Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 18 Nov 2009 12:41:50 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/18/t125857351218e0rf5ajsih91c.htm/, Retrieved Wed, 15 Jan 2025 13:36:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=57605, Retrieved Wed, 15 Jan 2025 13:36:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsTijdsperiode Januari 2004 - Januari 2009 Basisjaar 2000=100 Quarterly dummies
Estimated Impact302
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
-   PD      [Multiple Regression] [Grondstofprijsind...] [2009-11-18 19:41:50] [c483349466b1550829c7523719d2d027] [Current]
-   PD        [Multiple Regression] [] [2009-11-21 14:55:39] [6998f38352c0f6bc3cf32a17448703fc]
Feedback Forum

Post a new message
Dataseries X:
117.1	95.1
118.7	97
126.5	112.7
127.5	102.9
134.6	97.4
131.8	111.4
135.9	87.4
142.7	96.8
141.7	114.1
153.4	110.3
145	103.9
137.7	101.6
148.3	94.6
152.2	95.9
169.4	104.7
168.6	102.8
161.1	98.1
174.1	113.9
179	80.9
190.6	95.7
190	113.2
181.6	105.9
174.8	108.8
180.5	102.3
196.8	99
193.8	100.7
197	115.5
216.3	100.7
221.4	109.9
217.9	114.6
229.7	85.4
227.4	100.5
204.2	114.8
196.6	116.5
198.8	112.9
207.5	102
190.7	106
201.6	105.3
210.5	118.8
223.5	106.1
223.8	109.3
231.2	117.2
244	92.5
234.7	104.2
250.2	112.5
265.7	122.4
287.6	113.3
283.3	100
295.4	110.7
312.3	112.8
333.8	109.8
347.7	117.3
383.2	109.1
407.1	115.9
413.6	96
362.7	99.8
321.9	116.8
239.4	115.7
191	99.4
159.7	94.3
163.4	91




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Energieprijsindex[t] = -74.6161237649833 + 2.83539086868026totindusprodindex[t] -16.1680758262366Q1[t] -26.4898484416942Q2[t] -1.08872420201358Q3[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Energieprijsindex[t] =  -74.6161237649833 +  2.83539086868026totindusprodindex[t] -16.1680758262366Q1[t] -26.4898484416942Q2[t] -1.08872420201358Q3[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Energieprijsindex[t] =  -74.6161237649833 +  2.83539086868026totindusprodindex[t] -16.1680758262366Q1[t] -26.4898484416942Q2[t] -1.08872420201358Q3[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Energieprijsindex[t] = -74.6161237649833 + 2.83539086868026totindusprodindex[t] -16.1680758262366Q1[t] -26.4898484416942Q2[t] -1.08872420201358Q3[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-74.6161237649833110.717431-0.67390.5031260.251563
totindusprodindex2.835390868680261.0727982.6430.0106370.005319
Q1-16.168075826236625.684884-0.62950.5315960.265798
Q2-26.489848441694227.334113-0.96910.3366560.168328
Q3-1.0887242020135825.765151-0.04230.9664450.483223

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -74.6161237649833 & 110.717431 & -0.6739 & 0.503126 & 0.251563 \tabularnewline
totindusprodindex & 2.83539086868026 & 1.072798 & 2.643 & 0.010637 & 0.005319 \tabularnewline
Q1 & -16.1680758262366 & 25.684884 & -0.6295 & 0.531596 & 0.265798 \tabularnewline
Q2 & -26.4898484416942 & 27.334113 & -0.9691 & 0.336656 & 0.168328 \tabularnewline
Q3 & -1.08872420201358 & 25.765151 & -0.0423 & 0.966445 & 0.483223 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-74.6161237649833[/C][C]110.717431[/C][C]-0.6739[/C][C]0.503126[/C][C]0.251563[/C][/ROW]
[ROW][C]totindusprodindex[/C][C]2.83539086868026[/C][C]1.072798[/C][C]2.643[/C][C]0.010637[/C][C]0.005319[/C][/ROW]
[ROW][C]Q1[/C][C]-16.1680758262366[/C][C]25.684884[/C][C]-0.6295[/C][C]0.531596[/C][C]0.265798[/C][/ROW]
[ROW][C]Q2[/C][C]-26.4898484416942[/C][C]27.334113[/C][C]-0.9691[/C][C]0.336656[/C][C]0.168328[/C][/ROW]
[ROW][C]Q3[/C][C]-1.08872420201358[/C][C]25.765151[/C][C]-0.0423[/C][C]0.966445[/C][C]0.483223[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-74.6161237649833110.717431-0.67390.5031260.251563
totindusprodindex2.835390868680261.0727982.6430.0106370.005319
Q1-16.168075826236625.684884-0.62950.5315960.265798
Q2-26.489848441694227.334113-0.96910.3366560.168328
Q3-1.0887242020135825.765151-0.04230.9664450.483223







Multiple Linear Regression - Regression Statistics
Multiple R0.334720114098809
R-squared0.112037554782320
Adjusted R-squared0.0486116658381996
F-TEST (value)1.76643255061081
F-TEST (DF numerator)4
F-TEST (DF denominator)56
p-value0.148504525221584
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation70.4995807399476
Sum Squared Residuals278330.68953247

