00479
M73.208928571428582.895381.10830.2715290.135764
M8-0.3214285714285672.891635-0.11120.9118090.455905
M95.091071428571432.8887191.76240.0823670.041184
M105.589285714285722.8866341.93630.0568740.028437
M112.244642857142862.8853820.77790.4392280.219614
t0.1875000000000000.0490743.82070.0002850.000143







Multiple Linear Regression - Regression Statistics
Multiple R0.822720530353184
R-squared0.676869071064625
Adjusted R-squared0.616859041405198
F-TEST (value)11.2792657311793
F-TEST (DF numerator)13
F-TEST (DF denominator)70
p-value1.48470125083122e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation5.39727444443688
Sum Squared Residuals2039.14

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.822720530353184 \tabularnewline
R-squared & 0.676869071064625 \tabularnewline
Adjusted R-squared & 0.616859041405198 \tabularnewline
F-TEST (value) & 11.2792657311793 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 70 \tabularnewline
p-value & 1.48470125083122e-12 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 5.39727444443688 \tabularnewline
Sum Squared Residuals & 2039.14 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.822720530353184[/C][/ROW]
[ROW][C]R-squared[/C][C]0.676869071064625[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.616859041405198[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]11.2792657311793[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]70[/C][/ROW]
[ROW][C]p-value[/C][C]1.48470125083122e-12[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]5.39727444443688[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]2039.14[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.822720530353184
R-squared0.676869071064625
Adjusted R-squared0.616859041405198
F-TEST (value)11.2792657311793
F-TEST (DF numerator)13
F-TEST (DF denominator)70
p-value1.48470125083122e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation5.39727444443688
Sum Squared Residuals2039.14







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1101102.378571428572-1.37857142857155
298.799.65-0.949999999999967
3105.1108.588095238095-3.48809523809521
498.4102.502380952381-4.10238095238093
5101.7101.888095238095-0.188095238095272
6102.9104.945238095238-2.04523809523809
792.2100.616666666667-8.41666666666666
894.997.2738095238095-2.37380952380953
992.8102.873809523810-10.0738095238095
1098.5103.559523809524-5.05952380952381
1194.3100.402380952381-6.10238095238095
1287.498.3452380952381-10.9452380952381
13103.4104.628571428571-1.2285714285714
14101.2101.9-0.700000000000013
15109.6110.838095238095-1.23809523809525
16111.9104.7523809523817.14761904761905
17108.9104.1380952380954.76190476190477
18105.6107.195238095238-1.59523809523810
19107.8102.8666666666674.93333333333333
2097.599.5238095238095-2.02380952380952
21102.4105.123809523810-2.72380952380952
22105.6105.809523809524-0.209523809523815
2399.8102.652380952381-2.85238095238096
2496.2100.595238095238-4.39523809523809
25113.1106.8785714285716.22142857142858
26107.4104.153.25
27116.8113.0880952380953.71190476190475
28112.9107.0023809523815.89761904761905
29105.3106.388095238095-1.08809523809524
30109.3109.445238095238-0.145238095238096
31107.9105.1166666666672.78333333333334
32101.1101.773809523810-0.673809523809531
33114.7107.3738095238107.32619047619048
34116.2108.0595238095248.14047619047619
35108.4104.9023809523813.49761904761905
36113.4102.84523809523810.5547619047619
37108.7109.128571428571-0.428571428571408
38112.6106.46.19999999999999
39124.2119.7714285714294.42857142857143
40114.9113.6857142857141.21428571428572
41110.5113.071428571429-2.57142857142856
42121.5116.1285714285715.37142857142858
43118.1111.86.3
44111.7108.4571428571433.24285714285715
45132.7114.05714285714318.6428571428571
46119114.7428571428574.25714285714286
47116.7111.5857142857145.11428571428572
48120.1109.52857142857110.5714285714286
49113.4115.811904761905-2.41190476190473
50106.6113.083333333333-6.48333333333334
51116.3122.021428571429-5.72142857142858
52112.6115.935714285714-3.3357142857143
53111.6115.321428571429-3.72142857142857
54125.1118.3785714285716.72142857142857
55110.7114.05-3.35
56109.6110.707142857143-1.10714285714286
57114.2116.307142857143-2.10714285714285
58113.4116.992857142857-3.59285714285714
59116113.8357142857142.16428571428571
60109.6111.778571428571-2.17857142857143
61117.8118.061904761905-0.261904761904745
62115.8115.3333333333330.466666666666661
63125.3124.2714285714291.02857142857142
64113118.185714285714-5.18571428571429
