Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 25 Nov 2007 10:34:14 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2007/Nov/25/t1196011507df7jhyewou4y2tn.htm/, Retrieved Sun, 10 Nov 2024 19:47:16 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=6505, Retrieved Sun, 10 Nov 2024 19:47:16 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact220
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [paper] [2007-11-25 17:34:14] [4bd8a0043457404de73994ae0e323922] [Current]
Feedback Forum

Post a new message
Dataseries X:
8,7	0
8,5	0
8,2	0
8,3	0
8	0
8,1	0
8,7	0
9,3	0
8,9	0
8,8	0
8,4	0
8,4	0
7,3	0
7,2	0
7	0
7	0
6,9	0
6,9	0
7,1	0
7,5	0
7,4	0
8,9	0
8,3	1
8,3	1
9	1
8,9	1
8,8	1
7,8	1
7,8	1
7,8	1
9,2	1
9,3	1
9,2	1
8,6	1
8,5	1
8,5	1
9	1
9	1
8,8	1
8	1
7,9	1
8,1	1
9,3	1
9,4	1
9,4	1
9,3	1
9	1
9,1	1
9,7	1
9,7	1
9,6	1
8,3	1
8,2	1
8,4	1
10,6	1
10,9	1
10,9	1
9,6	1
9,3	1
9,3	1
9,6	1
9,5	1
9,5	1
9	1
8,9	1
9	1
10,1	1
10,2	1
10,2	1
9,5	1
9,3	1
9,3	1
9,4	1
9,3	1
9,1	1
9	1
8,9	1
9	1
9,8	1
10	1
9,8	1
9,4	1
9	1
8,9	1
9,3	1
9,1	1
8,8	1
8,9	1
8,7	1
8,6	1
9,1	1
9,3	1
8,9	1




Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of compuational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=6505&T=0

[TABLE]
[ROW][C]Summary of compuational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=6505&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=6505&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
WLHvrouwen[t] = + 7.78274496865721 + 0.820381062355658x[t] + 0.295018489497414M1[t] + 0.187880100076984M2[t] + 0.00574171065655037M3[t] -0.438896678763882M4[t] -0.571035068184316M5[t] -0.503173457604751M6[t] + 0.489688152974816M7[t] + 0.732549763554384M8[t] + 0.575411374133950M9[t] + 0.460045502034533M10[t] + 0.0071383894204342M11[t] + 0.0071383894204333t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
WLHvrouwen[t] =  +  7.78274496865721 +  0.820381062355658x[t] +  0.295018489497414M1[t] +  0.187880100076984M2[t] +  0.00574171065655037M3[t] -0.438896678763882M4[t] -0.571035068184316M5[t] -0.503173457604751M6[t] +  0.489688152974816M7[t] +  0.732549763554384M8[t] +  0.575411374133950M9[t] +  0.460045502034533M10[t] +  0.0071383894204342M11[t] +  0.0071383894204333t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=6505&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]WLHvrouwen[t] =  +  7.78274496865721 +  0.820381062355658x[t] +  0.295018489497414M1[t] +  0.187880100076984M2[t] +  0.00574171065655037M3[t] -0.438896678763882M4[t] -0.571035068184316M5[t] -0.503173457604751M6[t] +  0.489688152974816M7[t] +  0.732549763554384M8[t] +  0.575411374133950M9[t] +  0.460045502034533M10[t] +  0.0071383894204342M11[t] +  0.0071383894204333t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=6505&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=6505&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
WLHvrouwen[t] = + 7.78274496865721 + 0.820381062355658x[t] + 0.295018489497414M1[t] + 0.187880100076984M2[t] + 0.00574171065655037M3[t] -0.438896678763882M4[t] -0.571035068184316M5[t] -0.503173457604751M6[t] + 0.489688152974816M7[t] + 0.732549763554384M8[t] + 0.575411374133950M9[t] + 0.460045502034533M10[t] + 0.0071383894204342M11[t] + 0.0071383894204333t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)7.782744968657210.24236232.11200
x0.8203810623556580.203574.030.0001286.4e-05
M10.2950184894974140.2888621.02130.3102240.155112
M20.1878801000769840.2888810.65040.5173390.258669
M30.005741710656550370.2889360.01990.9841960.492098
M4-0.4388966787638820.289026-1.51850.1328710.066436
M5-0.5710350681843160.289152-1.97490.0517780.025889
M6-0.5031734576047510.289314-1.73920.0858960.042948
M70.4896881529748160.2895121.69140.0946970.047349
M80.7325497635543840.2897462.52830.0134560.006728
M90.5754113741339500.2900151.98410.050720.02536