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.334720114098809 \tabularnewline
R-squared & 0.112037554782320 \tabularnewline
Adjusted R-squared & 0.0486116658381996 \tabularnewline
F-TEST (value) & 1.76643255061081 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 56 \tabularnewline
p-value & 0.148504525221584 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 70.4995807399476 \tabularnewline
Sum Squared Residuals & 278330.68953247 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.334720114098809[/C][/ROW]
[ROW][C]R-squared[/C][C]0.112037554782320[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.0486116658381996[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.76643255061081[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]56[/C][/ROW]
[ROW][C]p-value[/C][C]0.148504525221584[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]70.4995807399476[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]278330.68953247[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.334720114098809
R-squared0.112037554782320
Adjusted R-squared0.0486116658381996
F-TEST (value)1.76643255061081
F-TEST (DF numerator)4
F-TEST (DF denominator)56
p-value0.148504525221584
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation70.4995807399476
Sum Squared Residuals278330.68953247







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1117.1178.861472020272-61.7614720202719
2118.7173.926942055307-55.2269420553073
3126.5243.843702933268-117.343702933268
4127.5217.145596622215-89.645596622215
5134.6185.382871018237-50.7828710182369
6131.8214.756570564303-82.956570564303
7135.9172.108313955657-36.2083139556574
8142.7199.849712323265-57.1497123232654
9141.7232.733898525197-91.0338985251972
10153.4211.637640608755-58.2376406087546
11145218.892263288882-73.8922632888816
12137.7213.459588492931-75.7595884929306
13148.3177.443776585932-29.1437765859322
14152.2170.808012099759-18.608012099759
15169.4221.160575983826-51.7605759838258
16168.6216.862057535347-48.2620575353469
17161.1187.367644626313-26.2676446263131
18174.1221.845047736004-47.7450477360036
19179153.67827330923625.3217266907642
20190.6196.730782367717-6.13078236771712
21190230.182046743385-40.1820467433850
22181.6199.161920786562-17.5619207865615
23174.8232.785678545415-57.9856785454149
24180.5215.444362101007-34.9443621010068
25196.8189.9194964081256.8805035918747
26193.8184.4178882694249.38211173057581
27197251.782797365573-54.7827973655726
28216.3210.9077367111185.39226328888162
29221.4220.825256876740.574743123259888
30217.9223.829821344080-5.92982134407972
31229.7166.43753221829763.2624677817031
32227.4210.34065853738217.0593414626177
33204.2234.718672133273-30.5186721332734
34196.6229.217063994572-32.6170639945722
35198.8244.410781107004-45.6107811070039
36207.5214.593744840403-7.09374484040271
37190.7209.767232488887-19.0672324888871
38201.6197.4606862653534.13931373464664
39210.5261.139587232217-50.6395872322174
40223.5226.218847401992-2.71884740199175
41223.8219.1240223555324.67597764446807
42231.2231.201837602648-0.00183760264842636
43244186.56880738592757.4311926140733
44234.7220.83160475149913.8683952485007
45250.2228.19727313530922.0027268646912
46265.7245.94587011978619.7541298802142
47287.6245.54493745447642.055062545524
48283.3208.92296310304274.3770368969578
49295.4223.09356957168472.3064304283157
50312.3218.72611778045593.5738822195447
51333.8235.62106941409598.1789305859049
52347.7257.97522513121189.7247748687894
53383.2218.556944181796164.643055818204
54407.1227.515829473364179.584170526636
55413.6196.492675426308217.107324573692
56362.7208.355884929306154.344115070694
57321.9240.38945387063481.5105461293661
58239.4226.94875129962812.4512487003720
59191206.133004379820-15.1330043798205
60159.7192.761235151565-33.0612351515647
61163.4167.236369458683-3.83636945868326

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 117.1 & 178.861472020272 & -61.7614720202719 \tabularnewline
2 & 118.7 & 173.926942055307 & -55.2269420553073 \tabularnewline
3 & 126.5 & 243.843702933268 & -117.343702933268 \tabularnewline
4 & 127.5 & 217.145596622215 & -89.645596622215 \tabularnewline
5 & 134.6 & 185.382871018237 & -50.7828710182369 \tabularnewline
6 & 131.8 & 214.756570564303 & -82.956570564303 \tabularnewline
7 & 135.9 & 172.108313955657 & -36.2083139556574 \tabularnewline