65120.5117.5714285714292.92857142857143
66116.6120.628571428571-4.02857142857143
67111.8116.3-4.50000000000001
68115.2112.9571428571432.24285714285714
69118.6118.5571428571430.0428571428571376
70122.4119.2428571428573.15714285714286
71116.4116.0857142857140.314285714285716
72114.5114.0285714285710.471428571428576
73119.8120.311904761905-0.511904761904748
74115.8117.583333333333-1.78333333333334
75127.8126.5214285714291.27857142857142
76118.8120.435714285714-1.63571428571430
77119.7119.821428571429-0.121428571428565
78118.6122.878571428571-4.27857142857144
79120.8118.552.24999999999999
80115.9115.2071428571430.692857142857145
81109.7120.807142857143-11.1071428571429
82114.8121.492857142857-6.69285714285715
83116.2118.335714285714-2.13571428571429
84112.2116.278571428571-4.07857142857143

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 101 & 102.378571428572 & -1.37857142857155 \tabularnewline
2 & 98.7 & 99.65 & -0.949999999999967 \tabularnewline
3 & 105.1 & 108.588095238095 & -3.48809523809521 \tabularnewline
4 & 98.4 & 102.502380952381 & -4.10238095238093 \tabularnewline
5 & 101.7 & 101.888095238095 & -0.188095238095272 \tabularnewline
6 & 102.9 & 104.945238095238 & -2.04523809523809 \tabularnewline
7 & 92.2 & 100.616666666667 & -8.41666666666666 \tabularnewline
8 & 94.9 & 97.2738095238095 & -2.37380952380953 \tabularnewline
9 & 92.8 & 102.873809523810 & -10.0738095238095 \tabularnewline
10 & 98.5 & 103.559523809524 & -5.05952380952381 \tabularnewline
11 & 94.3 & 100.402380952381 & -6.10238095238095 \tabularnewline
12 & 87.4 & 98.3452380952381 & -10.9452380952381 \tabularnewline
13 & 103.4 & 104.628571428571 & -1.2285714285714 \tabularnewline
14 & 101.2 & 101.9 & -0.700000000000013 \tabularnewline
15 & 109.6 & 110.838095238095 & -1.23809523809525 \tabularnewline
16 & 111.9 & 104.752380952381 & 7.14761904761905 \tabularnewline
17 & 108.9 & 104.138095238095 & 4.76190476190477 \tabularnewline
18 & 105.6 & 107.195238095238 & -1.59523809523810 \tabularnewline
19 & 107.8 & 102.866666666667 & 4.93333333333333 \tabularnewline
20 & 97.5 & 99.5238095238095 & -2.02380952380952 \tabularnewline
21 & 102.4 & 105.123809523810 & -2.72380952380952 \tabularnewline
22 & 105.6 & 105.809523809524 & -0.209523809523815 \tabularnewline
23 & 99.8 & 102.652380952381 & -2.85238095238096 \tabularnewline
24 & 96.2 & 100.595238095238 & -4.39523809523809 \tabularnewline
25 & 113.1 & 106.878571428571 & 6.22142857142858 \tabularnewline
26 & 107.4 & 104.15 & 3.25 \tabularnewline
27 & 116.8 & 113.088095238095 & 3.71190476190475 \tabularnewline
28 & 112.9 & 107.002380952381 & 5.89761904761905 \tabularnewline
29 & 105.3 & 106.388095238095 & -1.08809523809524 \tabularnewline
30 & 109.3 & 109.445238095238 & -0.145238095238096 \tabularnewline
31 & 107.9 & 105.116666666667 & 2.78333333333334 \tabularnewline
32 & 101.1 & 101.773809523810 & -0.673809523809531 \tabularnewline
33 & 114.7 & 107.373809523810 & 7.32619047619048 \tabularnewline
34 & 116.2 & 108.059523809524 & 8.14047619047619 \tabularnewline
35 & 108.4 & 104.902380952381 & 3.49761904761905 \tabularnewline
36 & 113.4 & 102.845238095238 & 10.5547619047619 \tabularnewline
37 & 108.7 & 109.128571428571 & -0.428571428571408 \tabularnewline
38 & 112.6 & 106.4 & 6.19999999999999 \tabularnewline
39 & 124.2 & 119.771428571429 & 4.42857142857143 \tabularnewline
40 & 114.9 & 113.685714285714 & 1.21428571428572 \tabularnewline
41 & 110.5 & 113.071428571429 & -2.57142857142856 \tabularnewline
42 & 121.5 & 116.128571428571 & 5.37142857142858 \tabularnewline
43 & 118.1 & 111.8 & 6.3 \tabularnewline
44 & 111.7 & 108.457142857143 & 3.24285714285715 \tabularnewline
45 & 132.7 & 114.057142857143 & 18.6428571428571 \tabularnewline
46 & 119 & 114.742857142857 & 4.25714285714286 \tabularnewline
47 & 116.7 & 111.585714285714 & 5.11428571428572 \tabularnewline
48 & 120.1 & 109.528571428571 & 10.5714285714286 \tabularnewline
49 & 113.4 & 115.811904761905 & -2.41190476190473 \tabularnewline
50 & 106.6 & 113.083333333333 & -6.48333333333334 \tabularnewline
51 & 116.3 & 122.021428571429 & -5.72142857142858 \tabularnewline
52 & 112.6 & 115.935714285714 & -3.3357142857143 \tabularnewline
53 & 111.6 & 115.321428571429 & -3.72142857142857 \tabularnewline
54 & 125.1 & 118.378571428571 & 6.72142857142857 \tabularnewline
55 & 110.7 & 114.05 & -3.35 \tabularnewline
56 & 109.6 & 110.707142857143 & -1.10714285714286 \tabularnewline
57 & 114.2 & 116.307142857143 & -2.10714285714285 \tabularnewline