M100.4600455020345330.2989731.53880.1278610.063931
M110.00713838942043420.297970.0240.9809480.490474
t0.00713838942043330.003222.21710.0294940.014747

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 7.78274496865721 & 0.242362 & 32.112 & 0 & 0 \tabularnewline
x & 0.820381062355658 & 0.20357 & 4.03 & 0.000128 & 6.4e-05 \tabularnewline
M1 & 0.295018489497414 & 0.288862 & 1.0213 & 0.310224 & 0.155112 \tabularnewline
M2 & 0.187880100076984 & 0.288881 & 0.6504 & 0.517339 & 0.258669 \tabularnewline
M3 & 0.00574171065655037 & 0.288936 & 0.0199 & 0.984196 & 0.492098 \tabularnewline
M4 & -0.438896678763882 & 0.289026 & -1.5185 & 0.132871 & 0.066436 \tabularnewline
M5 & -0.571035068184316 & 0.289152 & -1.9749 & 0.051778 & 0.025889 \tabularnewline
M6 & -0.503173457604751 & 0.289314 & -1.7392 & 0.085896 & 0.042948 \tabularnewline
M7 & 0.489688152974816 & 0.289512 & 1.6914 & 0.094697 & 0.047349 \tabularnewline
M8 & 0.732549763554384 & 0.289746 & 2.5283 & 0.013456 & 0.006728 \tabularnewline
M9 & 0.575411374133950 & 0.290015 & 1.9841 & 0.05072 & 0.02536 \tabularnewline
M10 & 0.460045502034533 & 0.298973 & 1.5388 & 0.127861 & 0.063931 \tabularnewline
M11 & 0.0071383894204342 & 0.29797 & 0.024 & 0.980948 & 0.490474 \tabularnewline
t & 0.0071383894204333 & 0.00322 & 2.2171 & 0.029494 & 0.014747 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=6505&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]7.78274496865721[/C][C]0.242362[/C][C]32.112[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]x[/C][C]0.820381062355658[/C][C]0.20357[/C][C]4.03[/C][C]0.000128[/C][C]6.4e-05[/C][/ROW]
[ROW][C]M1[/C][C]0.295018489497414[/C][C]0.288862[/C][C]1.0213[/C][C]0.310224[/C][C]0.155112[/C][/ROW]
[ROW][C]M2[/C][C]0.187880100076984[/C][C]0.288881[/C][C]0.6504[/C][C]0.517339[/C][C]0.258669[/C][/ROW]
[ROW][C]M3[/C][C]0.00574171065655037[/C][C]0.288936[/C][C]0.0199[/C][C]0.984196[/C][C]0.492098[/C][/ROW]
[ROW][C]M4[/C][C]-0.438896678763882[/C][C]0.289026[/C][C]-1.5185[/C][C]0.132871[/C][C]0.066436[/C][/ROW]
[ROW][C]M5[/C][C]-0.571035068184316[/C][C]0.289152[/C][C]-1.9749[/C][C]0.051778[/C][C]0.025889[/C][/ROW]
[ROW][C]M6[/C][C]-0.503173457604751[/C][C]0.289314[/C][C]-1.7392[/C][C]0.085896[/C][C]0.042948[/C][/ROW]
[ROW][C]M7[/C][C]0.489688152974816[/C][C]0.289512[/C][C]1.6914[/C][C]0.094697[/C][C]0.047349[/C][/ROW]
[ROW][C]M8[/C][C]0.732549763554384[/C][C]0.289746[/C][C]2.5283[/C][C]0.013456[/C][C]0.006728[/C][/ROW]
[ROW][C]M9[/C][C]0.575411374133950[/C][C]0.290015[/C][C]1.9841[/C][C]0.05072[/C][C]0.02536[/C][/ROW]
[ROW][C]M10[/C][C]0.460045502034533[/C][C]0.298973[/C][C]1.5388[/C][C]0.127861[/C][C]0.063931[/C][/ROW]
[ROW][C]M11[/C][C]0.0071383894204342[/C][C]0.29797[/C][C]0.024[/C][C]0.980948[/C][C]0.490474[/C][/ROW]
[ROW][C]t[/C][C]0.0071383894204333[/C][C]0.00322[/C][C]2.2171[/C][C]0.029494[/C][C]0.014747[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=6505&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=6505&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)7.782744968657210.24236232.11200
x0.8203810623556580.203574.030.0001286.4e-05
M10.2950184894974140.2888621.02130.3102240.155112
M20.1878801000769840.2888810.65040.5173390.258669
M30.005741710656550370.2889360.01990.9841960.492098
M4-0.4388966787638820.289026-1.51850.1328710.066436
M5-0.5710350681843160.289152-1.97490.0517780.025889
M6-0.5031734576047510.289314-1.73920.0858960.042948
M70.4896881529748160.2895121.69140.0946970.047349
M80.7325497635543840.2897462.52830.0134560.006728
M90.5754113741339500.2900151.98410.050720.02536
M100.4600455020345330.2989731.53880.1278610.063931
M110.00713838942043420.297970.0240.9809480.490474
t0.00713838942043330.003222.21710.0294940.014747







Multiple Linear Regression - Regression Statistics
Multiple R0.788645798693523