8 & 142.7 & 199.849712323265 & -57.1497123232654 \tabularnewline
9 & 141.7 & 232.733898525197 & -91.0338985251972 \tabularnewline
10 & 153.4 & 211.637640608755 & -58.2376406087546 \tabularnewline
11 & 145 & 218.892263288882 & -73.8922632888816 \tabularnewline
12 & 137.7 & 213.459588492931 & -75.7595884929306 \tabularnewline
13 & 148.3 & 177.443776585932 & -29.1437765859322 \tabularnewline
14 & 152.2 & 170.808012099759 & -18.608012099759 \tabularnewline
15 & 169.4 & 221.160575983826 & -51.7605759838258 \tabularnewline
16 & 168.6 & 216.862057535347 & -48.2620575353469 \tabularnewline
17 & 161.1 & 187.367644626313 & -26.2676446263131 \tabularnewline
18 & 174.1 & 221.845047736004 & -47.7450477360036 \tabularnewline
19 & 179 & 153.678273309236 & 25.3217266907642 \tabularnewline
20 & 190.6 & 196.730782367717 & -6.13078236771712 \tabularnewline
21 & 190 & 230.182046743385 & -40.1820467433850 \tabularnewline
22 & 181.6 & 199.161920786562 & -17.5619207865615 \tabularnewline
23 & 174.8 & 232.785678545415 & -57.9856785454149 \tabularnewline
24 & 180.5 & 215.444362101007 & -34.9443621010068 \tabularnewline
25 & 196.8 & 189.919496408125 & 6.8805035918747 \tabularnewline
26 & 193.8 & 184.417888269424 & 9.38211173057581 \tabularnewline
27 & 197 & 251.782797365573 & -54.7827973655726 \tabularnewline
28 & 216.3 & 210.907736711118 & 5.39226328888162 \tabularnewline
29 & 221.4 & 220.82525687674 & 0.574743123259888 \tabularnewline
30 & 217.9 & 223.829821344080 & -5.92982134407972 \tabularnewline
31 & 229.7 & 166.437532218297 & 63.2624677817031 \tabularnewline
32 & 227.4 & 210.340658537382 & 17.0593414626177 \tabularnewline
33 & 204.2 & 234.718672133273 & -30.5186721332734 \tabularnewline
34 & 196.6 & 229.217063994572 & -32.6170639945722 \tabularnewline
35 & 198.8 & 244.410781107004 & -45.6107811070039 \tabularnewline
36 & 207.5 & 214.593744840403 & -7.09374484040271 \tabularnewline
37 & 190.7 & 209.767232488887 & -19.0672324888871 \tabularnewline
38 & 201.6 & 197.460686265353 & 4.13931373464664 \tabularnewline
39 & 210.5 & 261.139587232217 & -50.6395872322174 \tabularnewline
40 & 223.5 & 226.218847401992 & -2.71884740199175 \tabularnewline
41 & 223.8 & 219.124022355532 & 4.67597764446807 \tabularnewline
42 & 231.2 & 231.201837602648 & -0.00183760264842636 \tabularnewline
43 & 244 & 186.568807385927 & 57.4311926140733 \tabularnewline
44 & 234.7 & 220.831604751499 & 13.8683952485007 \tabularnewline
45 & 250.2 & 228.197273135309 & 22.0027268646912 \tabularnewline
46 & 265.7 & 245.945870119786 & 19.7541298802142 \tabularnewline
47 & 287.6 & 245.544937454476 & 42.055062545524 \tabularnewline
48 & 283.3 & 208.922963103042 & 74.3770368969578 \tabularnewline
49 & 295.4 & 223.093569571684 & 72.3064304283157 \tabularnewline
50 & 312.3 & 218.726117780455 & 93.5738822195447 \tabularnewline
51 & 333.8 & 235.621069414095 & 98.1789305859049 \tabularnewline
52 & 347.7 & 257.975225131211 & 89.7247748687894 \tabularnewline
53 & 383.2 & 218.556944181796 & 164.643055818204 \tabularnewline
54 & 407.1 & 227.515829473364 & 179.584170526636 \tabularnewline
55 & 413.6 & 196.492675426308 & 217.107324573692 \tabularnewline
56 & 362.7 & 208.355884929306 & 154.344115070694 \tabularnewline
57 & 321.9 & 240.389453870634 & 81.5105461293661 \tabularnewline
58 & 239.4 & 226.948751299628 & 12.4512487003720 \tabularnewline
59 & 191 & 206.133004379820 & -15.1330043798205 \tabularnewline
60 & 159.7 & 192.761235151565 & -33.0612351515647 \tabularnewline
61 & 163.4 & 167.236369458683 & -3.83636945868326 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]117.1[/C][C]178.861472020272[/C][C]-61.7614720202719[/C][/ROW]
[ROW][C]2[/C][C]118.7[/C][C]173.926942055307[/C][C]-55.2269420553073[/C][/ROW]
[ROW][C]3[/C][C]126.5[/C][C]243.843702933268[/C][C]-117.343702933268[/C][/ROW]
[ROW][C]4[/C][C]127.5[/C][C]217.145596622215[/C][C]-89.645596622215[/C][/ROW]
[ROW][C]5[/C][C]134.6[/C][C]185.382871018237[/C][C]-50.7828710182369[/C][/ROW]
[ROW][C]6[/C][C]131.8[/C][C]214.756570564303[/C][C]-82.956570564303[/C][/ROW]
[ROW][C]7[/C][C]135.9[/C][C]172.108313955657[/C][C]-36.2083139556574[/C][/ROW]
[ROW][C]8[/C][C]142.7[/C][C]199.849712323265[/C][C]-57.1497123232654[/C][/ROW]
[ROW][C]9[/C][C]141.7[/C][C]232.733898525197[/C][C]-91.0338985251972[/C][/ROW]
[ROW][C]10[/C][C]153.4[/C][C]211.637640608755[/C][C]-58.2376406087546[/C][/ROW]