58 & 113.4 & 116.992857142857 & -3.59285714285714 \tabularnewline
59 & 116 & 113.835714285714 & 2.16428571428571 \tabularnewline
60 & 109.6 & 111.778571428571 & -2.17857142857143 \tabularnewline
61 & 117.8 & 118.061904761905 & -0.261904761904745 \tabularnewline
62 & 115.8 & 115.333333333333 & 0.466666666666661 \tabularnewline
63 & 125.3 & 124.271428571429 & 1.02857142857142 \tabularnewline
64 & 113 & 118.185714285714 & -5.18571428571429 \tabularnewline
65 & 120.5 & 117.571428571429 & 2.92857142857143 \tabularnewline
66 & 116.6 & 120.628571428571 & -4.02857142857143 \tabularnewline
67 & 111.8 & 116.3 & -4.50000000000001 \tabularnewline
68 & 115.2 & 112.957142857143 & 2.24285714285714 \tabularnewline
69 & 118.6 & 118.557142857143 & 0.0428571428571376 \tabularnewline
70 & 122.4 & 119.242857142857 & 3.15714285714286 \tabularnewline
71 & 116.4 & 116.085714285714 & 0.314285714285716 \tabularnewline
72 & 114.5 & 114.028571428571 & 0.471428571428576 \tabularnewline
73 & 119.8 & 120.311904761905 & -0.511904761904748 \tabularnewline
74 & 115.8 & 117.583333333333 & -1.78333333333334 \tabularnewline
75 & 127.8 & 126.521428571429 & 1.27857142857142 \tabularnewline
76 & 118.8 & 120.435714285714 & -1.63571428571430 \tabularnewline
77 & 119.7 & 119.821428571429 & -0.121428571428565 \tabularnewline
78 & 118.6 & 122.878571428571 & -4.27857142857144 \tabularnewline
79 & 120.8 & 118.55 & 2.24999999999999 \tabularnewline
80 & 115.9 & 115.207142857143 & 0.692857142857145 \tabularnewline
81 & 109.7 & 120.807142857143 & -11.1071428571429 \tabularnewline
82 & 114.8 & 121.492857142857 & -6.69285714285715 \tabularnewline
83 & 116.2 & 118.335714285714 & -2.13571428571429 \tabularnewline
84 & 112.2 & 116.278571428571 & -4.07857142857143 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]101[/C][C]102.378571428572[/C][C]-1.37857142857155[/C][/ROW]
[ROW][C]2[/C][C]98.7[/C][C]99.65[/C][C]-0.949999999999967[/C][/ROW]
[ROW][C]3[/C][C]105.1[/C][C]108.588095238095[/C][C]-3.48809523809521[/C][/ROW]
[ROW][C]4[/C][C]98.4[/C][C]102.502380952381[/C][C]-4.10238095238093[/C][/ROW]
[ROW][C]5[/C][C]101.7[/C][C]101.888095238095[/C][C]-0.188095238095272[/C][/ROW]
[ROW][C]6[/C][C]102.9[/C][C]104.945238095238[/C][C]-2.04523809523809[/C][/ROW]
[ROW][C]7[/C][C]92.2[/C][C]100.616666666667[/C][C]-8.41666666666666[/C][/ROW]
[ROW][C]8[/C][C]94.9[/C][C]97.2738095238095[/C][C]-2.37380952380953[/C][/ROW]
[ROW][C]9[/C][C]92.8[/C][C]102.873809523810[/C][C]-10.0738095238095[/C][/ROW]
[ROW][C]10[/C][C]98.5[/C][C]103.559523809524[/C][C]-5.05952380952381[/C][/ROW]
[ROW][C]11[/C][C]94.3[/C][C]100.402380952381[/C][C]-6.10238095238095[/C][/ROW]
[ROW][C]12[/C][C]87.4[/C][C]98.3452380952381[/C][C]-10.9452380952381[/C][/ROW]
[ROW][C]13[/C][C]103.4[/C][C]104.628571428571[/C][C]-1.2285714285714[/C][/ROW]
[ROW][C]14[/C][C]101.2[/C][C]101.9[/C][C]-0.700000000000013[/C][/ROW]
[ROW][C]15[/C][C]109.6[/C][C]110.838095238095[/C][C]-1.23809523809525[/C][/ROW]
[ROW][C]16[/C][C]111.9[/C][C]104.752380952381[/C][C]7.14761904761905[/C][/ROW]
[ROW][C]17[/C][C]108.9[/C][C]104.138095238095[/C][C]4.76190476190477[/C][/ROW]
[ROW][C]18[/C][C]105.6[/C][C]107.195238095238[/C][C]-1.59523809523810[/C][/ROW]
[ROW][C]19[/C][C]107.8[/C][C]102.866666666667[/C][C]4.93333333333333[/C][/ROW]
[ROW][C]20[/C][C]97.5[/C][C]99.5238095238095[/C][C]-2.02380952380952[/C][/ROW]
[ROW][C]21[/C][C]102.4[/C][C]105.123809523810[/C][C]-2.72380952380952[/C][/ROW]
[ROW][C]22[/C][C]105.6[/C][C]105.809523809524[/C][C]-0.209523809523815[/C][/ROW]
[ROW][C]23[/C][C]99.8[/C][C]102.652380952381[/C][C]-2.85238095238096[/C][/ROW]
[ROW][C]24[/C][C]96.2[/C][C]100.595238095238[/C][C]-4.39523809523809[/C][/ROW]
[ROW][C]25[/C][C]113.1[/C][C]106.878571428571[/C][C]6.22142857142858[/C][/ROW]
[ROW][C]26[/C][C]107.4[/C][C]104.15[/C][C]3.25[/C][/ROW]
[ROW][C]27[/C][C]116.8[/C][C]113.088095238095[/C][C]3.71190476190475[/C][/ROW]
[ROW][C]28[/C][C]112.9[/C][C]107.002380952381[/C][C]5.89761904761905[/C][/ROW]
[ROW][C]29[/C][C]105.3[/C][C]106.388095238095[/C][C]-1.08809523809524[/C][/ROW]
[ROW][C]30[/C][C]109.3[/C][C]109.445238095238[/C][C]-0.145238095238096[/C][/ROW]
[ROW][C]31[/C][C]107.9[/C][C]105.116666666667[/C][C]2.78333333333334[/C][/ROW]
[ROW][C]32[/C][C]101.1[/C][C]101.773809523810[/C][C]-0.673809523809531[/C][/ROW]
[ROW][C]33[/C][C]114.7[/C][C]107.373809523810[/C][C]7.32619047619048[/C][/ROW]
[ROW][C]34[/C][C]116.2[/C][C]108.059523809524[/C][C]8.14047619047619[/C][/ROW]
[ROW][C]35[/C][C]108.4[/C][C]104.902380952381[/C][C]3.49761904761905[/C][/ROW]
