Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 02 Dec 2010 20:40:56 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/02/t129132234520yawyge0skbp0s.htm/, Retrieved Fri, 01 Nov 2024 00:58:17 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=104465, Retrieved Fri, 01 Nov 2024 00:58:17 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact220
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Workshop 7 tutorial] [2010-12-02 20:40:56] [aedc5b8e4f26bdca34b1a0cf88d6dfa2] [Current]
-    D    [Multiple Regression] [] [2011-11-24 14:44:54] [2805bc4d0d3810b6cd96238758e5985d]
-   PD    [Multiple Regression] [] [2011-11-24 15:02:45] [2805bc4d0d3810b6cd96238758e5985d]
-    D    [Multiple Regression] [] [2011-11-24 15:15:37] [2805bc4d0d3810b6cd96238758e5985d]
Feedback Forum

Post a new message
Dataseries X:
2	2	1	4	3	3	3	3
3	2	3	4	3	3	4	3
3	4	2	3	4	4	4	3
3	3	3	2	3	3	3	3
3	3	2	3	3	2	2	2
3	1	2	4	3	3	2	2
2	4	4	5	4	4	5	4
3	2	2	4	2	2	3	2
3	2	2	4	4	3	2	3
4	2	2	2	2	2	2	2
3	4	2	2	3	2	4	4
3	3	3	4	3	2	3	3
2	3	2	4	4	4	3	3
3	2	2	5	3		4	2
3	3	3	5	3	3	4	3
3	2	2	4	3	2	2	2
3	3	3	3	3	3	3	3
3	3	3	4	4	4	4	3
2	2	2	4	2	2	2	2
4	2	2	2	3	2	2	3
3	1	1	4	3	3	3	2
2	4	3	4	4	4	4	3
3	3	2	4	3	3	2	3
3	2	2	4	3	3	2	2
2	3	3	4	3	4	3	3
2	3	3	4	4	4	4	3
4	4	3	4	4	2	4	4
2	3	2	3	4	3	3	3
3	3	3	3	4	3	3	3
2	2	2	4	4	4	4	2
4	2	2	3	2	4	2	2
3	4	3	4	3	3	3	4
2	4	3	4	4	3	4	4
3	2	2	4	3	2	3	3
3	2	2	4	3	2	2	3
1	3	3	4	4	4	4	4
3	3	3	4	3	3	4	3
3	3	2	3	2	2	2	2
3	3	3	4	3	3	3	3
2	4	3	4	4	4	4	4
3	3	3	4	3	4	4	3
	1	2	3	2	2	3	3
5	2	1	5	2	1	4	2
4	2	2	4	3	2	3	2
3	3	3	4	3	2	3	3
2	4	3	4	4	4	3	4
2	3	2	4	4	4	3	4
3	2	2	5	2	2	2	2
4	2	3	4	3	3	4	3
2	3	3	4	4	3	4	3
3	3	3	4	3	2	4	3
4	4	2	3	3	1	2	2
3	3	2	4	4	3	3	4
4	2	2	4	3	2	3	3
3	2	3	5	3	4	3	4
3	2	3	4	3	3	3	3
4	2	2	3	3	4	2	3
2	3	3	3	4	4	4	4
4	1	1	4	3	4	4	1
2	5	3	4	4	4	4	4
4	2	1	4	3	1	3	2
2	3	3	4	4	4	4	3
3	4	2	3	3	4	3	3
2	4	2	3	4	4	4	3
3	2	3	3	3	1	3	3
3	3	2	4	3	4	3	4
3	3	3	4	3	3	3	2
3	3	2	4	3	3	3	2
2	3	3	4	3	4	4	4
4	1	1	5	2	1	1	1
2	3	2	3	3	4	4	4
3	3	2	4	3	3	4	4
4	3	2	3	4	3	3	3
2	4	2	2	4	2	5	2
3	3	3	4	3	3	3	3
3	4	2	4	3	3	3	3
3	3	2	5	3	3	3	3
3	3	2	2	3	4	4	3
2	2	2	4	4	3	4	4
4	1	1	4	2	1	3	2
4	2	2	4	3		3	3
2	3	3		3	3	3	3
2	3	3	4	4	4	4	3
4	2	3	3	3	3	2	2
3	2	1	4	3	4	4	2
3	3	3	5	3	3	3	3
3	2	2	2	3	2	2	2
3	3	2	2	4	3	4	3
2	4	4	4	4	4	4	3
4	2	2	4	3	3	3	3
3	3	3	3	4	4	4	3
4	3	3	4	4	3	4	4
2	4	3	4	4	4	4	4
2	3	3	4	3	4	3	4
3	2	3	4	3	3	3	3
3	2	2	4	2	2	4	2
3	3	3	2	3	1	5	3
4	2	1	4	3	2	3	2
2	3	2	4	4	2	4	3
3	3	3	4	3	3	4	3
2	4	3	4	4	4	4	4
2	4	3	4	3	4	4	3
3	3	3	5	3	5	5	3
3	1	2	4	3	2	4	2
5	1	1	4	3	1	3	1
2	4	4	4	4	3	4	3
4	2	1	3	3	3	4	3
3	4	4	4	4	4	4	4
4	2	1	4	3	2	4	2
4	2	2	4	3	2	4	
3	3	2	4	3	2	4	3
3	4	3	3	3	3	3	4
3	3	3	4	3	3	4	3
3	3	3	4	3	4	4	4
2	4	3	4	4	4	4	4
2	2	4	5	3	4	4	3
2	3	3	4	3	4	4	3
2	3	3	4	4	2	4	3
1	3	3	4	3	3	4	3
2	2	2	4	3	3	3	3
3	2	2	4	3	3	4	3
3	2	3	4	3	4	3	3
4	2	2	4	3	3	3	3
3	4	2	4	3	4	4	4
2	3	3	4	4	4	4	3
3	2	3	4	3	3	4	2
2	4	4	4	4	4	4	4
3	3	3	4	3	3	3	3
3	2	3	3	4	3	3	3
5	1	3	1	1	1	1	1
2	4	4	4	4	4	4	4
2	3	3	4	3	4	3	3
3	2	2	4	4	2	4	2
1	2	4	4	4	2	4	2
3	3	3	4	4	4	3	4
3	2	2	4	3	3	4	3
3	3	3	4	3	4	4	4
4	2	1	4	3	2	2	2
1	3	3	4	4	5	4	4
2	3	2	3	3	3	3	4
4	2	2	4	3	4	3	3
2	3	3	4	3	3	4	3
2	2	2	4	4	4	4	3
4	2	2	4	2	2	2	2
3	2	2	4	3	3	3	3
3	3	3	4	3	1	3	3
4	2	3	4	3	2	3	3
1	3	3	5	3	5	5	4
2	3	3	4	3	4	4	4
2	4	4	4	4	4	4	3
3	4	3	4	3	3	3	3
2	4	3	4	4	4	4	4
3	2	2	3	3	2	3	2
3	3	3	3	4	4	4	3
3	3	3	4	3	4	4	4
3	1	1	3	3	3	4	2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 10 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
R Framework error message & 
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=104465&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]10 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[ROW][C]R Framework error message[/C][C]
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=104465&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 0.530179124767959 + 0.08203483012131X1t[t] + 0.382220352569239X2t[t] + 0.125417786702747X3t[t] -0.120826659285732X4t[t] -0.0412507968502131X5t[t] + 0.165388840699340X6t[t] + 0.139655817303533X7t[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  0.530179124767959 +  0.08203483012131X1t[t] +  0.382220352569239X2t[t] +  0.125417786702747X3t[t] -0.120826659285732X4t[t] -0.0412507968502131X5t[t] +  0.165388840699340X6t[t] +  0.139655817303533X7t[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=104465&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  0.530179124767959 +  0.08203483012131X1t[t] +  0.382220352569239X2t[t] +  0.125417786702747X3t[t] -0.120826659285732X4t[t] -0.0412507968502131X5t[t] +  0.165388840699340X6t[t] +  0.139655817303533X7t[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=104465&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 0.530179124767959 + 0.08203483012131X1t[t] + 0.382220352569239X2t[t] + 0.125417786702747X3t[t] -0.120826659285732X4t[t] -0.0412507968502131X5t[t] + 0.165388840699340X6t[t] + 0.139655817303533X7t[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.5301791247679590.5428220.97670.3303070.165154
X1t0.082034830121310.0729221.1250.2624220.131211
X2t0.3822203525692390.0826714.62348e-064e-06
X3t0.1254177867027470.0748411.67580.0958920.047946
X4t-0.1208266592857320.082196-1.470.1436870.071844
X5t-0.04125079685021310.087366-0.47220.6375080.318754
X6t0.1653888406993400.0806412.05090.0420390.021019
X7t0.1396558173035330.076951.81490.0715650.035783

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 0.530179124767959 & 0.542822 & 0.9767 & 0.330307 & 0.165154 \tabularnewline
X1t & 0.08203483012131 & 0.072922 & 1.125 & 0.262422 & 0.131211 \tabularnewline
X2t & 0.382220352569239 & 0.082671 & 4.6234 & 8e-06 & 4e-06 \tabularnewline
X3t & 0.125417786702747 & 0.074841 & 1.6758 & 0.095892 & 0.047946 \tabularnewline
X4t & -0.120826659285732 & 0.082196 & -1.47 & 0.143687 & 0.071844 \tabularnewline
X5t & -0.0412507968502131 & 0.087366 & -0.4722 & 0.637508 & 0.318754 \tabularnewline
X6t & 0.165388840699340 & 0.080641 & 2.0509 & 0.042039 & 0.021019 \tabularnewline
X7t & 0.139655817303533 & 0.07695 & 1.8149 & 0.071565 & 0.035783 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=104465&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]0.530179124767959[/C][C]0.542822[/C][C]0.9767[/C][C]0.330307[/C][C]0.165154[/C][/ROW]
[ROW][C]X1t[/C][C]0.08203483012131[/C][C]0.072922[/C][C]1.125[/C][C]0.262422[/C][C]0.131211[/C][/ROW]
[ROW][C]X2t[/C][C]0.382220352569239[/C][C]0.082671[/C][C]4.6234[/C][C]8e-06[/C][C]4e-06[/C][/ROW]
[ROW][C]X3t[/C][C]0.125417786702747[/C][C]0.074841[/C][C]1.6758[/C][C]0.095892[/C][C]0.047946[/C][/ROW]
[ROW][C]X4t[/C][C]-0.120826659285732[/C][C]0.082196[/C][C]-1.47[/C][C]0.143687[/C][C]0.071844[/C][/ROW]
[ROW][C]X5t[/C][C]-0.0412507968502131[/C][C]0.087366[/C][C]-0.4722[/C][C]0.637508[/C][C]0.318754[/C][/ROW]
[ROW][C]X6t[/C][C]0.165388840699340[/C][C]0.080641[/C][C]2.0509[/C][C]0.042039[/C][C]0.021019[/C][/ROW]
[ROW][C]X7t[/C][C]0.139655817303533[/C][C]0.07695[/C][C]1.8149[/C][C]0.071565[/C][C]0.035783[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=104465&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.5301791247679590.5428220.97670.3303070.165154
X1t0.082034830121310.0729221.1250.2624220.131211
X2t0.3822203525692390.0826714.62348e-064e-06
X3t0.1254177867027470.0748411.67580.0958920.047946
X4t-0.1208266592857320.082196-1.470.1436870.071844
X5t-0.04125079685021310.087366-0.47220.6375080.318754
X6t0.1653888406993400.0806412.05090.0420390.021019
X7t0.1396558173035330.076951.81490.0715650.035783







Multiple Linear Regression - Regression Statistics
Multiple R0.455185301715151
R-squared0.207193658897513
Adjusted R-squared0.169696061683206
F-TEST (value)5.52551828090096
F-TEST (DF numerator)7
F-TEST (DF denominator)148
p-value1.15362556940557e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.781193377548189
Sum Squared Residuals90.3189377825218

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.455185301715151 \tabularnewline
R-squared & 0.207193658897513 \tabularnewline
Adjusted R-squared & 0.169696061683206 \tabularnewline
F-TEST (value) & 5.52551828090096 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 148 \tabularnewline
p-value & 1.15362556940557e-05 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.781193377548189 \tabularnewline
Sum Squared Residuals & 90.3189377825218 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=104465&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.455185301715151[/C][/ROW]
[ROW][C]R-squared[/C][C]0.207193658897513[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.169696061683206[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]5.52551828090096[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]148[/C][/ROW]
[ROW][C]p-value[/C][C]1.15362556940557e-05[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.781193377548189[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]90.3189377825218[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=104465&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.455185301715151
R-squared0.207193658897513
Adjusted R-squared0.169696061683206
F-TEST (value)5.52551828090096
F-TEST (DF numerator)7
F-TEST (DF denominator)148
p-value1.15362556940557e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.781193377548189
Sum Squared Residuals90.3189377825218







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
122.00704188999157-0.00704188999156803
232.936871435829410.0631285641705947
332.431225500664090.568774499335907
432.602681851845880.397318148154119
532.082085424826730.91791457517327
632.002182754436640.997817245563357
723.75154643721094-1.75154643721094
832.411683881393240.588316118606763
932.103046742575750.896953257424245
1041.995459467288402.00454053271160
1132.648791784251040.351208215748962
1232.894768222101590.105231777898412
1322.30921961654619-0.309219616546191
1432.308040391714020.69195960828598
1533.45128954683689-0.451289546836892
1623.02497377643316-1.02497377643316
1732.728099638548630.271900361451372
1832.934004504381140.0659954956188643
1923.03921180703395-1.03921180703395
2022.42592191199402-0.425921911994024
2112.64120567287237-1.64120567287237
2243.073660321684670.926339678315331
2333.06953595784677-0.06953595784677
2422.7644912998439-0.764491299843897