[ROW][C]11[/C][C]145[/C][C]218.892263288882[/C][C]-73.8922632888816[/C][/ROW]
[ROW][C]12[/C][C]137.7[/C][C]213.459588492931[/C][C]-75.7595884929306[/C][/ROW]
[ROW][C]13[/C][C]148.3[/C][C]177.443776585932[/C][C]-29.1437765859322[/C][/ROW]
[ROW][C]14[/C][C]152.2[/C][C]170.808012099759[/C][C]-18.608012099759[/C][/ROW]
[ROW][C]15[/C][C]169.4[/C][C]221.160575983826[/C][C]-51.7605759838258[/C][/ROW]
[ROW][C]16[/C][C]168.6[/C][C]216.862057535347[/C][C]-48.2620575353469[/C][/ROW]
[ROW][C]17[/C][C]161.1[/C][C]187.367644626313[/C][C]-26.2676446263131[/C][/ROW]
[ROW][C]18[/C][C]174.1[/C][C]221.845047736004[/C][C]-47.7450477360036[/C][/ROW]
[ROW][C]19[/C][C]179[/C][C]153.678273309236[/C][C]25.3217266907642[/C][/ROW]
[ROW][C]20[/C][C]190.6[/C][C]196.730782367717[/C][C]-6.13078236771712[/C][/ROW]
[ROW][C]21[/C][C]190[/C][C]230.182046743385[/C][C]-40.1820467433850[/C][/ROW]
[ROW][C]22[/C][C]181.6[/C][C]199.161920786562[/C][C]-17.5619207865615[/C][/ROW]
[ROW][C]23[/C][C]174.8[/C][C]232.785678545415[/C][C]-57.9856785454149[/C][/ROW]
[ROW][C]24[/C][C]180.5[/C][C]215.444362101007[/C][C]-34.9443621010068[/C][/ROW]
[ROW][C]25[/C][C]196.8[/C][C]189.919496408125[/C][C]6.8805035918747[/C][/ROW]
[ROW][C]26[/C][C]193.8[/C][C]184.417888269424[/C][C]9.38211173057581[/C][/ROW]
[ROW][C]27[/C][C]197[/C][C]251.782797365573[/C][C]-54.7827973655726[/C][/ROW]
[ROW][C]28[/C][C]216.3[/C][C]210.907736711118[/C][C]5.39226328888162[/C][/ROW]
[ROW][C]29[/C][C]221.4[/C][C]220.82525687674[/C][C]0.574743123259888[/C][/ROW]
[ROW][C]30[/C][C]217.9[/C][C]223.829821344080[/C][C]-5.92982134407972[/C][/ROW]
[ROW][C]31[/C][C]229.7[/C][C]166.437532218297[/C][C]63.2624677817031[/C][/ROW]
[ROW][C]32[/C][C]227.4[/C][C]210.340658537382[/C][C]17.0593414626177[/C][/ROW]
[ROW][C]33[/C][C]204.2[/C][C]234.718672133273[/C][C]-30.5186721332734[/C][/ROW]
[ROW][C]34[/C][C]196.6[/C][C]229.217063994572[/C][C]-32.6170639945722[/C][/ROW]
[ROW][C]35[/C][C]198.8[/C][C]244.410781107004[/C][C]-45.6107811070039[/C][/ROW]
[ROW][C]36[/C][C]207.5[/C][C]214.593744840403[/C][C]-7.09374484040271[/C][/ROW]
[ROW][C]37[/C][C]190.7[/C][C]209.767232488887[/C][C]-19.0672324888871[/C][/ROW]
[ROW][C]38[/C][C]201.6[/C][C]197.460686265353[/C][C]4.13931373464664[/C][/ROW]
[ROW][C]39[/C][C]210.5[/C][C]261.139587232217[/C][C]-50.6395872322174[/C][/ROW]
[ROW][C]40[/C][C]223.5[/C][C]226.218847401992[/C][C]-2.71884740199175[/C][/ROW]
[ROW][C]41[/C][C]223.8[/C][C]219.124022355532[/C][C]4.67597764446807[/C][/ROW]
[ROW][C]42[/C][C]231.2[/C][C]231.201837602648[/C][C]-0.00183760264842636[/C][/ROW]
[ROW][C]43[/C][C]244[/C][C]186.568807385927[/C][C]57.4311926140733[/C][/ROW]
[ROW][C]44[/C][C]234.7[/C][C]220.831604751499[/C][C]13.8683952485007[/C][/ROW]
[ROW][C]45[/C][C]250.2[/C][C]228.197273135309[/C][C]22.0027268646912[/C][/ROW]
[ROW][C]46[/C][C]265.7[/C][C]245.945870119786[/C][C]19.7541298802142[/C][/ROW]
[ROW][C]47[/C][C]287.6[/C][C]245.544937454476[/C][C]42.055062545524[/C][/ROW]
[ROW][C]48[/C][C]283.3[/C][C]208.922963103042[/C][C]74.3770368969578[/C][/ROW]
[ROW][C]49[/C][C]295.4[/C][C]223.093569571684[/C][C]72.3064304283157[/C][/ROW]
[ROW][C]50[/C][C]312.3[/C][C]218.726117780455[/C][C]93.5738822195447[/C][/ROW]
[ROW][C]51[/C][C]333.8[/C][C]235.621069414095[/C][C]98.1789305859049[/C][/ROW]
[ROW][C]52[/C][C]347.7[/C][C]257.975225131211[/C][C]89.7247748687894[/C][/ROW]
[ROW][C]53[/C][C]383.2[/C][C]218.556944181796[/C][C]164.643055818204[/C][/ROW]
[ROW][C]54[/C][C]407.1[/C][C]227.515829473364[/C][C]179.584170526636[/C][/ROW]
[ROW][C]55[/C][C]413.6[/C][C]196.492675426308[/C][C]217.107324573692[/C][/ROW]
[ROW][C]56[/C][C]362.7[/C][C]208.355884929306[/C][C]154.344115070694[/C][/ROW]
[ROW][C]57[/C][C]321.9[/C][C]240.389453870634[/C][C]81.5105461293661[/C][/ROW]
[ROW][C]58[/C][C]239.4[/C][C]226.948751299628[/C][C]12.4512487003720[/C][/ROW]
[ROW][C]59[/C][C]191[/C][C]206.133004379820[/C][C]-15.1330043798205[/C][/ROW]
[ROW][C]60[/C][C]159.7[/C][C]192.761235151565[/C][C]-33.0612351515647[/C][/ROW]
[ROW][C]61[/C][C]163.4[/C][C]167.236369458683[/C][C]-3.83636945868326[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1117.1178.861472020272-61.7614720202719
2118.7173.926942055307-55.2269420553073
3126.5243.843702933268-117.343702933268
4127.5217.145596622215-89.645596622215
5134.6185.382871018237-50.7828710182369
6131.8214.756570564303-82.956570564303