R-squared0.621962195796944
Adjusted R-squared0.559753443206568
F-TEST (value)9.99798533001226
F-TEST (DF numerator)13
F-TEST (DF denominator)79
p-value5.30164800949251e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.557417664560849
Sum Squared Residuals24.5464417683932

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.788645798693523 \tabularnewline
R-squared & 0.621962195796944 \tabularnewline
Adjusted R-squared & 0.559753443206568 \tabularnewline
F-TEST (value) & 9.99798533001226 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 79 \tabularnewline
p-value & 5.30164800949251e-12 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.557417664560849 \tabularnewline
Sum Squared Residuals & 24.5464417683932 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=6505&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.788645798693523[/C][/ROW]
[ROW][C]R-squared[/C][C]0.621962195796944[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.559753443206568[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]9.99798533001226[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]79[/C][/ROW]
[ROW][C]p-value[/C][C]5.30164800949251e-12[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.557417664560849[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]24.5464417683932[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=6505&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=6505&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.788645798693523
R-squared0.621962195796944
Adjusted R-squared0.559753443206568
F-TEST (value)9.99798533001226
F-TEST (DF numerator)13
F-TEST (DF denominator)79
p-value5.30164800949251e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.557417664560849
Sum Squared Residuals24.5464417683932







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
18.78.084901847575080.615098152424921
28.57.984901847575050.515098152424946
38.27.809901847575060.390098152424942
48.37.372401847575060.927598152424945
587.247401847575060.752598152424943
68.17.322401847575060.777598152424941
78.78.322401847575060.37759815242494
89.38.572401847575050.727598152424946
98.98.422401847575060.477598152424943
108.88.314174364896070.485825635103928
118.47.868405641702410.531594358297592
128.47.86840564170240.531594358297594
137.38.17056252062025-0.870562520620254
147.28.07056252062026-0.870562520620258
1577.89556252062026-0.895562520620256
1677.45806252062026-0.458062520620257
176.97.33306252062026-0.433062520620256
186.97.40806252062026-0.508062520620256
197.18.40806252062026-1.30806252062026
207.58.65806252062026-1.15806252062026
217.48.50806252062026-1.10806252062026
228.98.399835037941270.500164962058728
238.38.77444737710327-0.474447377103266
248.38.77444737710326-0.474447377103265
2599.07660425602111-0.0766042560211122
268.98.97660425602112-0.0766042560211162
278.88.80160425602111-0.00160425602111462
287.88.36410425602112-0.564104256021116
297.88.23910425602111-0.439104256021115
307.88.31410425602112-0.514104256021115
319.29.31410425602111-0.114104256021115
329.39.56410425602112-0.264104256021115
339.29.41410425602112-0.214104256021116
348.69.30587677334213-0.705876773342132
358.58.86010805014847-0.360108050148466
368.58.86010805014847-0.360108050148465
3799.16226492906631-0.162264929066312
3899.06226492906632-0.0622649290663162
398.88.88726492906632-0.0872649290663143
4088.44976492906632-0.449764929066315
417.98.32476492906632-0.424764929066314
428.18.39976492906631-0.299764929066315
439.39.39976492906631-0.0997649290663137
449.49.64976492906631-0.249764929066315
459.49.49976492906631-0.0997649290663147
469.39.39153744638733-0.0915374463873306
4798.945768723193670.0542312768063343
489.18.945768723193660.154231276806335
499.79.247925602111510.452074397888488
509.79.147925602111520.552074397888483