2532.84983751452860.150162485471398
2633.2133161389882-0.213316138988202
2743.341046663651940.658953336348061
2832.771482595130070.228517404869935
2932.713861607947840.286138392052158
3022.96589246816755-0.965892468167552
3122.27568231858971-0.275682318589713
3243.136053014513670.863946985486327
3343.359875821669740.64012417833026
3423.14911182028229-1.14911182028229
3522.91105098252544-0.911050982525436
3633.23904916238401-0.239049162384009
3733.06906919426765-0.0690691942676537
3832.517335637161180.482664362838824
3932.970664173814330.0293358261856662
4043.239049162384010.760950837615991
4132.668930900374860.331069099625144
4222.41158336337179-0.411583363371789
4312.20527053377680-1.20527053377680
4422.72596747881740-0.725967478817404
4532.658983658571380.341016341428616
4633.11113297039237-0.111132970392371
4723.13686599378818-1.13686599378818
4822.57234163905101-0.572341639051014
4932.523918968684870.476081031315134
5033.07152816195345-0.071528161953445
5132.868934680684330.131065319315668
5222.63934152127908-0.639341521279079
5323.17683704778477-1.17683704778477
5422.54506086466366-0.545060864663658
5532.836680471340250.163319528659751
5632.835867492065740.164132507934255
5722.80895524383777-0.808955243837767
5832.959737527776940.0402624722230577
5913.01114998369511-2.01114998369511
6033.18142817520179-0.181428175201785
6112.43516085141532-1.43516085141532
6233.33660176595972-0.336601765959725
6322.82778440185557-0.827784401855569
6422.97525530123135-0.97525530123135
6532.477264065143130.522735934856866
6622.89430145852247-0.894301458522472
6732.851385265520150.148614734479849
6822.68599642482081-0.685996424820811
6932.659552005329010.340447994670987
7012.41787944438907-1.41787944438907
7122.69143996911543-0.69143996911543
7222.81344585323333-0.813445853233333
7323.08458696772206-1.08458696772206
7422.70246485257256-0.70246485257256
7532.949790285973470.0502097140265289
7622.81013446866994-0.810134468669938
7722.89216929879125-0.892169298791248
7822.34561127784146-0.345611277841461
7922.91635457119551-0.916354571195506
8012.24406236294123-1.24406236294123
8122.85138526552015-0.85138526552015
8232.988582115137890.0114178848621071
8343.112778958803660.887221041196342
8432.070590432031710.929409567968291
8533.34624866914350-0.346248669143496
8632.464305777395970.535694222604032
8731.833382011152461.16661798884754
8843.494940511556260.505059488443742
8943.087045935407850.912954064592148
9032.728099638548630.271900361451372
9143.211183979256980.788816020743022
9243.454969457559670.545030542440335
9343.578255084531190.421744915468811
9433.11645886952643-0.116458869526431
9532.743617412003030.256382587996965
9622.76321155699028-0.763211556990277
9733.05777295691382-0.0577729569138207
9832.61574065761450.384259342385504
9943.167940978300090.83205902169991
10033.32955167085692-0.329551670856919
10143.537004287680980.462995712319024
10233.47166645584624-0.471666455846243
10333.71337857423435-0.713378574234345
10432.552593785327630.447406214672374
10532.697814925338910.302185074661094
10642.699966447283671.30003355271633
10733.37411385227053-0.374113852270527
10843.047074881411260.952925118588741
10932.797558488462480.202441511537515
11033.23492479854611-0.234924798546110
11122.68930780938421-0.689307809384206
11233.27570883181721-0.275708831817207
11332.975523309369280.0244766906307223
11443.251155033253570.748844966746429
11543.477290578370630.522709421629372
11642.850105522666531.14989447733347
11742.989761339970061.01023866002994
11822.72468773596378-0.724687735963784
11933.01218297880248-0.0121829788024757
12033.05556593538391-0.0555659353839127
12133.09634996865501-0.0963499686550095
12243.180983722086660.81901627791334
12332.813912616812450.186087383187551
12443.37198169253930.628018307460697
12543.096349968655010.90365003134499
12632.445463531264880.55453646873512
12743.357743661938520.642256338061484
12832.988582115137890.0114178848621071
12932.610499214519840.38950078548016
13011.81713868833171-0.817138688331712
13143.232325875235770.76767412476423
13243.195221752687450.804778247312554
13322.56169906313360-0.561699063133597
13422.73295877410357-0.732958774103572
13543.437786287953150.562213712046848
13632.975523309369280.0244766906307223
13743.686489701627420.313510298372578
13822.31805354045546-0.318053540455458
13953.108187831386641.89181216861336
14033.5632040746559-0.563204074655898
14142.768070692545221.23192930745478
14233.15183879610601-0.151838796106009
14343.123362734904440.876637265095563
14422.59131075269336-0.591310752693364
14532.893488479247970.106511520752032
14613.13973292523645-2.13973292523645
14722.80804174654181-0.808041746541814
14853.314360705357081.68563929464292
14943.209904236403360.790095763596642
15042.854696650083551.14530334991645
15132.786899850563020.213100149436978
15243.354432277375120.645567722624878
15322.48553510328292-0.485535103282922
15442.975523309369281.02447669063072
15543.516509733511070.483490266488933
15632.671213423083450.32878657691655

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 2 & 2.00704188999157 & -0.00704188999156803 \tabularnewline
2 & 3 & 2.93687143582941 & 0.0631285641705947 \tabularnewline
3 & 3 & 2.43122550066409 & 0.568774499335907 \tabularnewline
4 & 3 & 2.60268185184588 & 0.397318148154119 \tabularnewline
5 & 3 & 2.08208542482673 & 0.91791457517327 \tabularnewline
6 & 3 & 2.00218275443664 & 0.997817245563357 \tabularnewline
7 & 2 & 3.75154643721094 & -1.75154643721094 \tabularnewline
8 & 3 & 2.41168388139324 & 0.588316118606763 \tabularnewline
9 & 3 & 2.10304674257575 & 0.896953257424245 \tabularnewline
10 & 4 & 1.99545946728840 & 2.00454053271160 \tabularnewline
11 & 3 & 2.64879178425104 & 0.351208215748962 \tabularnewline
12 & 3 & 2.89476822210159 & 0.105231777898412 \tabularnewline
13 & 2 & 2.30921961654619 & -0.309219616546191 \tabularnewline
14 & 3 & 2.30804039171402 & 0.69195960828598 \tabularnewline
15 & 3 & 3.45128954683689 & -0.451289546836892 \tabularnewline
16 & 2 & 3.02497377643316 & -1.02497377643316 \tabularnewline
17 & 3 & 2.72809963854863 & 0.271900361451372 \tabularnewline
18 & 3 & 2.93400450438114 & 0.0659954956188643 \tabularnewline
19 & 2 & 3.03921180703395 & -1.03921180703395 \tabularnewline
20 & 2 & 2.42592191199402 & -0.425921911994024 \tabularnewline
21 & 1 & 2.64120567287237 & -1.64120567287237 \tabularnewline
22 & 4 & 3.07366032168467 & 0.926339678315331 \tabularnewline
23 & 3 & 3.06953595784677 & -0.06953595784677 \tabularnewline
24 & 2 & 2.7644912998439 & -0.764491299843897 \tabularnewline
25 & 3 & 2.8498375145286 & 0.150162485471398 \tabularnewline
26 & 3 & 3.2133161389882 & -0.213316138988202 \tabularnewline
27 & 4 & 3.34104666365194 & 0.658953336348061 \tabularnewline
28 & 3 & 2.77148259513007 & 0.228517404869935 \tabularnewline
29 & 3 & 2.71386160794784 & 0.286138392052158 \tabularnewline
30 & 2 & 2.96589246816755 & -0.965892468167552 \tabularnewline
31 & 2 & 2.27568231858971 & -0.275682318589713 \tabularnewline
32 & 4 & 3.13605301451367 & 0.863946985486327 \tabularnewline
33 & 4 & 3.35987582166974 & 0.64012417833026 \tabularnewline
34 & 2 & 3.14911182028229 & -1.14911182028229 \tabularnewline
35 & 2 & 2.91105098252544 & -0.911050982525436 \tabularnewline
36 & 3 & 3.23904916238401 & -0.239049162384009 \tabularnewline
37 & 3 & 3.06906919426765 & -0.0690691942676537 \tabularnewline
38 & 3 & 2.51733563716118 & 0.482664362838824 \tabularnewline
39 & 3 & 2.97066417381433 & 0.0293358261856662 \tabularnewline
40 & 4 & 3.23904916238401 & 0.760950837615991 \tabularnewline
41 & 3 & 2.66893090037486 & 0.331069099625144 \tabularnewline
42 & 2 & 2.41158336337179 & -0.411583363371789 \tabularnewline
43 & 1 & 2.20527053377680 & -1.20527053377680 \tabularnewline
44 & 2 & 2.72596747881740 & -0.725967478817404 \tabularnewline
45 & 3 & 2.65898365857138 & 0.341016341428616 \tabularnewline
46 & 3 & 3.11113297039237 & -0.111132970392371 \tabularnewline
47 & 2 & 3.13686599378818 & -1.13686599378818 \tabularnewline
48 & 2 & 2.57234163905101 & -0.572341639051014 \tabularnewline
49 & 3 & 2.52391896868487 & 0.476081031315134 \tabularnewline
50 & 3 & 3.07152816195345 & -0.071528161953445 \tabularnewline
51 & 3 & 2.86893468068433 & 0.131065319315668 \tabularnewline
52 & 2 & 2.63934152127908 & -0.639341521279079 \tabularnewline
53 & 2 & 3.17683704778477 & -1.17683704778477 \tabularnewline
54 & 2 & 2.54506086466366 & -0.545060864663658 \tabularnewline
55 & 3 & 2.83668047134025 & 0.163319528659751 \tabularnewline
56 & 3 & 2.83586749206574 & 0.164132507934255 \tabularnewline
57 & 2 & 2.80895524383777 & -0.808955243837767 \tabularnewline
58 & 3 & 2.95973752777694 & 0.0402624722230577 \tabularnewline
59 & 1 & 3.01114998369511 & -2.01114998369511 \tabularnewline
60 & 3 & 3.18142817520179 & -0.181428175201785 \tabularnewline
61 & 1 & 2.43516085141532 & -1.43516085141532 \tabularnewline
62 & 3 & 3.33660176595972 & -0.336601765959725 \tabularnewline
63 & 2 & 2.82778440185557 & -0.827784401855569 \tabularnewline
64 & 2 & 2.97525530123135 & -0.97525530123135 \tabularnewline
65 & 3 & 2.47726406514313 & 0.522735934856866 \tabularnewline
66 & 2 & 2.89430145852247 & -0.894301458522472 \tabularnewline
67 & 3 & 2.85138526552015 & 0.148614734479849 \tabularnewline
68 & 2 & 2.68599642482081 & -0.685996424820811 \tabularnewline
69 & 3 & 2.65955200532901 & 0.340447994670987 \tabularnewline
70 & 1 & 2.41787944438907 & -1.41787944438907 \tabularnewline
71 & 2 & 2.69143996911543 & -0.69143996911543 \tabularnewline
72 & 2 & 2.81344585323333 & -0.813445853233333 \tabularnewline
73 & 2 & 3.08458696772206 & -1.08458696772206 \tabularnewline
74 & 2 & 2.70246485257256 & -0.70246485257256 \tabularnewline
75 & 3 & 2.94979028597347 & 0.0502097140265289 \tabularnewline
76 & 2 & 2.81013446866994 & -0.810134468669938 \tabularnewline
77 & 2 & 2.89216929879125 & -0.892169298791248 \tabularnewline
78 & 2 & 2.34561127784146 & -0.345611277841461 \tabularnewline
79 & 2 & 2.91635457119551 & -0.916354571195506 \tabularnewline
80 & 1 & 2.24406236294123 & -1.24406236294123 \tabularnewline
81 & 2 & 2.85138526552015 & -0.85138526552015 \tabularnewline
82 & 3 & 2.98858211513789 & 0.0114178848621071 \tabularnewline
83 & 4 & 3.11277895880366 & 0.887221041196342 \tabularnewline