[ROW][C]36[/C][C]113.4[/C][C]102.845238095238[/C][C]10.5547619047619[/C][/ROW]
[ROW][C]37[/C][C]108.7[/C][C]109.128571428571[/C][C]-0.428571428571408[/C][/ROW]
[ROW][C]38[/C][C]112.6[/C][C]106.4[/C][C]6.19999999999999[/C][/ROW]
[ROW][C]39[/C][C]124.2[/C][C]119.771428571429[/C][C]4.42857142857143[/C][/ROW]
[ROW][C]40[/C][C]114.9[/C][C]113.685714285714[/C][C]1.21428571428572[/C][/ROW]
[ROW][C]41[/C][C]110.5[/C][C]113.071428571429[/C][C]-2.57142857142856[/C][/ROW]
[ROW][C]42[/C][C]121.5[/C][C]116.128571428571[/C][C]5.37142857142858[/C][/ROW]
[ROW][C]43[/C][C]118.1[/C][C]111.8[/C][C]6.3[/C][/ROW]
[ROW][C]44[/C][C]111.7[/C][C]108.457142857143[/C][C]3.24285714285715[/C][/ROW]
[ROW][C]45[/C][C]132.7[/C][C]114.057142857143[/C][C]18.6428571428571[/C][/ROW]
[ROW][C]46[/C][C]119[/C][C]114.742857142857[/C][C]4.25714285714286[/C][/ROW]
[ROW][C]47[/C][C]116.7[/C][C]111.585714285714[/C][C]5.11428571428572[/C][/ROW]
[ROW][C]48[/C][C]120.1[/C][C]109.528571428571[/C][C]10.5714285714286[/C][/ROW]
[ROW][C]49[/C][C]113.4[/C][C]115.811904761905[/C][C]-2.41190476190473[/C][/ROW]
[ROW][C]50[/C][C]106.6[/C][C]113.083333333333[/C][C]-6.48333333333334[/C][/ROW]
[ROW][C]51[/C][C]116.3[/C][C]122.021428571429[/C][C]-5.72142857142858[/C][/ROW]
[ROW][C]52[/C][C]112.6[/C][C]115.935714285714[/C][C]-3.3357142857143[/C][/ROW]
[ROW][C]53[/C][C]111.6[/C][C]115.321428571429[/C][C]-3.72142857142857[/C][/ROW]
[ROW][C]54[/C][C]125.1[/C][C]118.378571428571[/C][C]6.72142857142857[/C][/ROW]
[ROW][C]55[/C][C]110.7[/C][C]114.05[/C][C]-3.35[/C][/ROW]
[ROW][C]56[/C][C]109.6[/C][C]110.707142857143[/C][C]-1.10714285714286[/C][/ROW]
[ROW][C]57[/C][C]114.2[/C][C]116.307142857143[/C][C]-2.10714285714285[/C][/ROW]
[ROW][C]58[/C][C]113.4[/C][C]116.992857142857[/C][C]-3.59285714285714[/C][/ROW]
[ROW][C]59[/C][C]116[/C][C]113.835714285714[/C][C]2.16428571428571[/C][/ROW]
[ROW][C]60[/C][C]109.6[/C][C]111.778571428571[/C][C]-2.17857142857143[/C][/ROW]
[ROW][C]61[/C][C]117.8[/C][C]118.061904761905[/C][C]-0.261904761904745[/C][/ROW]
[ROW][C]62[/C][C]115.8[/C][C]115.333333333333[/C][C]0.466666666666661[/C][/ROW]
[ROW][C]63[/C][C]125.3[/C][C]124.271428571429[/C][C]1.02857142857142[/C][/ROW]
[ROW][C]64[/C][C]113[/C][C]118.185714285714[/C][C]-5.18571428571429[/C][/ROW]
[ROW][C]65[/C][C]120.5[/C][C]117.571428571429[/C][C]2.92857142857143[/C][/ROW]
[ROW][C]66[/C][C]116.6[/C][C]120.628571428571[/C][C]-4.02857142857143[/C][/ROW]
[ROW][C]67[/C][C]111.8[/C][C]116.3[/C][C]-4.50000000000001[/C][/ROW]
[ROW][C]68[/C][C]115.2[/C][C]112.957142857143[/C][C]2.24285714285714[/C][/ROW]
[ROW][C]69[/C][C]118.6[/C][C]118.557142857143[/C][C]0.0428571428571376[/C][/ROW]
[ROW][C]70[/C][C]122.4[/C][C]119.242857142857[/C][C]3.15714285714286[/C][/ROW]
[ROW][C]71[/C][C]116.4[/C][C]116.085714285714[/C][C]0.314285714285716[/C][/ROW]
[ROW][C]72[/C][C]114.5[/C][C]114.028571428571[/C][C]0.471428571428576[/C][/ROW]
[ROW][C]73[/C][C]119.8[/C][C]120.311904761905[/C][C]-0.511904761904748[/C][/ROW]
[ROW][C]74[/C][C]115.8[/C][C]117.583333333333[/C][C]-1.78333333333334[/C][/ROW]
[ROW][C]75[/C][C]127.8[/C][C]126.521428571429[/C][C]1.27857142857142[/C][/ROW]
[ROW][C]76[/C][C]118.8[/C][C]120.435714285714[/C][C]-1.63571428571430[/C][/ROW]
[ROW][C]77[/C][C]119.7[/C][C]119.821428571429[/C][C]-0.121428571428565[/C][/ROW]
[ROW][C]78[/C][C]118.6[/C][C]122.878571428571[/C][C]-4.27857142857144[/C][/ROW]
[ROW][C]79[/C][C]120.8[/C][C]118.55[/C][C]2.24999999999999[/C][/ROW]
[ROW][C]80[/C][C]115.9[/C][C]115.207142857143[/C][C]0.692857142857145[/C][/ROW]
[ROW][C]81[/C][C]109.7[/C][C]120.807142857143[/C][C]-11.1071428571429[/C][/ROW]
[ROW][C]82[/C][C]114.8[/C][C]121.492857142857[/C][C]-6.69285714285715[/C][/ROW]
[ROW][C]83[/C][C]116.2[/C][C]118.335714285714[/C][C]-2.13571428571429[/C][/ROW]
[ROW][C]84[/C][C]112.2[/C][C]116.278571428571[/C][C]-4.07857142857143[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1101102.378571428572-1.37857142857155
298.799.65-0.949999999999967
3105.1108.588095238095-3.48809523809521
498.4102.502380952381-4.10238095238093
5101.7101.888095238095-0.188095238095272
6102.9104.945238095238-2.04523809523809
792.2100.616666666667-8.41666666666666
894.997.2738095238095-2.37380952380953
992.8102.873809523810-10.0738095238095
1098.5103.559523809524-5.05952380952381
1194.3100.402380952381-6.10238095238095
1287.498.3452380952381-10.9452380952381
13103.4104.628571428571-1.2285714285714
14101.2101.9-0.700000000000013
15109.6110.838095238095-1.23809523809525
16111.9104.7523809523817.14761904761905