519.68.972925602111510.627074397888485
528.38.53542560211151-0.235425602111514
538.28.41042560211151-0.210425602111515
548.48.48542560211151-0.0854256021115142
5510.69.485425602111511.11457439788849
5610.99.735425602111521.16457439788848
5710.99.585425602111521.31457439788849
589.69.477198119432530.122801880567469
599.39.031429396238860.268570603761135
609.39.031429396238860.268570603761137
619.69.333586275156710.266413724843288
629.59.233586275156720.266413724843284
639.59.058586275156720.441413724843285
6498.621086275156720.378913724843285
658.98.496086275156710.403913724843286
6698.571086275156710.428913724843286
6710.19.571086275156710.528913724843286
6810.29.821086275156710.378913724843284
6910.29.671086275156710.528913724843285
709.59.56285879247773-0.0628587924777308
719.39.117090069284070.182909930715936
729.39.117090069284060.182909930715937
739.49.4192469482019-0.0192469482019105
749.39.31924694820191-0.0192469482019145
759.19.14424694820191-0.0442469482019143
7698.706746948201910.293253051798086
778.98.581746948201910.318253051798087
7898.656746948201910.343253051798086
799.89.656746948201910.143253051798087
80109.906746948201920.0932530517980854
819.89.756746948201910.0432530517980865
829.49.64851946552293-0.24851946552293
8399.20275074232926-0.202750742329265
848.99.20275074232926-0.302750742329263
859.39.50490762124711-0.20490762124711
869.19.40490762124712-0.304907621247115
878.89.22990762124711-0.429907621247113
888.98.792407621247110.107592378752886
898.78.667407621247110.0325923787528858
908.68.74240762124711-0.142407621247114
919.19.74240762124711-0.642407621247113
929.39.99240762124711-0.692407621247114
938.99.84240762124711-0.942407621247114

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 8.7 & 8.08490184757508 & 0.615098152424921 \tabularnewline
2 & 8.5 & 7.98490184757505 & 0.515098152424946 \tabularnewline
3 & 8.2 & 7.80990184757506 & 0.390098152424942 \tabularnewline
4 & 8.3 & 7.37240184757506 & 0.927598152424945 \tabularnewline
5 & 8 & 7.24740184757506 & 0.752598152424943 \tabularnewline
6 & 8.1 & 7.32240184757506 & 0.777598152424941 \tabularnewline
7 & 8.7 & 8.32240184757506 & 0.37759815242494 \tabularnewline
8 & 9.3 & 8.57240184757505 & 0.727598152424946 \tabularnewline
9 & 8.9 & 8.42240184757506 & 0.477598152424943 \tabularnewline
10 & 8.8 & 8.31417436489607 & 0.485825635103928 \tabularnewline
11 & 8.4 & 7.86840564170241 & 0.531594358297592 \tabularnewline
12 & 8.4 & 7.8684056417024 & 0.531594358297594 \tabularnewline
13 & 7.3 & 8.17056252062025 & -0.870562520620254 \tabularnewline
14 & 7.2 & 8.07056252062026 & -0.870562520620258 \tabularnewline
15 & 7 & 7.89556252062026 & -0.895562520620256 \tabularnewline
16 & 7 & 7.45806252062026 & -0.458062520620257 \tabularnewline
17 & 6.9 & 7.33306252062026 & -0.433062520620256 \tabularnewline
18 & 6.9 & 7.40806252062026 & -0.508062520620256 \tabularnewline
19 & 7.1 & 8.40806252062026 & -1.30806252062026 \tabularnewline
20 & 7.5 & 8.65806252062026 & -1.15806252062026 \tabularnewline
21 & 7.4 & 8.50806252062026 & -1.10806252062026 \tabularnewline
22 & 8.9 & 8.39983503794127 & 0.500164962058728 \tabularnewline
23 & 8.3 & 8.77444737710327 & -0.474447377103266 \tabularnewline
24 & 8.3 & 8.77444737710326 & -0.474447377103265 \tabularnewline
25 & 9 & 9.07660425602111 & -0.0766042560211122 \tabularnewline
26 & 8.9 & 8.97660425602112 & -0.0766042560211162 \tabularnewline
27 & 8.8 & 8.80160425602111 & -0.00160425602111462 \tabularnewline
28 & 7.8 & 8.36410425602112 & -0.564104256021116 \tabularnewline
29 & 7.8 & 8.23910425602111 & -0.439104256021115 \tabularnewline
30 & 7.8 & 8.31410425602112 & -0.514104256021115 \tabularnewline
31 & 9.2 & 9.31410425602111 & -0.114104256021115 \tabularnewline
32 & 9.3 & 9.56410425602112 & -0.264104256021115 \tabularnewline