84 & 3 & 2.07059043203171 & 0.929409567968291 \tabularnewline
85 & 3 & 3.34624866914350 & -0.346248669143496 \tabularnewline
86 & 3 & 2.46430577739597 & 0.535694222604032 \tabularnewline
87 & 3 & 1.83338201115246 & 1.16661798884754 \tabularnewline
88 & 4 & 3.49494051155626 & 0.505059488443742 \tabularnewline
89 & 4 & 3.08704593540785 & 0.912954064592148 \tabularnewline
90 & 3 & 2.72809963854863 & 0.271900361451372 \tabularnewline
91 & 4 & 3.21118397925698 & 0.788816020743022 \tabularnewline
92 & 4 & 3.45496945755967 & 0.545030542440335 \tabularnewline
93 & 4 & 3.57825508453119 & 0.421744915468811 \tabularnewline
94 & 3 & 3.11645886952643 & -0.116458869526431 \tabularnewline
95 & 3 & 2.74361741200303 & 0.256382587996965 \tabularnewline
96 & 2 & 2.76321155699028 & -0.763211556990277 \tabularnewline
97 & 3 & 3.05777295691382 & -0.0577729569138207 \tabularnewline
98 & 3 & 2.6157406576145 & 0.384259342385504 \tabularnewline
99 & 4 & 3.16794097830009 & 0.83205902169991 \tabularnewline
100 & 3 & 3.32955167085692 & -0.329551670856919 \tabularnewline
101 & 4 & 3.53700428768098 & 0.462995712319024 \tabularnewline
102 & 3 & 3.47166645584624 & -0.471666455846243 \tabularnewline
103 & 3 & 3.71337857423435 & -0.713378574234345 \tabularnewline
104 & 3 & 2.55259378532763 & 0.447406214672374 \tabularnewline
105 & 3 & 2.69781492533891 & 0.302185074661094 \tabularnewline
106 & 4 & 2.69996644728367 & 1.30003355271633 \tabularnewline
107 & 3 & 3.37411385227053 & -0.374113852270527 \tabularnewline
108 & 4 & 3.04707488141126 & 0.952925118588741 \tabularnewline
109 & 3 & 2.79755848846248 & 0.202441511537515 \tabularnewline
110 & 3 & 3.23492479854611 & -0.234924798546110 \tabularnewline
111 & 2 & 2.68930780938421 & -0.689307809384206 \tabularnewline
112 & 3 & 3.27570883181721 & -0.275708831817207 \tabularnewline
113 & 3 & 2.97552330936928 & 0.0244766906307223 \tabularnewline
114 & 4 & 3.25115503325357 & 0.748844966746429 \tabularnewline
115 & 4 & 3.47729057837063 & 0.522709421629372 \tabularnewline
116 & 4 & 2.85010552266653 & 1.14989447733347 \tabularnewline
117 & 4 & 2.98976133997006 & 1.01023866002994 \tabularnewline
118 & 2 & 2.72468773596378 & -0.724687735963784 \tabularnewline
119 & 3 & 3.01218297880248 & -0.0121829788024757 \tabularnewline
120 & 3 & 3.05556593538391 & -0.0555659353839127 \tabularnewline
121 & 3 & 3.09634996865501 & -0.0963499686550095 \tabularnewline
122 & 4 & 3.18098372208666 & 0.81901627791334 \tabularnewline
123 & 3 & 2.81391261681245 & 0.186087383187551 \tabularnewline
124 & 4 & 3.3719816925393 & 0.628018307460697 \tabularnewline
125 & 4 & 3.09634996865501 & 0.90365003134499 \tabularnewline
126 & 3 & 2.44546353126488 & 0.55453646873512 \tabularnewline
127 & 4 & 3.35774366193852 & 0.642256338061484 \tabularnewline
128 & 3 & 2.98858211513789 & 0.0114178848621071 \tabularnewline
129 & 3 & 2.61049921451984 & 0.38950078548016 \tabularnewline
130 & 1 & 1.81713868833171 & -0.817138688331712 \tabularnewline
131 & 4 & 3.23232587523577 & 0.76767412476423 \tabularnewline
132 & 4 & 3.19522175268745 & 0.804778247312554 \tabularnewline
133 & 2 & 2.56169906313360 & -0.561699063133597 \tabularnewline
134 & 2 & 2.73295877410357 & -0.732958774103572 \tabularnewline
135 & 4 & 3.43778628795315 & 0.562213712046848 \tabularnewline
136 & 3 & 2.97552330936928 & 0.0244766906307223 \tabularnewline
137 & 4 & 3.68648970162742 & 0.313510298372578 \tabularnewline
138 & 2 & 2.31805354045546 & -0.318053540455458 \tabularnewline
139 & 5 & 3.10818783138664 & 1.89181216861336 \tabularnewline
140 & 3 & 3.5632040746559 & -0.563204074655898 \tabularnewline
141 & 4 & 2.76807069254522 & 1.23192930745478 \tabularnewline
142 & 3 & 3.15183879610601 & -0.151838796106009 \tabularnewline
143 & 4 & 3.12336273490444 & 0.876637265095563 \tabularnewline
144 & 2 & 2.59131075269336 & -0.591310752693364 \tabularnewline
145 & 3 & 2.89348847924797 & 0.106511520752032 \tabularnewline
146 & 1 & 3.13973292523645 & -2.13973292523645 \tabularnewline
147 & 2 & 2.80804174654181 & -0.808041746541814 \tabularnewline
148 & 5 & 3.31436070535708 & 1.68563929464292 \tabularnewline
149 & 4 & 3.20990423640336 & 0.790095763596642 \tabularnewline
150 & 4 & 2.85469665008355 & 1.14530334991645 \tabularnewline
151 & 3 & 2.78689985056302 & 0.213100149436978 \tabularnewline
152 & 4 & 3.35443227737512 & 0.645567722624878 \tabularnewline
153 & 2 & 2.48553510328292 & -0.485535103282922 \tabularnewline
154 & 4 & 2.97552330936928 & 1.02447669063072 \tabularnewline
155 & 4 & 3.51650973351107 & 0.483490266488933 \tabularnewline
156 & 3 & 2.67121342308345 & 0.32878657691655 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=104465&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]2[/C][C]2.00704188999157[/C][C]-0.00704188999156803[/C][/ROW]
[ROW][C]2[/C][C]3[/C][C]2.93687143582941[/C][C]0.0631285641705947[/C][/ROW]
[ROW][C]3[/C][C]3[/C][C]2.43122550066409[/C][C]0.568774499335907[/C][/ROW]
[ROW][C]4[/C][C]3[/C][C]2.60268185184588[/C][C]0.397318148154119[/C][/ROW]
[ROW][C]5[/C][C]3[/C][C]2.08208542482673[/C][C]0.91791457517327[/C][/ROW]
[ROW][C]6[/C][C]3[/C][C]2.00218275443664[/C][C]0.997817245563357[/C][/ROW]
[ROW][C]7[/C][C]2[/C][C]3.75154643721094[/C][C]-1.75154643721094[/C][/ROW]
[ROW][C]8[/C][C]3[/C][C]2.41168388139324[/C][C]0.588316118606763[/C][/ROW]
[ROW][C]9[/C][C]3[/C][C]2.10304674257575[/C][C]0.896953257424245[/C][/ROW]
[ROW][C]10[/C][C]4[/C][C]1.99545946728840[/C][C]2.00454053271160[/C][/ROW]
[ROW][C]11[/C][C]3[/C][C]2.64879178425104[/C][C]0.351208215748962[/C][/ROW]
[ROW][C]12[/C][C]3[/C][C]2.89476822210159[/C][C]0.105231777898412[/C][/ROW]
[ROW][C]13[/C][C]2[/C][C]2.30921961654619[/C][C]-0.309219616546191[/C][/ROW]
[ROW][C]14[/C][C]3[/C][C]2.30804039171402[/C][C]0.69195960828598[/C][/ROW]
[ROW][C]15[/C][C]3[/C][C]3.45128954683689[/C][C]-0.451289546836892[/C][/ROW]
[ROW][C]16[/C][C]2[/C][C]3.02497377643316[/C][C]-1.02497377643316[/C][/ROW]
[ROW][C]17[/C][C]3[/C][C]2.72809963854863[/C][C]0.271900361451372[/C][/ROW]
[ROW][C]18[/C][C]3[/C][C]2.93400450438114[/C][C]0.0659954956188643[/C][/ROW]
[ROW][C]19[/C][C]2[/C][C]3.03921180703395[/C][C]-1.03921180703395[/C][/ROW]
[ROW][C]20[/C][C]2[/C][C]2.42592191199402[/C][C]-0.425921911994024[/C][/ROW]
[ROW][C]21[/C][C]1[/C][C]2.64120567287237[/C][C]-1.64120567287237[/C][/ROW]
[ROW][C]22[/C][C]4[/C][C]3.07366032168467[/C][C]0.926339678315331[/C][/ROW]
[ROW][C]23[/C][C]3[/C][C]3.06953595784677[/C][C]-0.06953595784677[/C][/ROW]
[ROW][C]24[/C][C]2[/C][C]2.7644912998439[/C][C]-0.764491299843897[/C][/ROW]
[ROW][C]25[/C][C]3[/C][C]2.8498375145286[/C][C]0.150162485471398[/C][/ROW]
[ROW][C]26[/C][C]3[/C][C]3.2133161389882[/C][C]-0.213316138988202[/C][/ROW]
[ROW][C]27[/C][C]4[/C][C]3.34104666365194[/C][C]0.658953336348061[/C][/ROW]
[ROW][C]28[/C][C]3[/C][C]2.77148259513007[/C][C]0.228517404869935[/C][/ROW]
[ROW][C]29[/C][C]3[/C][C]2.71386160794784[/C][C]0.286138392052158[/C][/ROW]
[ROW][C]30[/C][C]2[/C][C]2.96589246816755[/C][C]-0.965892468167552[/C][/ROW]
[ROW][C]31[/C][C]2[/C][C]2.27568231858971[/C][C]-0.275682318589713[/C][/ROW]
[ROW][C]32[/C][C]4[/C][C]3.13605301451367[/C][C]0.863946985486327[/C][/ROW]
[ROW][C]33[/C][C]4[/C][C]3.35987582166974[/C][C]0.64012417833026[/C][/ROW]
[ROW][C]34[/C][C]2[/C][C]3.14911182028229[/C][C]-1.14911182028229[/C][/ROW]
[ROW][C]35[/C][C]2[/C][C]2.91105098252544[/C][C]-0.911050982525436[/C][/ROW]
[ROW][C]36[/C][C]3[/C][C]3.23904916238401[/C][C]-0.239049162384009[/C][/ROW]
[ROW][C]37[/C][C]3[/C][C]3.06906919426765[/C][C]-0.0690691942676537[/C][/ROW]
[ROW][C]38[/C][C]3[/C][C]2.51733563716118[/C][C]0.482664362838824[/C][/ROW]
[ROW][C]39[/C][C]3[/C][C]2.97066417381433[/C][C]0.0293358261856662[/C][/ROW]
[ROW][C]40[/C][C]4[/C][C]3.23904916238401[/C][C]0.760950837615991[/C][/ROW]
[ROW][C]41[/C][C]3[/C][C]2.66893090037486[/C][C]0.331069099625144[/C][/ROW]
[ROW][C]42[/C][C]2[/C][C]2.41158336337179[/C][C]-0.411583363371789[/C][/ROW]
[ROW][C]43[/C][C]1[/C][C]2.20527053377680[/C][C]-1.20527053377680[/C][/ROW]
[ROW][C]44[/C][C]2[/C][C]2.72596747881740[/C][C]-0.725967478817404[/C][/ROW]
[ROW][C]45[/C][C]3[/C][C]2.65898365857138[/C][C]0.341016341428616[/C][/ROW]
[ROW][C]46[/C][C]3[/C][C]3.11113297039237[/C][C]-0.111132970392371[/C][/ROW]
[ROW][C]47[/C][C]2[/C][C]3.13686599378818[/C][C]-1.13686599378818[/C][/ROW]
[ROW][C]48[/C][C]2[/C][C]2.57234163905101[/C][C]-0.572341639051014[/C][/ROW]
[ROW][C]49[/C][C]3[/C][C]2.52391896868487[/C][C]0.476081031315134[/C][/ROW]
[ROW][C]50[/C][C]3[/C][C]3.07152816195345[/C][C]-0.071528161953445[/C][/ROW]
[ROW][C]51[/C][C]3[/C][C]2.86893468068433[/C][C]0.131065319315668[/C][/ROW]
[ROW][C]52[/C][C]2[/C][C]2.63934152127908[/C][C]-0.639341521279079[/C][/ROW]
[ROW][C]53[/C][C]2[/C][C]3.17683704778477[/C][C]-1.17683704778477[/C][/ROW]
[ROW][C]54[/C][C]2[/C][C]2.54506086466366[/C][C]-0.545060864663658[/C][/ROW]
[ROW][C]55[/C][C]3[/C][C]2.83668047134025[/C][C]0.163319528659751[/C][/ROW]
[ROW][C]56[/C][C]3[/C][C]2.83586749206574[/C][C]0.164132507934255[/C][/ROW]
[ROW][C]57[/C][C]2[/C][C]2.80895524383777[/C][C]-0.808955243837767[/C][/ROW]
[ROW][C]58[/C][C]3[/C][C]2.95973752777694[/C][C]0.0402624722230577[/C][/ROW]
[ROW][C]59[/C][C]1[/C][C]3.01114998369511[/C][C]-2.01114998369511[/C][/ROW]
[ROW][C]60[/C][C]3[/C][C]3.18142817520179[/C][C]-0.181428175201785[/C][/ROW]
[ROW][C]61[/C][C]1[/C][C]2.43516085141532[/C][C]-1.43516085141532[/C][/ROW]
[ROW][C]62[/C][C]3[/C][C]3.33660176595972[/C][C]-0.336601765959725[/C][/ROW]
[ROW][C]63[/C][C]2[/C][C]2.82778440185557[/C][C]-0.827784401855569[/C][/ROW]
[ROW][C]64[/C][C]2[/C][C]2.97525530123135[/C][C]-0.97525530123135[/C][/ROW]
[ROW][C]65[/C][C]3[/C][C]2.47726406514313[/C][C]0.522735934856866[/C][/ROW]
[ROW][C]66[/C][C]2[/C][C]2.89430145852247[/C][C]-0.894301458522472[/C][/ROW]
[ROW][C]67[/C][C]3[/C][C]2.85138526552015[/C][C]0.148614734479849[/C][/ROW]
[ROW][C]68[/C][C]2[/C][C]2.68599642482081[/C][C]-0.685996424820811[/C][/ROW]
[ROW][C]69[/C][C]3[/C][C]2.65955200532901[/C][C]0.340447994670987[/C][/ROW]
[ROW][C]70[/C][C]1[/C][C]2.41787944438907[/C][C]-1.41787944438907[/C][/ROW]
[ROW][C]71[/C][C]2[/C][C]2.69143996911543[/C][C]-0.69143996911543[/C][/ROW]
[ROW][C]72[/C][C]2[/C][C]2.81344585323333[/C][C]-0.813445853233333[/C][/ROW]