7135.9172.108313955657-36.2083139556574
8142.7199.849712323265-57.1497123232654
9141.7232.733898525197-91.0338985251972
10153.4211.637640608755-58.2376406087546
11145218.892263288882-73.8922632888816
12137.7213.459588492931-75.7595884929306
13148.3177.443776585932-29.1437765859322
14152.2170.808012099759-18.608012099759
15169.4221.160575983826-51.7605759838258
16168.6216.862057535347-48.2620575353469
17161.1187.367644626313-26.2676446263131
18174.1221.845047736004-47.7450477360036
19179153.67827330923625.3217266907642
20190.6196.730782367717-6.13078236771712
21190230.182046743385-40.1820467433850
22181.6199.161920786562-17.5619207865615
23174.8232.785678545415-57.9856785454149
24180.5215.444362101007-34.9443621010068
25196.8189.9194964081256.8805035918747
26193.8184.4178882694249.38211173057581
27197251.782797365573-54.7827973655726
28216.3210.9077367111185.39226328888162
29221.4220.825256876740.574743123259888
30217.9223.829821344080-5.92982134407972
31229.7166.43753221829763.2624677817031
32227.4210.34065853738217.0593414626177
33204.2234.718672133273-30.5186721332734
34196.6229.217063994572-32.6170639945722
35198.8244.410781107004-45.6107811070039
36207.5214.593744840403-7.09374484040271
37190.7209.767232488887-19.0672324888871
38201.6197.4606862653534.13931373464664
39210.5261.139587232217-50.6395872322174
40223.5226.218847401992-2.71884740199175
41223.8219.1240223555324.67597764446807
42231.2231.201837602648-0.00183760264842636
43244186.56880738592757.4311926140733
44234.7220.83160475149913.8683952485007
45250.2228.19727313530922.0027268646912
46265.7245.94587011978619.7541298802142
47287.6245.54493745447642.055062545524
48283.3208.92296310304274.3770368969578
49295.4223.09356957168472.3064304283157
50312.3218.72611778045593.5738822195447
51333.8235.62106941409598.1789305859049
52347.7257.97522513121189.7247748687894
53383.2218.556944181796164.643055818204
54407.1227.515829473364179.584170526636
55413.6196.492675426308217.107324573692
56362.7208.355884929306154.344115070694
57321.9240.38945387063481.5105461293661
58239.4226.94875129962812.4512487003720
59191206.133004379820-15.1330043798205
60159.7192.761235151565-33.0612351515647
61163.4167.236369458683-3.83636945868326







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
80.006218328871460330.01243665774292070.99378167112854
90.001662657625840490.003325315251680980.99833734237416
100.001139434725659170.002278869451318350.99886056527434
110.0002990312216280230.0005980624432560460.999700968778372
126.06539261425395e-050.0001213078522850790.999939346073857
132.6413558196087e-055.2827116392174e-050.999973586441804
141.07237765282257e-052.14475530564513e-050.999989276223472
151.51494157300699e-053.02988314601398e-050.99998485058427
161.49087128230088e-052.98174256460176e-050.999985091287177
179.05513292013106e-061.81102658402621e-050.99999094486708
188.04975749495783e-061.60995149899157e-050.999991950242505
198.74979848601027e-061.74995969720205e-050.999991250201514
201.36313585953729e-052.72627171907458e-050.999986368641405
212.66475231953851e-055.32950463907703e-050.999973352476805
222.09163338594476e-054.18326677188952e-050.99997908366614
231.25865042482255e-052.51730084964510e-050.999987413495752
247.85877709463213e-061.57175541892643e-050.999992141222905
251.06312153695202e-052.12624307390404e-050.99998936878463
261.01339666096004e-052.02679332192008e-050.99998986603339
271.04447915540703e-052.08895831081406e-050.999989555208446
281.73517363018377e-053.47034726036754e-050.999982648263698
292.89774286908723e-055.79548573817447e-050.999971022571309
303.24368570309026e-056.48737140618051e-050.999967563142969
317.83207899082903e-050.0001566415798165810.999921679210092
328.78524002553905e-050.0001757048005107810.999912147599745
336.80792741481706e-050.0001361585482963410.999931920725852
345.17544887777433e-050.0001035089775554870.999948245511222
354.72887257894054e-059.45774515788108e-050.99995271127421
363.23824042864875e-056.4764808572975e-050.999967617595714
372.32393361852589e-054.64786723705177e-050.999976760663815
381.73348069238069e-053.46696138476138e-050.999982665193076
393.31010550943395e-056.62021101886791e-050.999966898944906
402.99920272115804e-055.99840544231609e-050.999970007972788
413.11204498859463e-056.22408997718925e-050.999968879550114