17108.9104.1380952380954.76190476190477
18105.6107.195238095238-1.59523809523810
19107.8102.8666666666674.93333333333333
2097.599.5238095238095-2.02380952380952
21102.4105.123809523810-2.72380952380952
22105.6105.809523809524-0.209523809523815
2399.8102.652380952381-2.85238095238096
2496.2100.595238095238-4.39523809523809
25113.1106.8785714285716.22142857142858
26107.4104.153.25
27116.8113.0880952380953.71190476190475
28112.9107.0023809523815.89761904761905
29105.3106.388095238095-1.08809523809524
30109.3109.445238095238-0.145238095238096
31107.9105.1166666666672.78333333333334
32101.1101.773809523810-0.673809523809531
33114.7107.3738095238107.32619047619048
34116.2108.0595238095248.14047619047619
35108.4104.9023809523813.49761904761905
36113.4102.84523809523810.5547619047619
37108.7109.128571428571-0.428571428571408
38112.6106.46.19999999999999
39124.2119.7714285714294.42857142857143
40114.9113.6857142857141.21428571428572
41110.5113.071428571429-2.57142857142856
42121.5116.1285714285715.37142857142858
43118.1111.86.3
44111.7108.4571428571433.24285714285715
45132.7114.05714285714318.6428571428571
46119114.7428571428574.25714285714286
47116.7111.5857142857145.11428571428572
48120.1109.52857142857110.5714285714286
49113.4115.811904761905-2.41190476190473
50106.6113.083333333333-6.48333333333334
51116.3122.021428571429-5.72142857142858
52112.6115.935714285714-3.3357142857143
53111.6115.321428571429-3.72142857142857
54125.1118.3785714285716.72142857142857
55110.7114.05-3.35
56109.6110.707142857143-1.10714285714286
57114.2116.307142857143-2.10714285714285
58113.4116.992857142857-3.59285714285714
59116113.8357142857142.16428571428571
60109.6111.778571428571-2.17857142857143
61117.8118.061904761905-0.261904761904745
62115.8115.3333333333330.466666666666661
63125.3124.2714285714291.02857142857142
64113118.185714285714-5.18571428571429
65120.5117.5714285714292.92857142857143
66116.6120.628571428571-4.02857142857143
67111.8116.3-4.50000000000001
68115.2112.9571428571432.24285714285714
69118.6118.5571428571430.0428571428571376
70122.4119.2428571428573.15714285714286
71116.4116.0857142857140.314285714285716
72114.5114.0285714285710.471428571428576
73119.8120.311904761905-0.511904761904748
74115.8117.583333333333-1.78333333333334
75127.8126.5214285714291.27857142857142
76118.8120.435714285714-1.63571428571430
77119.7119.821428571429-0.121428571428565
78118.6122.878571428571-4.27857142857144
79120.8118.552.24999999999999
80115.9115.2071428571430.692857142857145
81109.7120.807142857143-11.1071428571429
82114.8121.492857142857-6.69285714285715
83116.2118.335714285714-2.13571428571429
84112.2116.278571428571-4.07857142857143







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.3677393116319160.7354786232638310.632260688368084
180.2492235861896320.4984471723792640.750776413810368
190.3940655958886270.7881311917772540.605934404111373
200.3205029097201410.6410058194402810.67949709027986
210.2589865026333440.5179730052666880.741013497366656
220.1774903236545910.3549806473091810.82250967634541
230.1327828979928200.2655657959856410.86721710200718
240.1250057709825540.2500115419651080.874994229017446
250.08003963416541730.1600792683308350.919960365834583
260.05614838260312190.1122967652062440.943851617396878
270.03291028605630570.06582057211261140.967089713943694
280.02176549196799760.04353098393599530.978234508032002
290.07087698501572920.1417539700314580.92912301498427
300.05981131785551230.1196226357110250.940188682144488
310.03836760542138870.07673521084277750.961632394578611
320.03592437329921300.07184874659842610.964075626700787
330.07329764098041450.1465952819608290.926702359019586
340.07169534535554940.1433906907110990.92830465464445
350.05493135713680120.1098627142736020.945068642863199
360.155982502836790.311965005673580.84401749716321
370.2498305016352610.4996610032705220.750169498364739
380.195717852836550.39143570567310.80428214716345
390.1475326702365990.2950653404731990.8524673297634
400.1256413749166530.2512827498333050.874358625083347
410.1227735056405730.2455470112811470.877226494359427
420.1146268795081270.2292537590162540.885373120491873
430.1016025621479390.2032051242958790.89839743785206
440.07489540531270180.1497908106254040.925104594687298
450.6981785366058040.6036429267883920.301821463394196
460.6628961305564390.6742077388871220.337103869443561
470.6094140123969010.7811719752061990.390585987603099
480.8004547409497380.3990905181005240.199545259050262
490.8277006156528180.3445987686943630.172299384347181