[ROW][C]73[/C][C]2[/C][C]3.08458696772206[/C][C]-1.08458696772206[/C][/ROW]
[ROW][C]74[/C][C]2[/C][C]2.70246485257256[/C][C]-0.70246485257256[/C][/ROW]
[ROW][C]75[/C][C]3[/C][C]2.94979028597347[/C][C]0.0502097140265289[/C][/ROW]
[ROW][C]76[/C][C]2[/C][C]2.81013446866994[/C][C]-0.810134468669938[/C][/ROW]
[ROW][C]77[/C][C]2[/C][C]2.89216929879125[/C][C]-0.892169298791248[/C][/ROW]
[ROW][C]78[/C][C]2[/C][C]2.34561127784146[/C][C]-0.345611277841461[/C][/ROW]
[ROW][C]79[/C][C]2[/C][C]2.91635457119551[/C][C]-0.916354571195506[/C][/ROW]
[ROW][C]80[/C][C]1[/C][C]2.24406236294123[/C][C]-1.24406236294123[/C][/ROW]
[ROW][C]81[/C][C]2[/C][C]2.85138526552015[/C][C]-0.85138526552015[/C][/ROW]
[ROW][C]82[/C][C]3[/C][C]2.98858211513789[/C][C]0.0114178848621071[/C][/ROW]
[ROW][C]83[/C][C]4[/C][C]3.11277895880366[/C][C]0.887221041196342[/C][/ROW]
[ROW][C]84[/C][C]3[/C][C]2.07059043203171[/C][C]0.929409567968291[/C][/ROW]
[ROW][C]85[/C][C]3[/C][C]3.34624866914350[/C][C]-0.346248669143496[/C][/ROW]
[ROW][C]86[/C][C]3[/C][C]2.46430577739597[/C][C]0.535694222604032[/C][/ROW]
[ROW][C]87[/C][C]3[/C][C]1.83338201115246[/C][C]1.16661798884754[/C][/ROW]
[ROW][C]88[/C][C]4[/C][C]3.49494051155626[/C][C]0.505059488443742[/C][/ROW]
[ROW][C]89[/C][C]4[/C][C]3.08704593540785[/C][C]0.912954064592148[/C][/ROW]
[ROW][C]90[/C][C]3[/C][C]2.72809963854863[/C][C]0.271900361451372[/C][/ROW]
[ROW][C]91[/C][C]4[/C][C]3.21118397925698[/C][C]0.788816020743022[/C][/ROW]
[ROW][C]92[/C][C]4[/C][C]3.45496945755967[/C][C]0.545030542440335[/C][/ROW]
[ROW][C]93[/C][C]4[/C][C]3.57825508453119[/C][C]0.421744915468811[/C][/ROW]
[ROW][C]94[/C][C]3[/C][C]3.11645886952643[/C][C]-0.116458869526431[/C][/ROW]
[ROW][C]95[/C][C]3[/C][C]2.74361741200303[/C][C]0.256382587996965[/C][/ROW]
[ROW][C]96[/C][C]2[/C][C]2.76321155699028[/C][C]-0.763211556990277[/C][/ROW]
[ROW][C]97[/C][C]3[/C][C]3.05777295691382[/C][C]-0.0577729569138207[/C][/ROW]
[ROW][C]98[/C][C]3[/C][C]2.6157406576145[/C][C]0.384259342385504[/C][/ROW]
[ROW][C]99[/C][C]4[/C][C]3.16794097830009[/C][C]0.83205902169991[/C][/ROW]
[ROW][C]100[/C][C]3[/C][C]3.32955167085692[/C][C]-0.329551670856919[/C][/ROW]
[ROW][C]101[/C][C]4[/C][C]3.53700428768098[/C][C]0.462995712319024[/C][/ROW]
[ROW][C]102[/C][C]3[/C][C]3.47166645584624[/C][C]-0.471666455846243[/C][/ROW]
[ROW][C]103[/C][C]3[/C][C]3.71337857423435[/C][C]-0.713378574234345[/C][/ROW]
[ROW][C]104[/C][C]3[/C][C]2.55259378532763[/C][C]0.447406214672374[/C][/ROW]
[ROW][C]105[/C][C]3[/C][C]2.69781492533891[/C][C]0.302185074661094[/C][/ROW]
[ROW][C]106[/C][C]4[/C][C]2.69996644728367[/C][C]1.30003355271633[/C][/ROW]
[ROW][C]107[/C][C]3[/C][C]3.37411385227053[/C][C]-0.374113852270527[/C][/ROW]
[ROW][C]108[/C][C]4[/C][C]3.04707488141126[/C][C]0.952925118588741[/C][/ROW]
[ROW][C]109[/C][C]3[/C][C]2.79755848846248[/C][C]0.202441511537515[/C][/ROW]
[ROW][C]110[/C][C]3[/C][C]3.23492479854611[/C][C]-0.234924798546110[/C][/ROW]
[ROW][C]111[/C][C]2[/C][C]2.68930780938421[/C][C]-0.689307809384206[/C][/ROW]
[ROW][C]112[/C][C]3[/C][C]3.27570883181721[/C][C]-0.275708831817207[/C][/ROW]
[ROW][C]113[/C][C]3[/C][C]2.97552330936928[/C][C]0.0244766906307223[/C][/ROW]
[ROW][C]114[/C][C]4[/C][C]3.25115503325357[/C][C]0.748844966746429[/C][/ROW]
[ROW][C]115[/C][C]4[/C][C]3.47729057837063[/C][C]0.522709421629372[/C][/ROW]
[ROW][C]116[/C][C]4[/C][C]2.85010552266653[/C][C]1.14989447733347[/C][/ROW]
[ROW][C]117[/C][C]4[/C][C]2.98976133997006[/C][C]1.01023866002994[/C][/ROW]
[ROW][C]118[/C][C]2[/C][C]2.72468773596378[/C][C]-0.724687735963784[/C][/ROW]
[ROW][C]119[/C][C]3[/C][C]3.01218297880248[/C][C]-0.0121829788024757[/C][/ROW]
[ROW][C]120[/C][C]3[/C][C]3.05556593538391[/C][C]-0.0555659353839127[/C][/ROW]
[ROW][C]121[/C][C]3[/C][C]3.09634996865501[/C][C]-0.0963499686550095[/C][/ROW]
[ROW][C]122[/C][C]4[/C][C]3.18098372208666[/C][C]0.81901627791334[/C][/ROW]
[ROW][C]123[/C][C]3[/C][C]2.81391261681245[/C][C]0.186087383187551[/C][/ROW]
[ROW][C]124[/C][C]4[/C][C]3.3719816925393[/C][C]0.628018307460697[/C][/ROW]
[ROW][C]125[/C][C]4[/C][C]3.09634996865501[/C][C]0.90365003134499[/C][/ROW]
[ROW][C]126[/C][C]3[/C][C]2.44546353126488[/C][C]0.55453646873512[/C][/ROW]
[ROW][C]127[/C][C]4[/C][C]3.35774366193852[/C][C]0.642256338061484[/C][/ROW]
[ROW][C]128[/C][C]3[/C][C]2.98858211513789[/C][C]0.0114178848621071[/C][/ROW]
[ROW][C]129[/C][C]3[/C][C]2.61049921451984[/C][C]0.38950078548016[/C][/ROW]
[ROW][C]130[/C][C]1[/C][C]1.81713868833171[/C][C]-0.817138688331712[/C][/ROW]
[ROW][C]131[/C][C]4[/C][C]3.23232587523577[/C][C]0.76767412476423[/C][/ROW]
[ROW][C]132[/C][C]4[/C][C]3.19522175268745[/C][C]0.804778247312554[/C][/ROW]
[ROW][C]133[/C][C]2[/C][C]2.56169906313360[/C][C]-0.561699063133597[/C][/ROW]
[ROW][C]134[/C][C]2[/C][C]2.73295877410357[/C][C]-0.732958774103572[/C][/ROW]
[ROW][C]135[/C][C]4[/C][C]3.43778628795315[/C][C]0.562213712046848[/C][/ROW]
[ROW][C]136[/C][C]3[/C][C]2.97552330936928[/C][C]0.0244766906307223[/C][/ROW]
[ROW][C]137[/C][C]4[/C][C]3.68648970162742[/C][C]0.313510298372578[/C][/ROW]
[ROW][C]138[/C][C]2[/C][C]2.31805354045546[/C][C]-0.318053540455458[/C][/ROW]
[ROW][C]139[/C][C]5[/C][C]3.10818783138664[/C][C]1.89181216861336[/C][/ROW]
[ROW][C]140[/C][C]3[/C][C]3.5632040746559[/C][C]-0.563204074655898[/C][/ROW]
[ROW][C]141[/C][C]4[/C][C]2.76807069254522[/C][C]1.23192930745478[/C][/ROW]
[ROW][C]142[/C][C]3[/C][C]3.15183879610601[/C][C]-0.151838796106009[/C][/ROW]
[ROW][C]143[/C][C]4[/C][C]3.12336273490444[/C][C]0.876637265095563[/C][/ROW]
[ROW][C]144[/C][C]2[/C][C]2.59131075269336[/C][C]-0.591310752693364[/C][/ROW]
[ROW][C]145[/C][C]3[/C][C]2.89348847924797[/C][C]0.106511520752032[/C][/ROW]
[ROW][C]146[/C][C]1[/C][C]3.13973292523645[/C][C]-2.13973292523645[/C][/ROW]
[ROW][C]147[/C][C]2[/C][C]2.80804174654181[/C][C]-0.808041746541814[/C][/ROW]
[ROW][C]148[/C][C]5[/C][C]3.31436070535708[/C][C]1.68563929464292[/C][/ROW]
[ROW][C]149[/C][C]4[/C][C]3.20990423640336[/C][C]0.790095763596642[/C][/ROW]
[ROW][C]150[/C][C]4[/C][C]2.85469665008355[/C][C]1.14530334991645[/C][/ROW]
[ROW][C]151[/C][C]3[/C][C]2.78689985056302[/C][C]0.213100149436978[/C][/ROW]
[ROW][C]152[/C][C]4[/C][C]3.35443227737512[/C][C]0.645567722624878[/C][/ROW]
[ROW][C]153[/C][C]2[/C][C]2.48553510328292[/C][C]-0.485535103282922[/C][/ROW]
[ROW][C]154[/C][C]4[/C][C]2.97552330936928[/C][C]1.02447669063072[/C][/ROW]
[ROW][C]155[/C][C]4[/C][C]3.51650973351107[/C][C]0.483490266488933[/C][/ROW]
[ROW][C]156[/C][C]3[/C][C]2.67121342308345[/C][C]0.32878657691655[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=104465&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
122.00704188999157-0.00704188999156803
232.936871435829410.0631285641705947
332.431225500664090.568774499335907
432.602681851845880.397318148154119
532.082085424826730.91791457517327
632.002182754436640.997817245563357
723.75154643721094-1.75154643721094
832.411683881393240.588316118606763
932.103046742575750.896953257424245
1041.995459467288402.00454053271160
1132.648791784251040.351208215748962
1232.894768222101590.105231777898412
1322.30921961654619-0.309219616546191
1432.308040391714020.69195960828598
1533.45128954683689-0.451289546836892
1623.02497377643316-1.02497377643316
1732.728099638548630.271900361451372
1832.934004504381140.0659954956188643
1923.03921180703395-1.03921180703395
2022.42592191199402-0.425921911994024
2112.64120567287237-1.64120567287237
2243.073660321684670.926339678315331
2333.06953595784677-0.06953595784677
2422.7644912998439-0.764491299843897
2532.84983751452860.150162485471398
2633.2133161389882-0.213316138988202
2743.341046663651940.658953336348061
2832.771482595130070.228517404869935
2932.713861607947840.286138392052158
3022.96589246816755-0.965892468167552
3122.27568231858971-0.275682318589713
3243.136053014513670.863946985486327
3343.359875821669740.64012417833026
3423.14911182028229-1.14911182028229
3522.91105098252544-0.911050982525436
3633.23904916238401-0.239049162384009
3733.06906919426765-0.0690691942676537
3832.517335637161180.482664362838824
3932.970664173814330.0293358261856662
4043.239049162384010.760950837615991
4132.668930900374860.331069099625144
4222.41158336337179-0.411583363371789
4312.20527053377680-1.20527053377680
4422.72596747881740-0.725967478817404
4532.658983658571380.341016341428616
4633.11113297039237-0.111132970392371
4723.13686599378818-1.13686599378818
4822.57234163905101-0.572341639051014
4932.523918968684870.476081031315134
5033.07152816195345-0.071528161953445
5132.868934680684330.131065319315668
5222.63934152127908-0.639341521279079
5323.17683704778477-1.17683704778477
5422.54506086466366-0.545060864663658
5532.836680471340250.163319528659751
5632.835867492065740.164132507934255
5722.80895524383777-0.808955243837767
5832.959737527776940.0402624722230577
5913.01114998369511-2.01114998369511
6033.18142817520179-0.181428175201785
6112.43516085141532-1.43516085141532
6233.33660176595972-0.336601765959725
6322.82778440185557-0.827784401855569
6422.97525530123135-0.97525530123135
6532.477264065143130.522735934856866
6622.89430145852247-0.894301458522472
6732.851385265520150.148614734479849
6822.68599642482081-0.685996424820811
6932.659552005329010.340447994670987
7012.41787944438907-1.41787944438907
7122.69143996911543-0.69143996911543
7222.81344585323333-0.813445853233333
7323.08458696772206-1.08458696772206
7422.70246485257256-0.70246485257256
7532.949790285973470.0502097140265289
7622.81013446866994-0.810134468669938
7722.89216929879125-0.892169298791248
7822.34561127784146-0.345611277841461
7922.91635457119551-0.916354571195506
8012.24406236294123-1.24406236294123
8122.85138526552015-0.85138526552015
8232.988582115137890.0114178848621071
8343.112778958803660.887221041196342
8432.070590432031710.929409567968291
8533.34624866914350-0.346248669143496
8632.464305777395970.535694222604032
8731.833382011152461.16661798884754
8843.494940511556260.505059488443742
8943.087045935407850.912954064592148
9032.728099638548630.271900361451372
9143.211183979256980.788816020743022
9243.454969457559670.545030542440335
9343.578255084531190.421744915468811
9433.11645886952643-0.116458869526431
9532.743617412003030.256382587996965
9622.76321155699028-0.763211556990277