33 & 9.2 & 9.41410425602112 & -0.214104256021116 \tabularnewline
34 & 8.6 & 9.30587677334213 & -0.705876773342132 \tabularnewline
35 & 8.5 & 8.86010805014847 & -0.360108050148466 \tabularnewline
36 & 8.5 & 8.86010805014847 & -0.360108050148465 \tabularnewline
37 & 9 & 9.16226492906631 & -0.162264929066312 \tabularnewline
38 & 9 & 9.06226492906632 & -0.0622649290663162 \tabularnewline
39 & 8.8 & 8.88726492906632 & -0.0872649290663143 \tabularnewline
40 & 8 & 8.44976492906632 & -0.449764929066315 \tabularnewline
41 & 7.9 & 8.32476492906632 & -0.424764929066314 \tabularnewline
42 & 8.1 & 8.39976492906631 & -0.299764929066315 \tabularnewline
43 & 9.3 & 9.39976492906631 & -0.0997649290663137 \tabularnewline
44 & 9.4 & 9.64976492906631 & -0.249764929066315 \tabularnewline
45 & 9.4 & 9.49976492906631 & -0.0997649290663147 \tabularnewline
46 & 9.3 & 9.39153744638733 & -0.0915374463873306 \tabularnewline
47 & 9 & 8.94576872319367 & 0.0542312768063343 \tabularnewline
48 & 9.1 & 8.94576872319366 & 0.154231276806335 \tabularnewline
49 & 9.7 & 9.24792560211151 & 0.452074397888488 \tabularnewline
50 & 9.7 & 9.14792560211152 & 0.552074397888483 \tabularnewline
51 & 9.6 & 8.97292560211151 & 0.627074397888485 \tabularnewline
52 & 8.3 & 8.53542560211151 & -0.235425602111514 \tabularnewline
53 & 8.2 & 8.41042560211151 & -0.210425602111515 \tabularnewline
54 & 8.4 & 8.48542560211151 & -0.0854256021115142 \tabularnewline
55 & 10.6 & 9.48542560211151 & 1.11457439788849 \tabularnewline
56 & 10.9 & 9.73542560211152 & 1.16457439788848 \tabularnewline
57 & 10.9 & 9.58542560211152 & 1.31457439788849 \tabularnewline
58 & 9.6 & 9.47719811943253 & 0.122801880567469 \tabularnewline
59 & 9.3 & 9.03142939623886 & 0.268570603761135 \tabularnewline
60 & 9.3 & 9.03142939623886 & 0.268570603761137 \tabularnewline
61 & 9.6 & 9.33358627515671 & 0.266413724843288 \tabularnewline
62 & 9.5 & 9.23358627515672 & 0.266413724843284 \tabularnewline
63 & 9.5 & 9.05858627515672 & 0.441413724843285 \tabularnewline
64 & 9 & 8.62108627515672 & 0.378913724843285 \tabularnewline
65 & 8.9 & 8.49608627515671 & 0.403913724843286 \tabularnewline
66 & 9 & 8.57108627515671 & 0.428913724843286 \tabularnewline
67 & 10.1 & 9.57108627515671 & 0.528913724843286 \tabularnewline
68 & 10.2 & 9.82108627515671 & 0.378913724843284 \tabularnewline
69 & 10.2 & 9.67108627515671 & 0.528913724843285 \tabularnewline
70 & 9.5 & 9.56285879247773 & -0.0628587924777308 \tabularnewline
71 & 9.3 & 9.11709006928407 & 0.182909930715936 \tabularnewline
72 & 9.3 & 9.11709006928406 & 0.182909930715937 \tabularnewline
73 & 9.4 & 9.4192469482019 & -0.0192469482019105 \tabularnewline
74 & 9.3 & 9.31924694820191 & -0.0192469482019145 \tabularnewline
75 & 9.1 & 9.14424694820191 & -0.0442469482019143 \tabularnewline
76 & 9 & 8.70674694820191 & 0.293253051798086 \tabularnewline
77 & 8.9 & 8.58174694820191 & 0.318253051798087 \tabularnewline
78 & 9 & 8.65674694820191 & 0.343253051798086 \tabularnewline
79 & 9.8 & 9.65674694820191 & 0.143253051798087 \tabularnewline
80 & 10 & 9.90674694820192 & 0.0932530517980854 \tabularnewline
81 & 9.8 & 9.75674694820191 & 0.0432530517980865 \tabularnewline
82 & 9.4 & 9.64851946552293 & -0.24851946552293 \tabularnewline
83 & 9 & 9.20275074232926 & -0.202750742329265 \tabularnewline
84 & 8.9 & 9.20275074232926 & -0.302750742329263 \tabularnewline
85 & 9.3 & 9.50490762124711 & -0.20490762124711 \tabularnewline
86 & 9.1 & 9.40490762124712 & -0.304907621247115 \tabularnewline
87 & 8.8 & 9.22990762124711 & -0.429907621247113 \tabularnewline
88 & 8.9 & 8.79240762124711 & 0.107592378752886 \tabularnewline
89 & 8.7 & 8.66740762124711 & 0.0325923787528858 \tabularnewline
90 & 8.6 & 8.74240762124711 & -0.142407621247114 \tabularnewline
91 & 9.1 & 9.74240762124711 & -0.642407621247113 \tabularnewline