423.72596331570583e-057.45192663141167e-050.999962740366843
435.30961980570826e-050.0001061923961141650.999946903801943
444.77900279251915e-059.5580055850383e-050.999952209972075
456.1548395650174e-050.0001230967913003480.99993845160435
460.0001102370417024180.0002204740834048350.999889762958298
470.0002478769477131400.0004957538954262790.999752123052287
480.0003110442960378770.0006220885920757550.999688955703962
490.0003800476933200030.0007600953866400060.99961995230668
500.000491189774883050.00098237954976610.999508810225117
510.0006335504186258250.001267100837251650.999366449581374
520.0005643248143545690.001128649628709140.999435675185645
530.001815670450236810.003631340900473630.998184329549763

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 & 0.00621832887146033 & 0.0124366577429207 & 0.99378167112854 \tabularnewline
9 & 0.00166265762584049 & 0.00332531525168098 & 0.99833734237416 \tabularnewline
10 & 0.00113943472565917 & 0.00227886945131835 & 0.99886056527434 \tabularnewline
11 & 0.000299031221628023 & 0.000598062443256046 & 0.999700968778372 \tabularnewline
12 & 6.06539261425395e-05 & 0.000121307852285079 & 0.999939346073857 \tabularnewline
13 & 2.6413558196087e-05 & 5.2827116392174e-05 & 0.999973586441804 \tabularnewline
14 & 1.07237765282257e-05 & 2.14475530564513e-05 & 0.999989276223472 \tabularnewline
15 & 1.51494157300699e-05 & 3.02988314601398e-05 & 0.99998485058427 \tabularnewline
16 & 1.49087128230088e-05 & 2.98174256460176e-05 & 0.999985091287177 \tabularnewline
17 & 9.05513292013106e-06 & 1.81102658402621e-05 & 0.99999094486708 \tabularnewline
18 & 8.04975749495783e-06 & 1.60995149899157e-05 & 0.999991950242505 \tabularnewline
19 & 8.74979848601027e-06 & 1.74995969720205e-05 & 0.999991250201514 \tabularnewline
20 & 1.36313585953729e-05 & 2.72627171907458e-05 & 0.999986368641405 \tabularnewline
21 & 2.66475231953851e-05 & 5.32950463907703e-05 & 0.999973352476805 \tabularnewline
22 & 2.09163338594476e-05 & 4.18326677188952e-05 & 0.99997908366614 \tabularnewline
23 & 1.25865042482255e-05 & 2.51730084964510e-05 & 0.999987413495752 \tabularnewline
24 & 7.85877709463213e-06 & 1.57175541892643e-05 & 0.999992141222905 \tabularnewline
25 & 1.06312153695202e-05 & 2.12624307390404e-05 & 0.99998936878463 \tabularnewline
26 & 1.01339666096004e-05 & 2.02679332192008e-05 & 0.99998986603339 \tabularnewline
27 & 1.04447915540703e-05 & 2.08895831081406e-05 & 0.999989555208446 \tabularnewline
28 & 1.73517363018377e-05 & 3.47034726036754e-05 & 0.999982648263698 \tabularnewline
29 & 2.89774286908723e-05 & 5.79548573817447e-05 & 0.999971022571309 \tabularnewline
30 & 3.24368570309026e-05 & 6.48737140618051e-05 & 0.999967563142969 \tabularnewline
31 & 7.83207899082903e-05 & 0.000156641579816581 & 0.999921679210092 \tabularnewline
32 & 8.78524002553905e-05 & 0.000175704800510781 & 0.999912147599745 \tabularnewline
33 & 6.80792741481706e-05 & 0.000136158548296341 & 0.999931920725852 \tabularnewline
34 & 5.17544887777433e-05 & 0.000103508977555487 & 0.999948245511222 \tabularnewline
35 & 4.72887257894054e-05 & 9.45774515788108e-05 & 0.99995271127421 \tabularnewline
36 & 3.23824042864875e-05 & 6.4764808572975e-05 & 0.999967617595714 \tabularnewline
37 & 2.32393361852589e-05 & 4.64786723705177e-05 & 0.999976760663815 \tabularnewline
38 & 1.73348069238069e-05 & 3.46696138476138e-05 & 0.999982665193076 \tabularnewline
39 & 3.31010550943395e-05 & 6.62021101886791e-05 & 0.999966898944906 \tabularnewline
40 & 2.99920272115804e-05 & 5.99840544231609e-05 & 0.999970007972788 \tabularnewline
41 & 3.11204498859463e-05 & 6.22408997718925e-05 & 0.999968879550114 \tabularnewline
42 & 3.72596331570583e-05 & 7.45192663141167e-05 & 0.999962740366843 \tabularnewline
43 & 5.30961980570826e-05 & 0.000106192396114165 & 0.999946903801943 \tabularnewline
44 & 4.77900279251915e-05 & 9.5580055850383e-05 & 0.999952209972075 \tabularnewline
45 & 6.1548395650174e-05 & 0.000123096791300348 & 0.99993845160435 \tabularnewline
46 & 0.000110237041702418 & 0.000220474083404835 & 0.999889762958298 \tabularnewline
47 & 0.000247876947713140 & 0.000495753895426279 & 0.999752123052287 \tabularnewline
48 & 0.000311044296037877 & 0.000622088592075755 & 0.999688955703962 \tabularnewline
49 & 0.000380047693320003 & 0.000760095386640006 & 0.99961995230668 \tabularnewline