9733.05777295691382-0.0577729569138207
9832.61574065761450.384259342385504
9943.167940978300090.83205902169991
10033.32955167085692-0.329551670856919
10143.537004287680980.462995712319024
10233.47166645584624-0.471666455846243
10333.71337857423435-0.713378574234345
10432.552593785327630.447406214672374
10532.697814925338910.302185074661094
10642.699966447283671.30003355271633
10733.37411385227053-0.374113852270527
10843.047074881411260.952925118588741
10932.797558488462480.202441511537515
11033.23492479854611-0.234924798546110
11122.68930780938421-0.689307809384206
11233.27570883181721-0.275708831817207
11332.975523309369280.0244766906307223
11443.251155033253570.748844966746429
11543.477290578370630.522709421629372
11642.850105522666531.14989447733347
11742.989761339970061.01023866002994
11822.72468773596378-0.724687735963784
11933.01218297880248-0.0121829788024757
12033.05556593538391-0.0555659353839127
12133.09634996865501-0.0963499686550095
12243.180983722086660.81901627791334
12332.813912616812450.186087383187551
12443.37198169253930.628018307460697
12543.096349968655010.90365003134499
12632.445463531264880.55453646873512
12743.357743661938520.642256338061484
12832.988582115137890.0114178848621071
12932.610499214519840.38950078548016
13011.81713868833171-0.817138688331712
13143.232325875235770.76767412476423
13243.195221752687450.804778247312554
13322.56169906313360-0.561699063133597
13422.73295877410357-0.732958774103572
13543.437786287953150.562213712046848
13632.975523309369280.0244766906307223
13743.686489701627420.313510298372578
13822.31805354045546-0.318053540455458
13953.108187831386641.89181216861336
14033.5632040746559-0.563204074655898
14142.768070692545221.23192930745478
14233.15183879610601-0.151838796106009
14343.123362734904440.876637265095563
14422.59131075269336-0.591310752693364
14532.893488479247970.106511520752032
14613.13973292523645-2.13973292523645
14722.80804174654181-0.808041746541814
14853.314360705357081.68563929464292
14943.209904236403360.790095763596642
15042.854696650083551.14530334991645
15132.786899850563020.213100149436978
15243.354432277375120.645567722624878
15322.48553510328292-0.485535103282922
15442.975523309369281.02447669063072
15543.516509733511070.483490266488933
15632.671213423083450.32878657691655







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.2190613662640040.4381227325280070.780938633735996
120.1135946017258040.2271892034516080.886405398274196
130.05660164378357510.1132032875671500.943398356216425
140.1190649679994330.2381299359988660.880935032000567
150.0856222635454840.1712445270909680.914377736454516
160.2338272673029070.4676545346058130.766172732697094
170.1604011212874440.3208022425748890.839598878712556
180.1038121989993440.2076243979986870.896187801000656
190.08451043915649420.1690208783129880.915489560843506
200.09373237241120210.1874647448224040.906267627588798
210.3523315797311860.7046631594623710.647668420268814
220.5517088561735360.8965822876529270.448291143826464
230.53673202433190.9265359513362010.463267975668100
240.545878223761170.9082435524776610.454121776238830
250.4708230272388130.9416460544776270.529176972761187
260.4277722927106120.8555445854212230.572227707289388
270.4074484495176530.8148968990353050.592551550482347
280.3693695687696560.7387391375393120.630630431230344
290.3174938935412520.6349877870825030.682506106458748
300.2750736475184940.5501472950369880.724926352481506
310.2222672177418370.4445344354836750.777732782258163
320.2330090206034640.4660180412069270.766990979396536
330.2442532544656050.488506508931210.755746745534395
340.2678327297786130.5356654595572260.732167270221387
350.3392591923036850.678518384607370.660740807696315
360.2870805857307140.5741611714614290.712919414269286
370.2388511850097310.4777023700194610.76114881499027
380.2154844899356920.4309689798713840.784515510064308
390.1756750083722110.3513500167444220.82432499162779
400.2126512043423660.4253024086847320.787348795657634
410.1848560644644050.369712128928810.815143935535595
420.2128152649818900.4256305299637810.78718473501811
430.4059994143575310.8119988287150620.594000585642469
440.3862566964828760.7725133929657520.613743303517124
450.3412385359605470.6824770719210930.658761464039453
460.3118251402279650.623650280455930.688174859772035
470.4158242197818840.8316484395637680.584175780218116
480.3960607024592340.7921214049184690.603939297540766
490.3682421043299740.7364842086599470.631757895670026
500.3281145246618460.6562290493236930.671885475338154
510.2949039266022490.5898078532044990.705096073397751
520.2706387912058190.5412775824116380.729361208794181
530.3247446437905860.6494892875811730.675255356209414
540.3036502153851060.6073004307702120.696349784614894
550.2620968974620540.5241937949241080.737903102537946
560.2268980414913130.4537960829826270.773101958508687
570.2311363299757020.4622726599514040.768863670024298
580.1944159595297810.3888319190595620.805584040470219
590.2907145461311090.5814290922622190.70928545386889
600.2507878069052190.5015756138104370.749212193094781
610.3302955423699950.660591084739990.669704457630005
620.3040593777180230.6081187554360470.695940622281977
630.2939131791508700.5878263583017390.70608682084913
640.3094872523852910.6189745047705830.690512747614709
650.2837791731442730.5675583462885460.716220826855727
660.3027961604245380.6055923208490760.697203839575462
670.2895608552561100.5791217105122190.71043914474389
680.2691678261322220.5383356522644440.730832173867778
690.2342584578510730.4685169157021460.765741542148927
700.3107347852001840.6214695704003670.689265214799816
710.3157945569637390.6315891139274770.684205443036261
720.3283610044808820.6567220089617640.671638995519118
730.3703673328561970.7407346657123940.629632667143803
740.3638550423260080.7277100846520170.636144957673991
750.3362704090555390.6725408181110790.66372959094446
760.3449026770057110.6898053540114230.655097322994289
770.378019231301770.756038462603540.62198076869823
780.3561130647303770.7122261294607540.643886935269623
790.4538714003123440.9077428006246890.546128599687656
800.613287304898430.773425390203140.38671269510157
810.6597397452411750.680520509517650.340260254758825
820.6183710824956340.7632578350087320.381628917504366
830.714298154871670.5714036902566580.285701845128329
840.7334300087123010.5331399825753980.266569991287699
850.7228101253600030.5543797492799950.277189874639998
860.7030541996136370.5938916007727270.296945800386363
870.7150298778265840.5699402443468320.284970122173416
880.7085965831126660.5828068337746680.291403416887334
890.7658066297379360.4683867405241280.234193370262064
900.7309116912659420.5381766174681160.269088308734058
910.7444964130965320.5110071738069350.255503586903468
920.7371799140496540.5256401719006920.262820085950346
930.7268224725914320.5463550548171360.273177527408568
940.6903923887143870.6192152225712260.309607611285613
950.6531467676802210.6937064646395590.346853232319779
960.7213562671487360.5572874657025280.278643732851264
970.6901376149711640.6197247700576720.309862385028836
980.6574526746194650.685094650761070.342547325380535
990.6846549400498550.630690119900290.315345059950145
1000.6467002440193850.706599511961230.353299755980615
1010.6265504364644280.7468991270711430.373449563535572
1020.5905834100214790.8188331799570420.409416589978521
1030.7704816229439520.4590367541120970.229518377056048
1040.7556791103733030.4886417792533930.244320889626696
1050.7818020026698190.4363959946603620.218197997330181
1060.7928144209027840.4143711581944320.207185579097216
1070.7593915684706670.4812168630586670.240608431529333
1080.7447476681298190.5105046637403620.255252331870181
1090.709722701016480.5805545979670410.290277298983520
1100.6711475806019530.6577048387960940.328852419398047
1110.8114617122740390.3770765754519220.188538287725961
1120.8000512604752840.3998974790494320.199948739524716
1130.7738515723320010.4522968553359980.226148427667999
1140.7623948698779050.475210260244190.237605130122095
1150.764973524403810.4700529511923810.235026475596190
1160.7841348352745880.4317303294508240.215865164725412
1170.7942389791177720.4115220417644570.205761020882228
1180.8890919982284020.2218160035431970.110908001771598
1190.8740304150426730.2519391699146540.125969584957327
1200.8395857319211860.3208285361576290.160414268078814
1210.7998921307927680.4002157384144640.200107869207232
1220.8781533522887450.243693295422510.121846647711255
1230.8720088323595270.2559823352809460.127991167640473
1240.8428246993593430.3143506012813150.157175300640657
1250.901490253297580.197019493404840.09850974670242
1260.8752637260726450.2494725478547100.124736273927355
1270.8438883246751840.3122233506496320.156111675324816
1280.8190538527605450.361892294478910.180946147239455
1290.7717066181543770.4565867636912470.228293381845623
1300.7441481511959220.5117036976081570.255851848804078
1310.6989137331913170.6021725336173660.301086266808683
1320.9373536762174250.1252926475651490.0626463237825747
1330.9218781310534390.1562437378931230.0781218689465615
1340.8887051374571520.2225897250856960.111294862542848
1350.8993081351405250.2013837297189500.100691864859475
1360.8756056815099560.2487886369800870.124394318490044
1370.8262775233590270.3474449532819470.173722476640973
1380.7830663740738570.4338672518522850.216933625926142
1390.7610659768460480.4778680463079030.238934023153952
1400.683761681325730.6324766373485410.316238318674271
1410.7690284480202520.4619431039594960.230971551979748
1420.7198725198839760.5602549602320470.280127480116024
1430.6188360376208590.7623279247582820.381163962379141
1440.7837607432655170.4324785134689660.216239256734483
1450.774819477161830.450361045676340.22518052283817

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 & 0.219061366264004 & 0.438122732528007 & 0.780938633735996 \tabularnewline
12 & 0.113594601725804 & 0.227189203451608 & 0.886405398274196 \tabularnewline
13 & 0.0566016437835751 & 0.113203287567150 & 0.943398356216425 \tabularnewline
14 & 0.119064967999433 & 0.238129935998866 & 0.880935032000567 \tabularnewline
15 & 0.085622263545484 & 0.171244527090968 & 0.914377736454516 \tabularnewline
16 & 0.233827267302907 & 0.467654534605813 & 0.766172732697094 \tabularnewline