92 & 9.3 & 9.99240762124711 & -0.692407621247114 \tabularnewline
93 & 8.9 & 9.84240762124711 & -0.942407621247114 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=6505&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]8.7[/C][C]8.08490184757508[/C][C]0.615098152424921[/C][/ROW]
[ROW][C]2[/C][C]8.5[/C][C]7.98490184757505[/C][C]0.515098152424946[/C][/ROW]
[ROW][C]3[/C][C]8.2[/C][C]7.80990184757506[/C][C]0.390098152424942[/C][/ROW]
[ROW][C]4[/C][C]8.3[/C][C]7.37240184757506[/C][C]0.927598152424945[/C][/ROW]
[ROW][C]5[/C][C]8[/C][C]7.24740184757506[/C][C]0.752598152424943[/C][/ROW]
[ROW][C]6[/C][C]8.1[/C][C]7.32240184757506[/C][C]0.777598152424941[/C][/ROW]
[ROW][C]7[/C][C]8.7[/C][C]8.32240184757506[/C][C]0.37759815242494[/C][/ROW]
[ROW][C]8[/C][C]9.3[/C][C]8.57240184757505[/C][C]0.727598152424946[/C][/ROW]
[ROW][C]9[/C][C]8.9[/C][C]8.42240184757506[/C][C]0.477598152424943[/C][/ROW]
[ROW][C]10[/C][C]8.8[/C][C]8.31417436489607[/C][C]0.485825635103928[/C][/ROW]
[ROW][C]11[/C][C]8.4[/C][C]7.86840564170241[/C][C]0.531594358297592[/C][/ROW]
[ROW][C]12[/C][C]8.4[/C][C]7.8684056417024[/C][C]0.531594358297594[/C][/ROW]
[ROW][C]13[/C][C]7.3[/C][C]8.17056252062025[/C][C]-0.870562520620254[/C][/ROW]
[ROW][C]14[/C][C]7.2[/C][C]8.07056252062026[/C][C]-0.870562520620258[/C][/ROW]
[ROW][C]15[/C][C]7[/C][C]7.89556252062026[/C][C]-0.895562520620256[/C][/ROW]
[ROW][C]16[/C][C]7[/C][C]7.45806252062026[/C][C]-0.458062520620257[/C][/ROW]
[ROW][C]17[/C][C]6.9[/C][C]7.33306252062026[/C][C]-0.433062520620256[/C][/ROW]
[ROW][C]18[/C][C]6.9[/C][C]7.40806252062026[/C][C]-0.508062520620256[/C][/ROW]
[ROW][C]19[/C][C]7.1[/C][C]8.40806252062026[/C][C]-1.30806252062026[/C][/ROW]
[ROW][C]20[/C][C]7.5[/C][C]8.65806252062026[/C][C]-1.15806252062026[/C][/ROW]
[ROW][C]21[/C][C]7.4[/C][C]8.50806252062026[/C][C]-1.10806252062026[/C][/ROW]
[ROW][C]22[/C][C]8.9[/C][C]8.39983503794127[/C][C]0.500164962058728[/C][/ROW]
[ROW][C]23[/C][C]8.3[/C][C]8.77444737710327[/C][C]-0.474447377103266[/C][/ROW]
[ROW][C]24[/C][C]8.3[/C][C]8.77444737710326[/C][C]-0.474447377103265[/C][/ROW]
[ROW][C]25[/C][C]9[/C][C]9.07660425602111[/C][C]-0.0766042560211122[/C][/ROW]
[ROW][C]26[/C][C]8.9[/C][C]8.97660425602112[/C][C]-0.0766042560211162[/C][/ROW]
[ROW][C]27[/C][C]8.8[/C][C]8.80160425602111[/C][C]-0.00160425602111462[/C][/ROW]
[ROW][C]28[/C][C]7.8[/C][C]8.36410425602112[/C][C]-0.564104256021116[/C][/ROW]
[ROW][C]29[/C][C]7.8[/C][C]8.23910425602111[/C][C]-0.439104256021115[/C][/ROW]
[ROW][C]30[/C][C]7.8[/C][C]8.31410425602112[/C][C]-0.514104256021115[/C][/ROW]
[ROW][C]31[/C][C]9.2[/C][C]9.31410425602111[/C][C]-0.114104256021115[/C][/ROW]
[ROW][C]32[/C][C]9.3[/C][C]9.56410425602112[/C][C]-0.264104256021115[/C][/ROW]
[ROW][C]33[/C][C]9.2[/C][C]9.41410425602112[/C][C]-0.214104256021116[/C][/ROW]
[ROW][C]34[/C][C]8.6[/C][C]9.30587677334213[/C][C]-0.705876773342132[/C][/ROW]
[ROW][C]35[/C][C]8.5[/C][C]8.86010805014847[/C][C]-0.360108050148466[/C][/ROW]
[ROW][C]36[/C][C]8.5[/C][C]8.86010805014847[/C][C]-0.360108050148465[/C][/ROW]
[ROW][C]37[/C][C]9[/C][C]9.16226492906631[/C][C]-0.162264929066312[/C][/ROW]
[ROW][C]38[/C][C]9[/C][C]9.06226492906632[/C][C]-0.0622649290663162[/C][/ROW]
[ROW][C]39[/C][C]8.8[/C][C]8.88726492906632[/C][C]-0.0872649290663143[/C][/ROW]
[ROW][C]40[/C][C]8[/C][C]8.44976492906632[/C][C]-0.449764929066315[/C][/ROW]
[ROW][C]41[/C][C]7.9[/C][C]8.32476492906632[/C][C]-0.424764929066314[/C][/ROW]
[ROW][C]42[/C][C]8.1[/C][C]8.39976492906631[/C][C]-0.299764929066315[/C][/ROW]
[ROW][C]43[/C][C]9.3[/C][C]9.39976492906631[/C][C]-0.0997649290663137[/C][/ROW]
[ROW][C]44[/C][C]9.4[/C][C]9.64976492906631[/C][C]-0.249764929066315[/C][/ROW]
[ROW][C]45[/C][C]9.4[/C][C]9.49976492906631[/C][C]-0.0997649290663147[/C][/ROW]
[ROW][C]46[/C][C]9.3[/C][C]9.39153744638733[/C][C]-0.0915374463873306[/C][/ROW]