50 & 0.00049118977488305 & 0.0009823795497661 & 0.999508810225117 \tabularnewline
51 & 0.000633550418625825 & 0.00126710083725165 & 0.999366449581374 \tabularnewline
52 & 0.000564324814354569 & 0.00112864962870914 & 0.999435675185645 \tabularnewline
53 & 0.00181567045023681 & 0.00363134090047363 & 0.998184329549763 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C]0.00621832887146033[/C][C]0.0124366577429207[/C][C]0.99378167112854[/C][/ROW]
[ROW][C]9[/C][C]0.00166265762584049[/C][C]0.00332531525168098[/C][C]0.99833734237416[/C][/ROW]
[ROW][C]10[/C][C]0.00113943472565917[/C][C]0.00227886945131835[/C][C]0.99886056527434[/C][/ROW]
[ROW][C]11[/C][C]0.000299031221628023[/C][C]0.000598062443256046[/C][C]0.999700968778372[/C][/ROW]
[ROW][C]12[/C][C]6.06539261425395e-05[/C][C]0.000121307852285079[/C][C]0.999939346073857[/C][/ROW]
[ROW][C]13[/C][C]2.6413558196087e-05[/C][C]5.2827116392174e-05[/C][C]0.999973586441804[/C][/ROW]
[ROW][C]14[/C][C]1.07237765282257e-05[/C][C]2.14475530564513e-05[/C][C]0.999989276223472[/C][/ROW]
[ROW][C]15[/C][C]1.51494157300699e-05[/C][C]3.02988314601398e-05[/C][C]0.99998485058427[/C][/ROW]
[ROW][C]16[/C][C]1.49087128230088e-05[/C][C]2.98174256460176e-05[/C][C]0.999985091287177[/C][/ROW]
[ROW][C]17[/C][C]9.05513292013106e-06[/C][C]1.81102658402621e-05[/C][C]0.99999094486708[/C][/ROW]
[ROW][C]18[/C][C]8.04975749495783e-06[/C][C]1.60995149899157e-05[/C][C]0.999991950242505[/C][/ROW]
[ROW][C]19[/C][C]8.74979848601027e-06[/C][C]1.74995969720205e-05[/C][C]0.999991250201514[/C][/ROW]
[ROW][C]20[/C][C]1.36313585953729e-05[/C][C]2.72627171907458e-05[/C][C]0.999986368641405[/C][/ROW]
[ROW][C]21[/C][C]2.66475231953851e-05[/C][C]5.32950463907703e-05[/C][C]0.999973352476805[/C][/ROW]
[ROW][C]22[/C][C]2.09163338594476e-05[/C][C]4.18326677188952e-05[/C][C]0.99997908366614[/C][/ROW]
[ROW][C]23[/C][C]1.25865042482255e-05[/C][C]2.51730084964510e-05[/C][C]0.999987413495752[/C][/ROW]
[ROW][C]24[/C][C]7.85877709463213e-06[/C][C]1.57175541892643e-05[/C][C]0.999992141222905[/C][/ROW]
[ROW][C]25[/C][C]1.06312153695202e-05[/C][C]2.12624307390404e-05[/C][C]0.99998936878463[/C][/ROW]
[ROW][C]26[/C][C]1.01339666096004e-05[/C][C]2.02679332192008e-05[/C][C]0.99998986603339[/C][/ROW]
[ROW][C]27[/C][C]1.04447915540703e-05[/C][C]2.08895831081406e-05[/C][C]0.999989555208446[/C][/ROW]
[ROW][C]28[/C][C]1.73517363018377e-05[/C][C]3.47034726036754e-05[/C][C]0.999982648263698[/C][/ROW]
[ROW][C]29[/C][C]2.89774286908723e-05[/C][C]5.79548573817447e-05[/C][C]0.999971022571309[/C][/ROW]
[ROW][C]30[/C][C]3.24368570309026e-05[/C][C]6.48737140618051e-05[/C][C]0.999967563142969[/C][/ROW]
[ROW][C]31[/C][C]7.83207899082903e-05[/C][C]0.000156641579816581[/C][C]0.999921679210092[/C][/ROW]
[ROW][C]32[/C][C]8.78524002553905e-05[/C][C]0.000175704800510781[/C][C]0.999912147599745[/C][/ROW]
[ROW][C]33[/C][C]6.80792741481706e-05[/C][C]0.000136158548296341[/C][C]0.999931920725852[/C][/ROW]
[ROW][C]34[/C][C]5.17544887777433e-05[/C][C]0.000103508977555487[/C][C]0.999948245511222[/C][/ROW]
[ROW][C]35[/C][C]4.72887257894054e-05[/C][C]9.45774515788108e-05[/C][C]0.99995271127421[/C][/ROW]
[ROW][C]36[/C][C]3.23824042864875e-05[/C][C]6.4764808572975e-05[/C][C]0.999967617595714[/C][/ROW]
[ROW][C]37[/C][C]2.32393361852589e-05[/C][C]4.64786723705177e-05[/C][C]0.999976760663815[/C][/ROW]
[ROW][C]38[/C][C]1.73348069238069e-05[/C][C]3.46696138476138e-05[/C][C]0.999982665193076[/C][/ROW]
[ROW][C]39[/C][C]3.31010550943395e-05[/C][C]6.62021101886791e-05[/C][C]0.999966898944906[/C][/ROW]
[ROW][C]40[/C][C]2.99920272115804e-05[/C][C]5.99840544231609e-05[/C][C]0.999970007972788[/C][/ROW]
[ROW][C]41[/C][C]3.11204498859463e-05[/C][C]6.22408997718925e-05[/C][C]0.999968879550114[/C][/ROW]
[ROW][C]42[/C][C]3.72596331570583e-05[/C][C]7.45192663141167e-05[/C][C]0.999962740366843[/C][/ROW]
[ROW][C]43[/C][C]5.30961980570826e-05[/C][C]0.000106192396114165[/C][C]0.999946903801943[/C][/ROW]
[ROW][C]44[/C][C]4.77900279251915e-05[/C][C]9.5580055850383e-05[/C][C]0.999952209972075[/C][/ROW]
[ROW][C]45[/C][C]6.1548395650174e-05[/C][C]0.000123096791300348[/C][C]0.99993845160435[/C][/ROW]
[ROW][C]46[/C][C]0.000110237041702418[/C][C]0.000220474083404835[/C][C]0.999889762958298[/C][/ROW]
[ROW][C]47[/C][C]0.000247876947713140[/C][C]0.000495753895426279[/C][C]0.999752123052287[/C][/ROW]
[ROW][C]48[/C][C]0.000311044296037877[/C][C]0.000622088592075755[/C][C]0.999688955703962[/C][/ROW]