17 & 0.160401121287444 & 0.320802242574889 & 0.839598878712556 \tabularnewline
18 & 0.103812198999344 & 0.207624397998687 & 0.896187801000656 \tabularnewline
19 & 0.0845104391564942 & 0.169020878312988 & 0.915489560843506 \tabularnewline
20 & 0.0937323724112021 & 0.187464744822404 & 0.906267627588798 \tabularnewline
21 & 0.352331579731186 & 0.704663159462371 & 0.647668420268814 \tabularnewline
22 & 0.551708856173536 & 0.896582287652927 & 0.448291143826464 \tabularnewline
23 & 0.5367320243319 & 0.926535951336201 & 0.463267975668100 \tabularnewline
24 & 0.54587822376117 & 0.908243552477661 & 0.454121776238830 \tabularnewline
25 & 0.470823027238813 & 0.941646054477627 & 0.529176972761187 \tabularnewline
26 & 0.427772292710612 & 0.855544585421223 & 0.572227707289388 \tabularnewline
27 & 0.407448449517653 & 0.814896899035305 & 0.592551550482347 \tabularnewline
28 & 0.369369568769656 & 0.738739137539312 & 0.630630431230344 \tabularnewline
29 & 0.317493893541252 & 0.634987787082503 & 0.682506106458748 \tabularnewline
30 & 0.275073647518494 & 0.550147295036988 & 0.724926352481506 \tabularnewline
31 & 0.222267217741837 & 0.444534435483675 & 0.777732782258163 \tabularnewline
32 & 0.233009020603464 & 0.466018041206927 & 0.766990979396536 \tabularnewline
33 & 0.244253254465605 & 0.48850650893121 & 0.755746745534395 \tabularnewline
34 & 0.267832729778613 & 0.535665459557226 & 0.732167270221387 \tabularnewline
35 & 0.339259192303685 & 0.67851838460737 & 0.660740807696315 \tabularnewline
36 & 0.287080585730714 & 0.574161171461429 & 0.712919414269286 \tabularnewline
37 & 0.238851185009731 & 0.477702370019461 & 0.76114881499027 \tabularnewline
38 & 0.215484489935692 & 0.430968979871384 & 0.784515510064308 \tabularnewline
39 & 0.175675008372211 & 0.351350016744422 & 0.82432499162779 \tabularnewline
40 & 0.212651204342366 & 0.425302408684732 & 0.787348795657634 \tabularnewline
41 & 0.184856064464405 & 0.36971212892881 & 0.815143935535595 \tabularnewline
42 & 0.212815264981890 & 0.425630529963781 & 0.78718473501811 \tabularnewline
43 & 0.405999414357531 & 0.811998828715062 & 0.594000585642469 \tabularnewline
44 & 0.386256696482876 & 0.772513392965752 & 0.613743303517124 \tabularnewline
45 & 0.341238535960547 & 0.682477071921093 & 0.658761464039453 \tabularnewline
46 & 0.311825140227965 & 0.62365028045593 & 0.688174859772035 \tabularnewline
47 & 0.415824219781884 & 0.831648439563768 & 0.584175780218116 \tabularnewline
48 & 0.396060702459234 & 0.792121404918469 & 0.603939297540766 \tabularnewline
49 & 0.368242104329974 & 0.736484208659947 & 0.631757895670026 \tabularnewline
50 & 0.328114524661846 & 0.656229049323693 & 0.671885475338154 \tabularnewline
51 & 0.294903926602249 & 0.589807853204499 & 0.705096073397751 \tabularnewline
52 & 0.270638791205819 & 0.541277582411638 & 0.729361208794181 \tabularnewline
53 & 0.324744643790586 & 0.649489287581173 & 0.675255356209414 \tabularnewline
54 & 0.303650215385106 & 0.607300430770212 & 0.696349784614894 \tabularnewline
55 & 0.262096897462054 & 0.524193794924108 & 0.737903102537946 \tabularnewline
56 & 0.226898041491313 & 0.453796082982627 & 0.773101958508687 \tabularnewline
57 & 0.231136329975702 & 0.462272659951404 & 0.768863670024298 \tabularnewline
58 & 0.194415959529781 & 0.388831919059562 & 0.805584040470219 \tabularnewline
59 & 0.290714546131109 & 0.581429092262219 & 0.70928545386889 \tabularnewline
60 & 0.250787806905219 & 0.501575613810437 & 0.749212193094781 \tabularnewline
61 & 0.330295542369995 & 0.66059108473999 & 0.669704457630005 \tabularnewline
62 & 0.304059377718023 & 0.608118755436047 & 0.695940622281977 \tabularnewline
63 & 0.293913179150870 & 0.587826358301739 & 0.70608682084913 \tabularnewline
64 & 0.309487252385291 & 0.618974504770583 & 0.690512747614709 \tabularnewline
65 & 0.283779173144273 & 0.567558346288546 & 0.716220826855727 \tabularnewline
66 & 0.302796160424538 & 0.605592320849076 & 0.697203839575462 \tabularnewline
67 & 0.289560855256110 & 0.579121710512219 & 0.71043914474389 \tabularnewline
68 & 0.269167826132222 & 0.538335652264444 & 0.730832173867778 \tabularnewline
69 & 0.234258457851073 & 0.468516915702146 & 0.765741542148927 \tabularnewline
70 & 0.310734785200184 & 0.621469570400367 & 0.689265214799816 \tabularnewline
71 & 0.315794556963739 & 0.631589113927477 & 0.684205443036261 \tabularnewline
72 & 0.328361004480882 & 0.656722008961764 & 0.671638995519118 \tabularnewline
73 & 0.370367332856197 & 0.740734665712394 & 0.629632667143803 \tabularnewline
74 & 0.363855042326008 & 0.727710084652017 & 0.636144957673991 \tabularnewline
75 & 0.336270409055539 & 0.672540818111079 & 0.66372959094446 \tabularnewline
76 & 0.344902677005711 & 0.689805354011423 & 0.655097322994289 \tabularnewline
77 & 0.37801923130177 & 0.75603846260354 & 0.62198076869823 \tabularnewline
78 & 0.356113064730377 & 0.712226129460754 & 0.643886935269623 \tabularnewline
79 & 0.453871400312344 & 0.907742800624689 & 0.546128599687656 \tabularnewline
80 & 0.61328730489843 & 0.77342539020314 & 0.38671269510157 \tabularnewline
81 & 0.659739745241175 & 0.68052050951765 & 0.340260254758825 \tabularnewline
82 & 0.618371082495634 & 0.763257835008732 & 0.381628917504366 \tabularnewline
83 & 0.71429815487167 & 0.571403690256658 & 0.285701845128329 \tabularnewline
84 & 0.733430008712301 & 0.533139982575398 & 0.266569991287699 \tabularnewline
85 & 0.722810125360003 & 0.554379749279995 & 0.277189874639998 \tabularnewline
86 & 0.703054199613637 & 0.593891600772727 & 0.296945800386363 \tabularnewline
87 & 0.715029877826584 & 0.569940244346832 & 0.284970122173416 \tabularnewline
88 & 0.708596583112666 & 0.582806833774668 & 0.291403416887334 \tabularnewline
89 & 0.765806629737936 & 0.468386740524128 & 0.234193370262064 \tabularnewline
90 & 0.730911691265942 & 0.538176617468116 & 0.269088308734058 \tabularnewline
91 & 0.744496413096532 & 0.511007173806935 & 0.255503586903468 \tabularnewline
92 & 0.737179914049654 & 0.525640171900692 & 0.262820085950346 \tabularnewline
93 & 0.726822472591432 & 0.546355054817136 & 0.273177527408568 \tabularnewline
94 & 0.690392388714387 & 0.619215222571226 & 0.309607611285613 \tabularnewline
95 & 0.653146767680221 & 0.693706464639559 & 0.346853232319779 \tabularnewline
96 & 0.721356267148736 & 0.557287465702528 & 0.278643732851264 \tabularnewline
97 & 0.690137614971164 & 0.619724770057672 & 0.309862385028836 \tabularnewline
98 & 0.657452674619465 & 0.68509465076107 & 0.342547325380535 \tabularnewline
99 & 0.684654940049855 & 0.63069011990029 & 0.315345059950145 \tabularnewline
100 & 0.646700244019385 & 0.70659951196123 & 0.353299755980615 \tabularnewline
101 & 0.626550436464428 & 0.746899127071143 & 0.373449563535572 \tabularnewline
102 & 0.590583410021479 & 0.818833179957042 & 0.409416589978521 \tabularnewline
103 & 0.770481622943952 & 0.459036754112097 & 0.229518377056048 \tabularnewline
104 & 0.755679110373303 & 0.488641779253393 & 0.244320889626696 \tabularnewline
105 & 0.781802002669819 & 0.436395994660362 & 0.218197997330181 \tabularnewline
106 & 0.792814420902784 & 0.414371158194432 & 0.207185579097216 \tabularnewline
107 & 0.759391568470667 & 0.481216863058667 & 0.240608431529333 \tabularnewline
108 & 0.744747668129819 & 0.510504663740362 & 0.255252331870181 \tabularnewline
109 & 0.70972270101648 & 0.580554597967041 & 0.290277298983520 \tabularnewline
110 & 0.671147580601953 & 0.657704838796094 & 0.328852419398047 \tabularnewline
111 & 0.811461712274039 & 0.377076575451922 & 0.188538287725961 \tabularnewline
112 & 0.800051260475284 & 0.399897479049432 & 0.199948739524716 \tabularnewline
113 & 0.773851572332001 & 0.452296855335998 & 0.226148427667999 \tabularnewline
114 & 0.762394869877905 & 0.47521026024419 & 0.237605130122095 \tabularnewline
115 & 0.76497352440381 & 0.470052951192381 & 0.235026475596190 \tabularnewline
116 & 0.784134835274588 & 0.431730329450824 & 0.215865164725412 \tabularnewline
117 & 0.794238979117772 & 0.411522041764457 & 0.205761020882228 \tabularnewline
118 & 0.889091998228402 & 0.221816003543197 & 0.110908001771598 \tabularnewline
119 & 0.874030415042673 & 0.251939169914654 & 0.125969584957327 \tabularnewline
120 & 0.839585731921186 & 0.320828536157629 & 0.160414268078814 \tabularnewline
121 & 0.799892130792768 & 0.400215738414464 & 0.200107869207232 \tabularnewline
122 & 0.878153352288745 & 0.24369329542251 & 0.121846647711255 \tabularnewline
123 & 0.872008832359527 & 0.255982335280946 & 0.127991167640473 \tabularnewline
124 & 0.842824699359343 & 0.314350601281315 & 0.157175300640657 \tabularnewline
125 & 0.90149025329758 & 0.19701949340484 & 0.09850974670242 \tabularnewline
126 & 0.875263726072645 & 0.249472547854710 & 0.124736273927355 \tabularnewline
127 & 0.843888324675184 & 0.312223350649632 & 0.156111675324816 \tabularnewline
128 & 0.819053852760545 & 0.36189229447891 & 0.180946147239455 \tabularnewline
129 & 0.771706618154377 & 0.456586763691247 & 0.228293381845623 \tabularnewline
130 & 0.744148151195922 & 0.511703697608157 & 0.255851848804078 \tabularnewline
131 & 0.698913733191317 & 0.602172533617366 & 0.301086266808683 \tabularnewline
132 & 0.937353676217425 & 0.125292647565149 & 0.0626463237825747 \tabularnewline
133 & 0.921878131053439 & 0.156243737893123 & 0.0781218689465615 \tabularnewline
134 & 0.888705137457152 & 0.222589725085696 & 0.111294862542848 \tabularnewline
135 & 0.899308135140525 & 0.201383729718950 & 0.100691864859475 \tabularnewline
136 & 0.875605681509956 & 0.248788636980087 & 0.124394318490044 \tabularnewline
137 & 0.826277523359027 & 0.347444953281947 & 0.173722476640973 \tabularnewline
138 & 0.783066374073857 & 0.433867251852285 & 0.216933625926142 \tabularnewline
139 & 0.761065976846048 & 0.477868046307903 & 0.238934023153952 \tabularnewline
140 & 0.68376168132573 & 0.632476637348541 & 0.316238318674271 \tabularnewline
141 & 0.769028448020252 & 0.461943103959496 & 0.230971551979748 \tabularnewline
142 & 0.719872519883976 & 0.560254960232047 & 0.280127480116024 \tabularnewline
143 & 0.618836037620859 & 0.762327924758282 & 0.381163962379141 \tabularnewline
144 & 0.783760743265517 & 0.432478513468966 & 0.216239256734483 \tabularnewline