[ROW][C]47[/C][C]9[/C][C]8.94576872319367[/C][C]0.0542312768063343[/C][/ROW]
[ROW][C]48[/C][C]9.1[/C][C]8.94576872319366[/C][C]0.154231276806335[/C][/ROW]
[ROW][C]49[/C][C]9.7[/C][C]9.24792560211151[/C][C]0.452074397888488[/C][/ROW]
[ROW][C]50[/C][C]9.7[/C][C]9.14792560211152[/C][C]0.552074397888483[/C][/ROW]
[ROW][C]51[/C][C]9.6[/C][C]8.97292560211151[/C][C]0.627074397888485[/C][/ROW]
[ROW][C]52[/C][C]8.3[/C][C]8.53542560211151[/C][C]-0.235425602111514[/C][/ROW]
[ROW][C]53[/C][C]8.2[/C][C]8.41042560211151[/C][C]-0.210425602111515[/C][/ROW]
[ROW][C]54[/C][C]8.4[/C][C]8.48542560211151[/C][C]-0.0854256021115142[/C][/ROW]
[ROW][C]55[/C][C]10.6[/C][C]9.48542560211151[/C][C]1.11457439788849[/C][/ROW]
[ROW][C]56[/C][C]10.9[/C][C]9.73542560211152[/C][C]1.16457439788848[/C][/ROW]
[ROW][C]57[/C][C]10.9[/C][C]9.58542560211152[/C][C]1.31457439788849[/C][/ROW]
[ROW][C]58[/C][C]9.6[/C][C]9.47719811943253[/C][C]0.122801880567469[/C][/ROW]
[ROW][C]59[/C][C]9.3[/C][C]9.03142939623886[/C][C]0.268570603761135[/C][/ROW]
[ROW][C]60[/C][C]9.3[/C][C]9.03142939623886[/C][C]0.268570603761137[/C][/ROW]
[ROW][C]61[/C][C]9.6[/C][C]9.33358627515671[/C][C]0.266413724843288[/C][/ROW]
[ROW][C]62[/C][C]9.5[/C][C]9.23358627515672[/C][C]0.266413724843284[/C][/ROW]
[ROW][C]63[/C][C]9.5[/C][C]9.05858627515672[/C][C]0.441413724843285[/C][/ROW]
[ROW][C]64[/C][C]9[/C][C]8.62108627515672[/C][C]0.378913724843285[/C][/ROW]
[ROW][C]65[/C][C]8.9[/C][C]8.49608627515671[/C][C]0.403913724843286[/C][/ROW]
[ROW][C]66[/C][C]9[/C][C]8.57108627515671[/C][C]0.428913724843286[/C][/ROW]
[ROW][C]67[/C][C]10.1[/C][C]9.57108627515671[/C][C]0.528913724843286[/C][/ROW]
[ROW][C]68[/C][C]10.2[/C][C]9.82108627515671[/C][C]0.378913724843284[/C][/ROW]
[ROW][C]69[/C][C]10.2[/C][C]9.67108627515671[/C][C]0.528913724843285[/C][/ROW]
[ROW][C]70[/C][C]9.5[/C][C]9.56285879247773[/C][C]-0.0628587924777308[/C][/ROW]
[ROW][C]71[/C][C]9.3[/C][C]9.11709006928407[/C][C]0.182909930715936[/C][/ROW]
[ROW][C]72[/C][C]9.3[/C][C]9.11709006928406[/C][C]0.182909930715937[/C][/ROW]
[ROW][C]73[/C][C]9.4[/C][C]9.4192469482019[/C][C]-0.0192469482019105[/C][/ROW]
[ROW][C]74[/C][C]9.3[/C][C]9.31924694820191[/C][C]-0.0192469482019145[/C][/ROW]
[ROW][C]75[/C][C]9.1[/C][C]9.14424694820191[/C][C]-0.0442469482019143[/C][/ROW]
[ROW][C]76[/C][C]9[/C][C]8.70674694820191[/C][C]0.293253051798086[/C][/ROW]
[ROW][C]77[/C][C]8.9[/C][C]8.58174694820191[/C][C]0.318253051798087[/C][/ROW]
[ROW][C]78[/C][C]9[/C][C]8.65674694820191[/C][C]0.343253051798086[/C][/ROW]
[ROW][C]79[/C][C]9.8[/C][C]9.65674694820191[/C][C]0.143253051798087[/C][/ROW]
[ROW][C]80[/C][C]10[/C][C]9.90674694820192[/C][C]0.0932530517980854[/C][/ROW]
[ROW][C]81[/C][C]9.8[/C][C]9.75674694820191[/C][C]0.0432530517980865[/C][/ROW]
[ROW][C]82[/C][C]9.4[/C][C]9.64851946552293[/C][C]-0.24851946552293[/C][/ROW]
[ROW][C]83[/C][C]9[/C][C]9.20275074232926[/C][C]-0.202750742329265[/C][/ROW]
[ROW][C]84[/C][C]8.9[/C][C]9.20275074232926[/C][C]-0.302750742329263[/C][/ROW]
[ROW][C]85[/C][C]9.3[/C][C]9.50490762124711[/C][C]-0.20490762124711[/C][/ROW]
[ROW][C]86[/C][C]9.1[/C][C]9.40490762124712[/C][C]-0.304907621247115[/C][/ROW]
[ROW][C]87[/C][C]8.8[/C][C]9.22990762124711[/C][C]-0.429907621247113[/C][/ROW]
[ROW][C]88[/C][C]8.9[/C][C]8.79240762124711[/C][C]0.107592378752886[/C][/ROW]
[ROW][C]89[/C][C]8.7[/C][C]8.66740762124711[/C][C]0.0325923787528858[/C][/ROW]
[ROW][C]90[/C][C]8.6[/C][C]8.74240762124711[/C][C]-0.142407621247114[/C][/ROW]
[ROW][C]91[/C][C]9.1[/C][C]9.74240762124711[/C][C]-0.642407621247113[/C][/ROW]
[ROW][C]92[/C][C]9.3[/C][C]9.99240762124711[/C][C]-0.692407621247114[/C][/ROW]
[ROW][C]93[/C][C]8.9[/C][C]9.84240762124711[/C][C]-0.942407621247114[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=6505&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=6505&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