500.9164415945021560.1671168109956880.0835584054978442
510.961376277118230.07724744576354020.0386237228817701
520.958900507210830.08219898557834110.0410994927891706
530.9702140218651630.05957195626967450.0297859781348373
540.9871043222489650.02579135550207050.0128956777510353
550.9854018479271120.02919630414577530.0145981520728877
560.9825089803919460.03498203921610710.0174910196080535
570.9747345542786930.05053089144261480.0252654457213074
580.9708877897278730.05822442054425360.0291122102721268
590.9486352711997130.1027294576005730.0513647288002866
600.9291589277453820.1416821445092360.0708410722546181
610.8884356137792750.2231287724414510.111564386220725
620.8236480199765220.3527039600469560.176351980023478
630.7466771717186460.5066456565627070.253322828281354
640.7453452153631930.5093095692736140.254654784636807
650.6199634962708250.760073007458350.380036503729175
660.5136090204863980.9727819590272040.486390979513602
670.7558515505115940.4882968989768120.244148449488406

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.367739311631916 & 0.735478623263831 & 0.632260688368084 \tabularnewline
18 & 0.249223586189632 & 0.498447172379264 & 0.750776413810368 \tabularnewline
19 & 0.394065595888627 & 0.788131191777254 & 0.605934404111373 \tabularnewline
20 & 0.320502909720141 & 0.641005819440281 & 0.67949709027986 \tabularnewline
21 & 0.258986502633344 & 0.517973005266688 & 0.741013497366656 \tabularnewline
22 & 0.177490323654591 & 0.354980647309181 & 0.82250967634541 \tabularnewline
23 & 0.132782897992820 & 0.265565795985641 & 0.86721710200718 \tabularnewline
24 & 0.125005770982554 & 0.250011541965108 & 0.874994229017446 \tabularnewline
25 & 0.0800396341654173 & 0.160079268330835 & 0.919960365834583 \tabularnewline
26 & 0.0561483826031219 & 0.112296765206244 & 0.943851617396878 \tabularnewline
27 & 0.0329102860563057 & 0.0658205721126114 & 0.967089713943694 \tabularnewline
28 & 0.0217654919679976 & 0.0435309839359953 & 0.978234508032002 \tabularnewline
29 & 0.0708769850157292 & 0.141753970031458 & 0.92912301498427 \tabularnewline
30 & 0.0598113178555123 & 0.119622635711025 & 0.940188682144488 \tabularnewline
31 & 0.0383676054213887 & 0.0767352108427775 & 0.961632394578611 \tabularnewline
32 & 0.0359243732992130 & 0.0718487465984261 & 0.964075626700787 \tabularnewline
33 & 0.0732976409804145 & 0.146595281960829 & 0.926702359019586 \tabularnewline
34 & 0.0716953453555494 & 0.143390690711099 & 0.92830465464445 \tabularnewline
35 & 0.0549313571368012 & 0.109862714273602 & 0.945068642863199 \tabularnewline
36 & 0.15598250283679 & 0.31196500567358 & 0.84401749716321 \tabularnewline
37 & 0.249830501635261 & 0.499661003270522 & 0.750169498364739 \tabularnewline
38 & 0.19571785283655 & 0.3914357056731 & 0.80428214716345 \tabularnewline
39 & 0.147532670236599 & 0.295065340473199 & 0.8524673297634 \tabularnewline
40 & 0.125641374916653 & 0.251282749833305 & 0.874358625083347 \tabularnewline
41 & 0.122773505640573 & 0.245547011281147 & 0.877226494359427 \tabularnewline
42 & 0.114626879508127 & 0.229253759016254 & 0.885373120491873 \tabularnewline
43 & 0.101602562147939 & 0.203205124295879 & 0.89839743785206 \tabularnewline
44 & 0.0748954053127018 & 0.149790810625404 & 0.925104594687298 \tabularnewline
45 & 0.698178536605804 & 0.603642926788392 & 0.301821463394196 \tabularnewline
46 & 0.662896130556439 & 0.674207738887122 & 0.337103869443561 \tabularnewline
47 & 0.609414012396901 & 0.781171975206199 & 0.390585987603099 \tabularnewline
48 & 0.800454740949738 & 0.399090518100524 & 0.199545259050262 \tabularnewline
49 & 0.827700615652818 & 0.344598768694363 & 0.172299384347181 \tabularnewline
50 & 0.916441594502156 & 0.167116810995688 & 0.0835584054978442 \tabularnewline
51 & 0.96137627711823 & 0.0772474457635402 & 0.0386237228817701 \tabularnewline
52 & 0.95890050721083 & 0.0821989855783411 & 0.0410994927891706 \tabularnewline
53 & 0.970214021865163 & 0.0595719562696745 & 0.0297859781348373 \tabularnewline
54 & 0.987104322248965 & 0.0257913555020705 & 0.0128956777510353 \tabularnewline
55 & 0.985401847927112 & 0.0291963041457753 & 0.0145981520728877 \tabularnewline
56 & 0.982508980391946 & 0.0349820392161071 & 0.0174910196080535 \tabularnewline
57 & 0.974734554278693 & 0.0505308914426148 & 0.0252654457213074 \tabularnewline
58 & 0.970887789727873 & 0.0582244205442536 & 0.0291122102721268 \tabularnewline
59 & 0.948635271199713 & 0.102729457600573 & 0.0513647288002866 \tabularnewline