145 & 0.77481947716183 & 0.45036104567634 & 0.22518052283817 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=104465&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C]0.219061366264004[/C][C]0.438122732528007[/C][C]0.780938633735996[/C][/ROW]
[ROW][C]12[/C][C]0.113594601725804[/C][C]0.227189203451608[/C][C]0.886405398274196[/C][/ROW]
[ROW][C]13[/C][C]0.0566016437835751[/C][C]0.113203287567150[/C][C]0.943398356216425[/C][/ROW]
[ROW][C]14[/C][C]0.119064967999433[/C][C]0.238129935998866[/C][C]0.880935032000567[/C][/ROW]
[ROW][C]15[/C][C]0.085622263545484[/C][C]0.171244527090968[/C][C]0.914377736454516[/C][/ROW]
[ROW][C]16[/C][C]0.233827267302907[/C][C]0.467654534605813[/C][C]0.766172732697094[/C][/ROW]
[ROW][C]17[/C][C]0.160401121287444[/C][C]0.320802242574889[/C][C]0.839598878712556[/C][/ROW]
[ROW][C]18[/C][C]0.103812198999344[/C][C]0.207624397998687[/C][C]0.896187801000656[/C][/ROW]
[ROW][C]19[/C][C]0.0845104391564942[/C][C]0.169020878312988[/C][C]0.915489560843506[/C][/ROW]
[ROW][C]20[/C][C]0.0937323724112021[/C][C]0.187464744822404[/C][C]0.906267627588798[/C][/ROW]
[ROW][C]21[/C][C]0.352331579731186[/C][C]0.704663159462371[/C][C]0.647668420268814[/C][/ROW]
[ROW][C]22[/C][C]0.551708856173536[/C][C]0.896582287652927[/C][C]0.448291143826464[/C][/ROW]
[ROW][C]23[/C][C]0.5367320243319[/C][C]0.926535951336201[/C][C]0.463267975668100[/C][/ROW]
[ROW][C]24[/C][C]0.54587822376117[/C][C]0.908243552477661[/C][C]0.454121776238830[/C][/ROW]
[ROW][C]25[/C][C]0.470823027238813[/C][C]0.941646054477627[/C][C]0.529176972761187[/C][/ROW]
[ROW][C]26[/C][C]0.427772292710612[/C][C]0.855544585421223[/C][C]0.572227707289388[/C][/ROW]
[ROW][C]27[/C][C]0.407448449517653[/C][C]0.814896899035305[/C][C]0.592551550482347[/C][/ROW]
[ROW][C]28[/C][C]0.369369568769656[/C][C]0.738739137539312[/C][C]0.630630431230344[/C][/ROW]
[ROW][C]29[/C][C]0.317493893541252[/C][C]0.634987787082503[/C][C]0.682506106458748[/C][/ROW]
[ROW][C]30[/C][C]0.275073647518494[/C][C]0.550147295036988[/C][C]0.724926352481506[/C][/ROW]
[ROW][C]31[/C][C]0.222267217741837[/C][C]0.444534435483675[/C][C]0.777732782258163[/C][/ROW]
[ROW][C]32[/C][C]0.233009020603464[/C][C]0.466018041206927[/C][C]0.766990979396536[/C][/ROW]
[ROW][C]33[/C][C]0.244253254465605[/C][C]0.48850650893121[/C][C]0.755746745534395[/C][/ROW]
[ROW][C]34[/C][C]0.267832729778613[/C][C]0.535665459557226[/C][C]0.732167270221387[/C][/ROW]
[ROW][C]35[/C][C]0.339259192303685[/C][C]0.67851838460737[/C][C]0.660740807696315[/C][/ROW]
[ROW][C]36[/C][C]0.287080585730714[/C][C]0.574161171461429[/C][C]0.712919414269286[/C][/ROW]
[ROW][C]37[/C][C]0.238851185009731[/C][C]0.477702370019461[/C][C]0.76114881499027[/C][/ROW]
[ROW][C]38[/C][C]0.215484489935692[/C][C]0.430968979871384[/C][C]0.784515510064308[/C][/ROW]
[ROW][C]39[/C][C]0.175675008372211[/C][C]0.351350016744422[/C][C]0.82432499162779[/C][/ROW]
[ROW][C]40[/C][C]0.212651204342366[/C][C]0.425302408684732[/C][C]0.787348795657634[/C][/ROW]
[ROW][C]41[/C][C]0.184856064464405[/C][C]0.36971212892881[/C][C]0.815143935535595[/C][/ROW]
[ROW][C]42[/C][C]0.212815264981890[/C][C]0.425630529963781[/C][C]0.78718473501811[/C][/ROW]
[ROW][C]43[/C][C]0.405999414357531[/C][C]0.811998828715062[/C][C]0.594000585642469[/C][/ROW]
[ROW][C]44[/C][C]0.386256696482876[/C][C]0.772513392965752[/C][C]0.613743303517124[/C][/ROW]
[ROW][C]45[/C][C]0.341238535960547[/C][C]0.682477071921093[/C][C]0.658761464039453[/C][/ROW]
[ROW][C]46[/C][C]0.311825140227965[/C][C]0.62365028045593[/C][C]0.688174859772035[/C][/ROW]
[ROW][C]47[/C][C]0.415824219781884[/C][C]0.831648439563768[/C][C]0.584175780218116[/C][/ROW]
[ROW][C]48[/C][C]0.396060702459234[/C][C]0.792121404918469[/C][C]0.603939297540766[/C][/ROW]
[ROW][C]49[/C][C]0.368242104329974[/C][C]0.736484208659947[/C][C]0.631757895670026[/C][/ROW]
[ROW][C]50[/C][C]0.328114524661846[/C][C]0.656229049323693[/C][C]0.671885475338154[/C][/ROW]
[ROW][C]51[/C][C]0.294903926602249[/C][C]0.589807853204499[/C][C]0.705096073397751[/C][/ROW]
[ROW][C]52[/C][C]0.270638791205819[/C][C]0.541277582411638[/C][C]0.729361208794181[/C][/ROW]
[ROW][C]53[/C][C]0.324744643790586[/C][C]0.649489287581173[/C][C]0.675255356209414[/C][/ROW]
[ROW][C]54[/C][C]0.303650215385106[/C][C]0.607300430770212[/C][C]0.696349784614894[/C][/ROW]
[ROW][C]55[/C][C]0.262096897462054[/C][C]0.524193794924108[/C][C]0.737903102537946[/C][/ROW]
[ROW][C]56[/C][C]0.226898041491313[/C][C]0.453796082982627[/C][C]0.773101958508687[/C][/ROW]
[ROW][C]57[/C][C]0.231136329975702[/C][C]0.462272659951404[/C][C]0.768863670024298[/C][/ROW]
[ROW][C]58[/C][C]0.194415959529781[/C][C]0.388831919059562[/C][C]0.805584040470219[/C][/ROW]
[ROW][C]59[/C][C]0.290714546131109[/C][C]0.581429092262219[/C][C]0.70928545386889[/C][/ROW]
[ROW][C]60[/C][C]0.250787806905219[/C][C]0.501575613810437[/C][C]0.749212193094781[/C][/ROW]
[ROW][C]61[/C][C]0.330295542369995[/C][C]0.66059108473999[/C][C]0.669704457630005[/C][/ROW]
[ROW][C]62[/C][C]0.304059377718023[/C][C]0.608118755436047[/C][C]0.695940622281977[/C][/ROW]
[ROW][C]63[/C][C]0.293913179150870[/C][C]0.587826358301739[/C][C]0.70608682084913[/C][/ROW]
[ROW][C]64[/C][C]0.309487252385291[/C][C]0.618974504770583[/C][C]0.690512747614709[/C][/ROW]
[ROW][C]65[/C][C]0.283779173144273[/C][C]0.567558346288546[/C][C]0.716220826855727[/C][/ROW]
[ROW][C]66[/C][C]0.302796160424538[/C][C]0.605592320849076[/C][C]0.697203839575462[/C][/ROW]
[ROW][C]67[/C][C]0.289560855256110[/C][C]0.579121710512219[/C][C]0.71043914474389[/C][/ROW]
[ROW][C]68[/C][C]0.269167826132222[/C][C]0.538335652264444[/C][C]0.730832173867778[/C][/ROW]
[ROW][C]69[/C][C]0.234258457851073[/C][C]0.468516915702146[/C][C]0.765741542148927[/C][/ROW]
[ROW][C]70[/C][C]0.310734785200184[/C][C]0.621469570400367[/C][C]0.689265214799816[/C][/ROW]
[ROW][C]71[/C][C]0.315794556963739[/C][C]0.631589113927477[/C][C]0.684205443036261[/C][/ROW]
[ROW][C]72[/C][C]0.328361004480882[/C][C]0.656722008961764[/C][C]0.671638995519118[/C][/ROW]
[ROW][C]73[/C][C]0.370367332856197[/C][C]0.740734665712394[/C][C]0.629632667143803[/C][/ROW]
[ROW][C]74[/C][C]0.363855042326008[/C][C]0.727710084652017[/C][C]0.636144957673991[/C][/ROW]
[ROW][C]75[/C][C]0.336270409055539[/C][C]0.672540818111079[/C][C]0.66372959094446[/C][/ROW]
[ROW][C]76[/C][C]0.344902677005711[/C][C]0.689805354011423[/C][C]0.655097322994289[/C][/ROW]
[ROW][C]77[/C][C]0.37801923130177[/C][C]0.75603846260354[/C][C]0.62198076869823[/C][/ROW]
[ROW][C]78[/C][C]0.356113064730377[/C][C]0.712226129460754[/C][C]0.643886935269623[/C][/ROW]
[ROW][C]79[/C][C]0.453871400312344[/C][C]0.907742800624689[/C][C]0.546128599687656[/C][/ROW]
[ROW][C]80[/C][C]0.61328730489843[/C][C]0.77342539020314[/C][C]0.38671269510157[/C][/ROW]
[ROW][C]81[/C][C]0.659739745241175[/C][C]0.68052050951765[/C][C]0.340260254758825[/C][/ROW]
[ROW][C]82[/C][C]0.618371082495634[/C][C]0.763257835008732[/C][C]0.381628917504366[/C][/ROW]
[ROW][C]83[/C][C]0.71429815487167[/C][C]0.571403690256658[/C][C]0.285701845128329[/C][/ROW]
[ROW][C]84[/C][C]0.733430008712301[/C][C]0.533139982575398[/C][C]0.266569991287699[/C][/ROW]
[ROW][C]85[/C][C]0.722810125360003[/C][C]0.554379749279995[/C][C]0.277189874639998[/C][/ROW]
[ROW][C]86[/C][C]0.703054199613637[/C][C]0.593891600772727[/C][C]0.296945800386363[/C][/ROW]
[ROW][C]87[/C][C]0.715029877826584[/C][C]0.569940244346832[/C][C]0.284970122173416[/C][/ROW]
[ROW][C]88[/C][C]0.708596583112666[/C][C]0.582806833774668[/C][C]0.291403416887334[/C][/ROW]
[ROW][C]89[/C][C]0.765806629737936[/C][C]0.468386740524128[/C][C]0.234193370262064[/C][/ROW]
[ROW][C]90[/C][C]0.730911691265942[/C][C]0.538176617468116[/C][C]0.269088308734058[/C][/ROW]
[ROW][C]91[/C][C]0.744496413096532[/C][C]0.511007173806935[/C][C]0.255503586903468[/C][/ROW]
[ROW][C]92[/C][C]0.737179914049654[/C][C]0.525640171900692[/C][C]0.262820085950346[/C][/ROW]
[ROW][C]93[/C][C]0.726822472591432[/C][C]0.546355054817136[/C][C]0.273177527408568[/C][/ROW]
[ROW][C]94[/C][C]0.690392388714387[/C][C]0.619215222571226[/C][C]0.309607611285613[/C][/ROW]
[ROW][C]95[/C][C]0.653146767680221[/C][C]0.693706464639559[/C][C]0.346853232319779[/C][/ROW]
[ROW][C]96[/C][C]0.721356267148736[/C][C]0.557287465702528[/C][C]0.278643732851264[/C][/ROW]
[ROW][C]97[/C][C]0.690137614971164[/C][C]0.619724770057672[/C][C]0.309862385028836[/C][/ROW]
[ROW][C]98[/C][C]0.657452674619465[/C][C]0.68509465076107[/C][C]0.342547325380535[/C][/ROW]
[ROW][C]99[/C][C]0.684654940049855[/C][C]0.63069011990029[/C][C]0.315345059950145[/C][/ROW]
[ROW][C]100[/C][C]0.646700244019385[/C][C]0.70659951196123[/C][C]0.353299755980615[/C][/ROW]
[ROW][C]101[/C][C]0.626550436464428[/C][C]0.746899127071143[/C][C]0.373449563535572[/C][/ROW]
[ROW][C]102[/C][C]0.590583410021479[/C][C]0.818833179957042[/C][C]0.409416589978521[/C][/ROW]
[ROW][C]103[/C][C]0.770481622943952[/C][C]0.459036754112097[/C][C]0.229518377056048[/C][/ROW]
[ROW][C]104[/C][C]0.755679110373303[/C][C]0.488641779253393[/C][C]0.244320889626696[/C][/ROW]
[ROW][C]105[/C][C]0.781802002669819[/C][C]0.436395994660362[/C][C]0.218197997330181[/C][/ROW]
[ROW][C]106[/C][C]0.792814420902784[/C][C]0.414371158194432[/C][C]0.207185579097216[/C][/ROW]
[ROW][C]107[/C][C]0.759391568470667[/C][C]0.481216863058667[/C][C]0.240608431529333[/C][/ROW]
[ROW][C]108[/C][C]0.744747668129819[/C][C]0.510504663740362[/C][C]0.255252331870181[/C][/ROW]
[ROW][C]109[/C][C]0.70972270101648[/C][C]0.580554597967041[/C][C]0.290277298983520[/C][/ROW]
[ROW][C]110[/C][C]0.671147580601953[/C][C]0.657704838796094[/C][C]0.328852419398047[/C][/ROW]
[ROW][C]111[/C][C]0.811461712274039[/C][C]0.377076575451922[/C][C]0.188538287725961[/C][/ROW]
[ROW][C]112[/C][C]0.800051260475284[/C][C]0.399897479049432[/C][C]0.199948739524716[/C][/ROW]
[ROW][C]113[/C][C]0.773851572332001[/C][C]0.452296855335998[/C][C]0.226148427667999[/C][/ROW]
[ROW][C]114[/C][C]0.762394869877905[/C][C]0.47521026024419[/C][C]0.237605130122095[/C][/ROW]
[ROW][C]115[/C][C]0.76497352440381[/C][C]0.470052951192381[/C][C]0.235026475596190[/C][/ROW]
[ROW][C]116[/C][C]0.784134835274588[/C][C]0.431730329450824[/C][C]0.215865164725412[/C][/ROW]
[ROW][C]117[/C][C]0.794238979117772[/C][C]0.411522041764457[/C][C]0.205761020882228[/C][/ROW]
[ROW][C]118[/C][C]0.889091998228402[/C][C]0.221816003543197[/C][C]0.110908001771598[/C][/ROW]