18.78.084901847575080.615098152424921
28.57.984901847575050.515098152424946
38.27.809901847575060.390098152424942
48.37.372401847575060.927598152424945
587.247401847575060.752598152424943
68.17.322401847575060.777598152424941
78.78.322401847575060.37759815242494
89.38.572401847575050.727598152424946
98.98.422401847575060.477598152424943
108.88.314174364896070.485825635103928
118.47.868405641702410.531594358297592
128.47.86840564170240.531594358297594
137.38.17056252062025-0.870562520620254
147.28.07056252062026-0.870562520620258
1577.89556252062026-0.895562520620256
1677.45806252062026-0.458062520620257
176.97.33306252062026-0.433062520620256
186.97.40806252062026-0.508062520620256
197.18.40806252062026-1.30806252062026
207.58.65806252062026-1.15806252062026
217.48.50806252062026-1.10806252062026
228.98.399835037941270.500164962058728
238.38.77444737710327-0.474447377103266
248.38.77444737710326-0.474447377103265
2599.07660425602111-0.0766042560211122
268.98.97660425602112-0.0766042560211162
278.88.80160425602111-0.00160425602111462
287.88.36410425602112-0.564104256021116
297.88.23910425602111-0.439104256021115
307.88.31410425602112-0.514104256021115
319.29.31410425602111-0.114104256021115
329.39.56410425602112-0.264104256021115
339.29.41410425602112-0.214104256021116
348.69.30587677334213-0.705876773342132
358.58.86010805014847-0.360108050148466
368.58.86010805014847-0.360108050148465
3799.16226492906631-0.162264929066312
3899.06226492906632-0.0622649290663162
398.88.88726492906632-0.0872649290663143
4088.44976492906632-0.449764929066315
417.98.32476492906632-0.424764929066314
428.18.39976492906631-0.299764929066315
439.39.39976492906631-0.0997649290663137
449.49.64976492906631-0.249764929066315
459.49.49976492906631-0.0997649290663147
469.39.39153744638733-0.0915374463873306
4798.945768723193670.0542312768063343
489.18.945768723193660.154231276806335
499.79.247925602111510.452074397888488
509.79.147925602111520.552074397888483
519.68.972925602111510.627074397888485
528.38.53542560211151-0.235425602111514
538.28.41042560211151-0.210425602111515
548.48.48542560211151-0.0854256021115142
5510.69.485425602111511.11457439788849
5610.99.735425602111521.16457439788848
5710.99.585425602111521.31457439788849
589.69.477198119432530.122801880567469
599.39.031429396238860.268570603761135
609.39.031429396238860.268570603761137
619.69.333586275156710.266413724843288
629.59.233586275156720.266413724843284
639.59.058586275156720.441413724843285
6498.621086275156720.378913724843285
658.98.496086275156710.403913724843286
6698.571086275156710.428913724843286
6710.19.571086275156710.528913724843286
6810.29.821086275156710.378913724843284
6910.29.671086275156710.528913724843285
709.59.56285879247773-0.0628587924777308
719.39.117090069284070.182909930715936
729.39.117090069284060.182909930715937
739.49.4192469482019-0.0192469482019105
749.39.31924694820191-0.0192469482019145
759.19.14424694820191-0.0442469482019143
7698.706746948201910.293253051798086
778.98.581746948201910.318253051798087
7898.656746948201910.343253051798086
799.89.656746948201910.143253051798087
80109.906746948201920.0932530517980854
819.89.756746948201910.0432530517980865
829.49.64851946552293-0.24851946552293
8399.20275074232926-0.202750742329265
848.99.20275074232926-0.302750742329263
859.39.50490762124711-0.20490762124711
869.19.40490762124712-0.304907621247115
878.89.22990762124711-0.429907621247113
888.98.792407621247110.107592378752886
898.78.667407621247110.0325923787528858
908.68.74240762124711-0.142407621247114
919.19.74240762124711-0.642407621247113
929.39.99240762124711-0.692407621247114
938.99.84240762124711-0.942407621247114



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')