60 & 0.929158927745382 & 0.141682144509236 & 0.0708410722546181 \tabularnewline
61 & 0.888435613779275 & 0.223128772441451 & 0.111564386220725 \tabularnewline
62 & 0.823648019976522 & 0.352703960046956 & 0.176351980023478 \tabularnewline
63 & 0.746677171718646 & 0.506645656562707 & 0.253322828281354 \tabularnewline
64 & 0.745345215363193 & 0.509309569273614 & 0.254654784636807 \tabularnewline
65 & 0.619963496270825 & 0.76007300745835 & 0.380036503729175 \tabularnewline
66 & 0.513609020486398 & 0.972781959027204 & 0.486390979513602 \tabularnewline
67 & 0.755851550511594 & 0.488296898976812 & 0.244148449488406 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.367739311631916[/C][C]0.735478623263831[/C][C]0.632260688368084[/C][/ROW]
[ROW][C]18[/C][C]0.249223586189632[/C][C]0.498447172379264[/C][C]0.750776413810368[/C][/ROW]
[ROW][C]19[/C][C]0.394065595888627[/C][C]0.788131191777254[/C][C]0.605934404111373[/C][/ROW]
[ROW][C]20[/C][C]0.320502909720141[/C][C]0.641005819440281[/C][C]0.67949709027986[/C][/ROW]
[ROW][C]21[/C][C]0.258986502633344[/C][C]0.517973005266688[/C][C]0.741013497366656[/C][/ROW]
[ROW][C]22[/C][C]0.177490323654591[/C][C]0.354980647309181[/C][C]0.82250967634541[/C][/ROW]
[ROW][C]23[/C][C]0.132782897992820[/C][C]0.265565795985641[/C][C]0.86721710200718[/C][/ROW]
[ROW][C]24[/C][C]0.125005770982554[/C][C]0.250011541965108[/C][C]0.874994229017446[/C][/ROW]
[ROW][C]25[/C][C]0.0800396341654173[/C][C]0.160079268330835[/C][C]0.919960365834583[/C][/ROW]
[ROW][C]26[/C][C]0.0561483826031219[/C][C]0.112296765206244[/C][C]0.943851617396878[/C][/ROW]
[ROW][C]27[/C][C]0.0329102860563057[/C][C]0.0658205721126114[/C][C]0.967089713943694[/C][/ROW]
[ROW][C]28[/C][C]0.0217654919679976[/C][C]0.0435309839359953[/C][C]0.978234508032002[/C][/ROW]
[ROW][C]29[/C][C]0.0708769850157292[/C][C]0.141753970031458[/C][C]0.92912301498427[/C][/ROW]
[ROW][C]30[/C][C]0.0598113178555123[/C][C]0.119622635711025[/C][C]0.940188682144488[/C][/ROW]
[ROW][C]31[/C][C]0.0383676054213887[/C][C]0.0767352108427775[/C][C]0.961632394578611[/C][/ROW]
[ROW][C]32[/C][C]0.0359243732992130[/C][C]0.0718487465984261[/C][C]0.964075626700787[/C][/ROW]
[ROW][C]33[/C][C]0.0732976409804145[/C][C]0.146595281960829[/C][C]0.926702359019586[/C][/ROW]
[ROW][C]34[/C][C]0.0716953453555494[/C][C]0.143390690711099[/C][C]0.92830465464445[/C][/ROW]
[ROW][C]35[/C][C]0.0549313571368012[/C][C]0.109862714273602[/C][C]0.945068642863199[/C][/ROW]
[ROW][C]36[/C][C]0.15598250283679[/C][C]0.31196500567358[/C][C]0.84401749716321[/C][/ROW]
[ROW][C]37[/C][C]0.249830501635261[/C][C]0.499661003270522[/C][C]0.750169498364739[/C][/ROW]
[ROW][C]38[/C][C]0.19571785283655[/C][C]0.3914357056731[/C][C]0.80428214716345[/C][/ROW]
[ROW][C]39[/C][C]0.147532670236599[/C][C]0.295065340473199[/C][C]0.8524673297634[/C][/ROW]
[ROW][C]40[/C][C]0.125641374916653[/C][C]0.251282749833305[/C][C]0.874358625083347[/C][/ROW]
[ROW][C]41[/C][C]0.122773505640573[/C][C]0.245547011281147[/C][C]0.877226494359427[/C][/ROW]
[ROW][C]42[/C][C]0.114626879508127[/C][C]0.229253759016254[/C][C]0.885373120491873[/C][/ROW]
[ROW][C]43[/C][C]0.101602562147939[/C][C]0.203205124295879[/C][C]0.89839743785206[/C][/ROW]
[ROW][C]44[/C][C]0.0748954053127018[/C][C]0.149790810625404[/C][C]0.925104594687298[/C][/ROW]
[ROW][C]45[/C][C]0.698178536605804[/C][C]0.603642926788392[/C][C]0.301821463394196[/C][/ROW]
[ROW][C]46[/C][C]0.662896130556439[/C][C]0.674207738887122[/C][C]0.337103869443561[/C][/ROW]
[ROW][C]47[/C][C]0.609414012396901[/C][C]0.781171975206199[/C][C]0.390585987603099[/C][/ROW]
[ROW][C]48[/C][C]0.800454740949738[/C][C]0.399090518100524[/C][C]0.199545259050262[/C][/ROW]
[ROW][C]49[/C][C]0.827700615652818[/C][C]0.344598768694363[/C][C]0.172299384347181[/C][/ROW]
[ROW][C]50[/C][C]0.916441594502156[/C][C]0.167116810995688[/C][C]0.0835584054978442[/C][/ROW]
[ROW][C]51[/C][C]0.96137627711823[/C][C]0.0772474457635402[/C][C]0.0386237228817701[/C][/ROW]
[ROW][C]52[/C][C]0.95890050721083[/C][C]0.0821989855783411[/C][C]0.0410994927891706[/C][/ROW]
[ROW][C]53[/C][C]0.970214021865163[/C][C]0.0595719562696745[/C][C]0.0297859781348373[/C][/ROW]
[ROW][C]54[/C][C]0.987104322248965[/C][C]0.0257913555020705[/C][C]0.0128956777510353[/C][/ROW]
[ROW][C]55[/C][C]0.985401847927112[/C][C]0.0291963041457753[/C][C]0.0145981520728877[/C][/ROW]
[ROW][C]56[/C][C]0.982508980391946[/C][C]0.0349820392161071[/C][C]0.0174910196080535[/C][/ROW]
[ROW][C]57[/C][C]0.974734554278693[/C][C]0.0505308914426148[/C][C]0.0252654457213074[/C][/ROW]