[ROW][C]119[/C][C]0.874030415042673[/C][C]0.251939169914654[/C][C]0.125969584957327[/C][/ROW]
[ROW][C]120[/C][C]0.839585731921186[/C][C]0.320828536157629[/C][C]0.160414268078814[/C][/ROW]
[ROW][C]121[/C][C]0.799892130792768[/C][C]0.400215738414464[/C][C]0.200107869207232[/C][/ROW]
[ROW][C]122[/C][C]0.878153352288745[/C][C]0.24369329542251[/C][C]0.121846647711255[/C][/ROW]
[ROW][C]123[/C][C]0.872008832359527[/C][C]0.255982335280946[/C][C]0.127991167640473[/C][/ROW]
[ROW][C]124[/C][C]0.842824699359343[/C][C]0.314350601281315[/C][C]0.157175300640657[/C][/ROW]
[ROW][C]125[/C][C]0.90149025329758[/C][C]0.19701949340484[/C][C]0.09850974670242[/C][/ROW]
[ROW][C]126[/C][C]0.875263726072645[/C][C]0.249472547854710[/C][C]0.124736273927355[/C][/ROW]
[ROW][C]127[/C][C]0.843888324675184[/C][C]0.312223350649632[/C][C]0.156111675324816[/C][/ROW]
[ROW][C]128[/C][C]0.819053852760545[/C][C]0.36189229447891[/C][C]0.180946147239455[/C][/ROW]
[ROW][C]129[/C][C]0.771706618154377[/C][C]0.456586763691247[/C][C]0.228293381845623[/C][/ROW]
[ROW][C]130[/C][C]0.744148151195922[/C][C]0.511703697608157[/C][C]0.255851848804078[/C][/ROW]
[ROW][C]131[/C][C]0.698913733191317[/C][C]0.602172533617366[/C][C]0.301086266808683[/C][/ROW]
[ROW][C]132[/C][C]0.937353676217425[/C][C]0.125292647565149[/C][C]0.0626463237825747[/C][/ROW]
[ROW][C]133[/C][C]0.921878131053439[/C][C]0.156243737893123[/C][C]0.0781218689465615[/C][/ROW]
[ROW][C]134[/C][C]0.888705137457152[/C][C]0.222589725085696[/C][C]0.111294862542848[/C][/ROW]
[ROW][C]135[/C][C]0.899308135140525[/C][C]0.201383729718950[/C][C]0.100691864859475[/C][/ROW]
[ROW][C]136[/C][C]0.875605681509956[/C][C]0.248788636980087[/C][C]0.124394318490044[/C][/ROW]
[ROW][C]137[/C][C]0.826277523359027[/C][C]0.347444953281947[/C][C]0.173722476640973[/C][/ROW]
[ROW][C]138[/C][C]0.783066374073857[/C][C]0.433867251852285[/C][C]0.216933625926142[/C][/ROW]
[ROW][C]139[/C][C]0.761065976846048[/C][C]0.477868046307903[/C][C]0.238934023153952[/C][/ROW]
[ROW][C]140[/C][C]0.68376168132573[/C][C]0.632476637348541[/C][C]0.316238318674271[/C][/ROW]
[ROW][C]141[/C][C]0.769028448020252[/C][C]0.461943103959496[/C][C]0.230971551979748[/C][/ROW]
[ROW][C]142[/C][C]0.719872519883976[/C][C]0.560254960232047[/C][C]0.280127480116024[/C][/ROW]
[ROW][C]143[/C][C]0.618836037620859[/C][C]0.762327924758282[/C][C]0.381163962379141[/C][/ROW]
[ROW][C]144[/C][C]0.783760743265517[/C][C]0.432478513468966[/C][C]0.216239256734483[/C][/ROW]
[ROW][C]145[/C][C]0.77481947716183[/C][C]0.45036104567634[/C][C]0.22518052283817[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=104465&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.2190613662640040.4381227325280070.780938633735996
120.1135946017258040.2271892034516080.886405398274196
130.05660164378357510.1132032875671500.943398356216425
140.1190649679994330.2381299359988660.880935032000567
150.0856222635454840.1712445270909680.914377736454516
160.2338272673029070.4676545346058130.766172732697094
170.1604011212874440.3208022425748890.839598878712556
180.1038121989993440.2076243979986870.896187801000656
190.08451043915649420.1690208783129880.915489560843506
200.09373237241120210.1874647448224040.906267627588798
210.3523315797311860.7046631594623710.647668420268814
220.5517088561735360.8965822876529270.448291143826464
230.53673202433190.9265359513362010.463267975668100
240.545878223761170.9082435524776610.454121776238830
250.4708230272388130.9416460544776270.529176972761187
260.4277722927106120.8555445854212230.572227707289388
270.4074484495176530.8148968990353050.592551550482347
280.3693695687696560.7387391375393120.630630431230344
290.3174938935412520.6349877870825030.682506106458748
300.2750736475184940.5501472950369880.724926352481506
310.2222672177418370.4445344354836750.777732782258163
320.2330090206034640.4660180412069270.766990979396536
330.2442532544656050.488506508931210.755746745534395
340.2678327297786130.5356654595572260.732167270221387
350.3392591923036850.678518384607370.660740807696315
360.2870805857307140.5741611714614290.712919414269286
370.2388511850097310.4777023700194610.76114881499027
380.2154844899356920.4309689798713840.784515510064308
390.1756750083722110.3513500167444220.82432499162779
400.2126512043423660.4253024086847320.787348795657634
410.1848560644644050.369712128928810.815143935535595
420.2128152649818900.4256305299637810.78718473501811
430.4059994143575310.8119988287150620.594000585642469
440.3862566964828760.7725133929657520.613743303517124
450.3412385359605470.6824770719210930.658761464039453
460.3118251402279650.623650280455930.688174859772035
470.4158242197818840.8316484395637680.584175780218116
480.3960607024592340.7921214049184690.603939297540766
490.3682421043299740.7364842086599470.631757895670026
500.3281145246618460.6562290493236930.671885475338154
510.2949039266022490.5898078532044990.705096073397751
520.2706387912058190.5412775824116380.729361208794181
530.3247446437905860.6494892875811730.675255356209414
540.3036502153851060.6073004307702120.696349784614894
550.2620968974620540.5241937949241080.737903102537946
560.2268980414913130.4537960829826270.773101958508687
570.2311363299757020.4622726599514040.768863670024298
580.1944159595297810.3888319190595620.805584040470219
590.2907145461311090.5814290922622190.70928545386889
600.2507878069052190.5015756138104370.749212193094781
610.3302955423699950.660591084739990.669704457630005
620.3040593777180230.6081187554360470.695940622281977
630.2939131791508700.5878263583017390.70608682084913
640.3094872523852910.6189745047705830.690512747614709
650.2837791731442730.5675583462885460.716220826855727
660.3027961604245380.6055923208490760.697203839575462
670.2895608552561100.5791217105122190.71043914474389
680.2691678261322220.5383356522644440.730832173867778
690.2342584578510730.4685169157021460.765741542148927
700.3107347852001840.6214695704003670.689265214799816
710.3157945569637390.6315891139274770.684205443036261
720.3283610044808820.6567220089617640.671638995519118
730.3703673328561970.7407346657123940.629632667143803
740.3638550423260080.7277100846520170.636144957673991
750.3362704090555390.6725408181110790.66372959094446
760.3449026770057110.6898053540114230.655097322994289
770.378019231301770.756038462603540.62198076869823
780.3561130647303770.7122261294607540.643886935269623
790.4538714003123440.9077428006246890.546128599687656
800.613287304898430.773425390203140.38671269510157
810.6597397452411750.680520509517650.340260254758825
820.6183710824956340.7632578350087320.381628917504366
830.714298154871670.5714036902566580.285701845128329
840.7334300087123010.5331399825753980.266569991287699
850.7228101253600030.5543797492799950.277189874639998
860.7030541996136370.5938916007727270.296945800386363
870.7150298778265840.5699402443468320.284970122173416
880.7085965831126660.5828068337746680.291403416887334
890.7658066297379360.4683867405241280.234193370262064
900.7309116912659420.5381766174681160.269088308734058
910.7444964130965320.5110071738069350.255503586903468
920.7371799140496540.5256401719006920.262820085950346
930.7268224725914320.5463550548171360.273177527408568
940.6903923887143870.6192152225712260.309607611285613
950.6531467676802210.6937064646395590.346853232319779
960.7213562671487360.5572874657025280.278643732851264
970.6901376149711640.6197247700576720.309862385028836
980.6574526746194650.685094650761070.342547325380535
990.6846549400498550.630690119900290.315345059950145
1000.6467002440193850.706599511961230.353299755980615
1010.6265504364644280.7468991270711430.373449563535572
1020.5905834100214790.8188331799570420.409416589978521
1030.7704816229439520.4590367541120970.229518377056048
1040.7556791103733030.4886417792533930.244320889626696
1050.7818020026698190.4363959946603620.218197997330181
1060.7928144209027840.4143711581944320.207185579097216
1070.7593915684706670.4812168630586670.240608431529333
1080.7447476681298190.5105046637403620.255252331870181
1090.709722701016480.5805545979670410.290277298983520
1100.6711475806019530.6577048387960940.328852419398047
1110.8114617122740390.3770765754519220.188538287725961
1120.8000512604752840.3998974790494320.199948739524716
1130.7738515723320010.4522968553359980.226148427667999
1140.7623948698779050.475210260244190.237605130122095
1150.764973524403810.4700529511923810.235026475596190
1160.7841348352745880.4317303294508240.215865164725412
1170.7942389791177720.4115220417644570.205761020882228
1180.8890919982284020.2218160035431970.110908001771598
1190.8740304150426730.2519391699146540.125969584957327
1200.8395857319211860.3208285361576290.160414268078814
1210.7998921307927680.4002157384144640.200107869207232
1220.8781533522887450.243693295422510.121846647711255
1230.8720088323595270.2559823352809460.127991167640473
1240.8428246993593430.3143506012813150.157175300640657
1250.901490253297580.197019493404840.09850974670242
1260.8752637260726450.2494725478547100.124736273927355
1270.8438883246751840.3122233506496320.156111675324816
1280.8190538527605450.361892294478910.180946147239455
1290.7717066181543770.4565867636912470.228293381845623
1300.7441481511959220.5117036976081570.255851848804078
1310.6989137331913170.6021725336173660.301086266808683
1320.9373536762174250.1252926475651490.0626463237825747
1330.9218781310534390.1562437378931230.0781218689465615
1340.8887051374571520.2225897250856960.111294862542848
1350.8993081351405250.2013837297189500.100691864859475
1360.8756056815099560.2487886369800870.124394318490044
1370.8262775233590270.3474449532819470.173722476640973
1380.7830663740738570.4338672518522850.216933625926142
1390.7610659768460480.4778680463079030.238934023153952
1400.683761681325730.6324766373485410.316238318674271
1410.7690284480202520.4619431039594960.230971551979748
1420.7198725198839760.5602549602320470.280127480116024
1430.6188360376208590.7623279247582820.381163962379141
1440.7837607432655170.4324785134689660.216239256734483
1450.774819477161830.450361045676340.22518052283817







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=104465&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=104465&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=104465&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}