[ROW][C]49[/C][C]0.000380047693320003[/C][C]0.000760095386640006[/C][C]0.99961995230668[/C][/ROW]
[ROW][C]50[/C][C]0.00049118977488305[/C][C]0.0009823795497661[/C][C]0.999508810225117[/C][/ROW]
[ROW][C]51[/C][C]0.000633550418625825[/C][C]0.00126710083725165[/C][C]0.999366449581374[/C][/ROW]
[ROW][C]52[/C][C]0.000564324814354569[/C][C]0.00112864962870914[/C][C]0.999435675185645[/C][/ROW]
[ROW][C]53[/C][C]0.00181567045023681[/C][C]0.00363134090047363[/C][C]0.998184329549763[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
80.006218328871460330.01243665774292070.99378167112854
90.001662657625840490.003325315251680980.99833734237416
100.001139434725659170.002278869451318350.99886056527434
110.0002990312216280230.0005980624432560460.999700968778372
126.06539261425395e-050.0001213078522850790.999939346073857
132.6413558196087e-055.2827116392174e-050.999973586441804
141.07237765282257e-052.14475530564513e-050.999989276223472
151.51494157300699e-053.02988314601398e-050.99998485058427
161.49087128230088e-052.98174256460176e-050.999985091287177
179.05513292013106e-061.81102658402621e-050.99999094486708
188.04975749495783e-061.60995149899157e-050.999991950242505
198.74979848601027e-061.74995969720205e-050.999991250201514
201.36313585953729e-052.72627171907458e-050.999986368641405
212.66475231953851e-055.32950463907703e-050.999973352476805
222.09163338594476e-054.18326677188952e-050.99997908366614
231.25865042482255e-052.51730084964510e-050.999987413495752
247.85877709463213e-061.57175541892643e-050.999992141222905
251.06312153695202e-052.12624307390404e-050.99998936878463
261.01339666096004e-052.02679332192008e-050.99998986603339
271.04447915540703e-052.08895831081406e-050.999989555208446
281.73517363018377e-053.47034726036754e-050.999982648263698
292.89774286908723e-055.79548573817447e-050.999971022571309
303.24368570309026e-056.48737140618051e-050.999967563142969
317.83207899082903e-050.0001566415798165810.999921679210092
328.78524002553905e-050.0001757048005107810.999912147599745
336.80792741481706e-050.0001361585482963410.999931920725852
345.17544887777433e-050.0001035089775554870.999948245511222
354.72887257894054e-059.45774515788108e-050.99995271127421
363.23824042864875e-056.4764808572975e-050.999967617595714
372.32393361852589e-054.64786723705177e-050.999976760663815
381.73348069238069e-053.46696138476138e-050.999982665193076
393.31010550943395e-056.62021101886791e-050.999966898944906
402.99920272115804e-055.99840544231609e-050.999970007972788
413.11204498859463e-056.22408997718925e-050.999968879550114
423.72596331570583e-057.45192663141167e-050.999962740366843
435.30961980570826e-050.0001061923961141650.999946903801943
444.77900279251915e-059.5580055850383e-050.999952209972075
456.1548395650174e-050.0001230967913003480.99993845160435
460.0001102370417024180.0002204740834048350.999889762958298
470.0002478769477131400.0004957538954262790.999752123052287
480.0003110442960378770.0006220885920757550.999688955703962
490.0003800476933200030.0007600953866400060.99961995230668
500.000491189774883050.00098237954976610.999508810225117
510.0006335504186258250.001267100837251650.999366449581374
520.0005643248143545690.001128649628709140.999435675185645
530.001815670450236810.003631340900473630.998184329549763







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level450.978260869565217NOK
5% type I error level461NOK
10% type I error level461NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 45 & 0.978260869565217 & NOK \tabularnewline
5% type I error level & 46 & 1 & NOK \tabularnewline
10% type I error level & 46 & 1 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57605&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]45[/C][C]0.978260869565217[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]46[/C][C]1[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]46[/C][C]1[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57605&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57605&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level450.978260869565217NOK
5% type I error level461NOK
10% type I error level461NOK



Parameters (Session):
par1 = 1 ; par2 = Include Quarterly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Quarterly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}