[ROW][C]58[/C][C]0.970887789727873[/C][C]0.0582244205442536[/C][C]0.0291122102721268[/C][/ROW]
[ROW][C]59[/C][C]0.948635271199713[/C][C]0.102729457600573[/C][C]0.0513647288002866[/C][/ROW]
[ROW][C]60[/C][C]0.929158927745382[/C][C]0.141682144509236[/C][C]0.0708410722546181[/C][/ROW]
[ROW][C]61[/C][C]0.888435613779275[/C][C]0.223128772441451[/C][C]0.111564386220725[/C][/ROW]
[ROW][C]62[/C][C]0.823648019976522[/C][C]0.352703960046956[/C][C]0.176351980023478[/C][/ROW]
[ROW][C]63[/C][C]0.746677171718646[/C][C]0.506645656562707[/C][C]0.253322828281354[/C][/ROW]
[ROW][C]64[/C][C]0.745345215363193[/C][C]0.509309569273614[/C][C]0.254654784636807[/C][/ROW]
[ROW][C]65[/C][C]0.619963496270825[/C][C]0.76007300745835[/C][C]0.380036503729175[/C][/ROW]
[ROW][C]66[/C][C]0.513609020486398[/C][C]0.972781959027204[/C][C]0.486390979513602[/C][/ROW]
[ROW][C]67[/C][C]0.755851550511594[/C][C]0.488296898976812[/C][C]0.244148449488406[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.3677393116319160.7354786232638310.632260688368084
180.2492235861896320.4984471723792640.750776413810368
190.3940655958886270.7881311917772540.605934404111373
200.3205029097201410.6410058194402810.67949709027986
210.2589865026333440.5179730052666880.741013497366656
220.1774903236545910.3549806473091810.82250967634541
230.1327828979928200.2655657959856410.86721710200718
240.1250057709825540.2500115419651080.874994229017446
250.08003963416541730.1600792683308350.919960365834583
260.05614838260312190.1122967652062440.943851617396878
270.03291028605630570.06582057211261140.967089713943694
280.02176549196799760.04353098393599530.978234508032002
290.07087698501572920.1417539700314580.92912301498427
300.05981131785551230.1196226357110250.940188682144488
310.03836760542138870.07673521084277750.961632394578611
320.03592437329921300.07184874659842610.964075626700787
330.07329764098041450.1465952819608290.926702359019586
340.07169534535554940.1433906907110990.92830465464445
350.05493135713680120.1098627142736020.945068642863199
360.155982502836790.311965005673580.84401749716321
370.2498305016352610.4996610032705220.750169498364739
380.195717852836550.39143570567310.80428214716345
390.1475326702365990.2950653404731990.8524673297634
400.1256413749166530.2512827498333050.874358625083347
410.1227735056405730.2455470112811470.877226494359427
420.1146268795081270.2292537590162540.885373120491873
430.1016025621479390.2032051242958790.89839743785206
440.07489540531270180.1497908106254040.925104594687298
450.6981785366058040.6036429267883920.301821463394196
460.6628961305564390.6742077388871220.337103869443561
470.6094140123969010.7811719752061990.390585987603099
480.8004547409497380.3990905181005240.199545259050262
490.8277006156528180.3445987686943630.172299384347181
500.9164415945021560.1671168109956880.0835584054978442
510.961376277118230.07724744576354020.0386237228817701
520.958900507210830.08219898557834110.0410994927891706
530.9702140218651630.05957195626967450.0297859781348373
540.9871043222489650.02579135550207050.0128956777510353
550.9854018479271120.02919630414577530.0145981520728877
560.9825089803919460.03498203921610710.0174910196080535
570.9747345542786930.05053089144261480.0252654457213074
580.9708877897278730.05822442054425360.0291122102721268
590.9486352711997130.1027294576005730.0513647288002866
600.9291589277453820.1416821445092360.0708410722546181
610.8884356137792750.2231287724414510.111564386220725
620.8236480199765220.3527039600469560.176351980023478
630.7466771717186460.5066456565627070.253322828281354
640.7453452153631930.5093095692736140.254654784636807
650.6199634962708250.760073007458350.380036503729175
660.5136090204863980.9727819590272040.486390979513602
670.7558515505115940.4882968989768120.244148449488406







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.0784313725490196NOK
10% type I error level120.235294117647059NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 4 & 0.0784313725490196 & NOK \tabularnewline
10% type I error level & 12 & 0.235294117647059 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=33753&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]4[/C][C]0.0784313725490196[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]12[/C][C]0.235294117647059[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=33753&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=33753&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.0784313725490196NOK
10% type I error level120.235294117647059NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}