Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 21 Dec 2010 18:40:03 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/21/t1292956680iock9y0n567cle1.htm/, Retrieved Fri, 01 Nov 2024 00:37:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=113819, Retrieved Fri, 01 Nov 2024 00:37:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact230
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [] [2009-12-09 19:43:51] [cf890101a20378422561610e0d41fd9c]
-    D        [Multiple Regression] [] [2010-12-21 18:40:03] [7131fefee4115a2a717140ef0bdd6369] [Current]
Feedback Forum

Post a new message
Dataseries X:
627	0
696	0
825	0
677	0
656	0
785	0
412	0
352	0
839	0
729	0
696	0
641	0
695	0
638	0
762	0
635	0
721	0
854	0
418	0
367	0
824	0
687	0
601	0
676	0
740	0
691	0
683	0
594	0
729	0
731	0
386	0
331	0
707	0
715	0
657	0
653	0
642	0
643	0
718	0
654	0
632	0
731	0
392	1
344	1
792	1
852	1
649	1
629	1
685	1
617	1
715	1
715	1
629	1
916	1
531	1
357	1
917	1
828	1
708	1
858	1
775	1
785	1
1006	1
789	1
734	1
906	1
532	1
387	1
991	1
841	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 661.39268292683 + 75.0182926829268X[t] + 7.60121951219552M1[t] -8.06544715447153M2[t] + 98.4345528455284M3[t] -9.06544715447148M4[t] -2.89878048780486M5[t] + 134.101219512195M6[t] -253.735162601626M7[t] -342.568495934959M8[t] + 146.098170731707M9[t] + 76.4315040650406M10[t] -29.2M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  661.39268292683 +  75.0182926829268X[t] +  7.60121951219552M1[t] -8.06544715447153M2[t] +  98.4345528455284M3[t] -9.06544715447148M4[t] -2.89878048780486M5[t] +  134.101219512195M6[t] -253.735162601626M7[t] -342.568495934959M8[t] +  146.098170731707M9[t] +  76.4315040650406M10[t] -29.2M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  661.39268292683 +  75.0182926829268X[t] +  7.60121951219552M1[t] -8.06544715447153M2[t] +  98.4345528455284M3[t] -9.06544715447148M4[t] -2.89878048780486M5[t] +  134.101219512195M6[t] -253.735162601626M7[t] -342.568495934959M8[t] +  146.098170731707M9[t] +  76.4315040650406M10[t] -29.2M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 661.39268292683 + 75.0182926829268X[t] + 7.60121951219552M1[t] -8.06544715447153M2[t] + 98.4345528455284M3[t] -9.06544715447148M4[t] -2.89878048780486M5[t] + 134.101219512195M6[t] -253.735162601626M7[t] -342.568495934959M8[t] + 146.098170731707M9[t] + 76.4315040650406M10[t] -29.2M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)661.3926829268328.88494122.897500
X75.018292682926815.5737164.8171.1e-056e-06
M17.6012195121955238.2041320.1990.8429990.4215
M2-8.0654471544715338.204132-0.21110.8335510.416775
M398.434552845528438.2041322.57650.0125940.006297
M4-9.0654471544714838.204132-0.23730.8132830.406641
M5-2.8987804878048638.204132-0.07590.9397830.469892
M6134.10121951219538.2041323.51010.0008830.000441
M7-253.73516260162638.221763-6.638500
M8-342.56849593495938.221763-8.962700
M9146.09817073170738.2217633.82240.0003290.000165
M1076.431504065040638.2217631.99970.0503080.025154
M11-29.239.888177-0.7320.467140.23357

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 661.39268292683 & 28.884941 & 22.8975 & 0 & 0 \tabularnewline
X & 75.0182926829268 & 15.573716 & 4.817 & 1.1e-05 & 6e-06 \tabularnewline
M1 & 7.60121951219552 & 38.204132 & 0.199 & 0.842999 & 0.4215 \tabularnewline
M2 & -8.06544715447153 & 38.204132 & -0.2111 & 0.833551 & 0.416775 \tabularnewline
M3 & 98.4345528455284 & 38.204132 & 2.5765 & 0.012594 & 0.006297 \tabularnewline
M4 & -9.06544715447148 & 38.204132 & -0.2373 & 0.813283 & 0.406641 \tabularnewline
M5 & -2.89878048780486 & 38.204132 & -0.0759 & 0.939783 & 0.469892 \tabularnewline
M6 & 134.101219512195 & 38.204132 & 3.5101 & 0.000883 & 0.000441 \tabularnewline
M7 & -253.735162601626 & 38.221763 & -6.6385 & 0 & 0 \tabularnewline
M8 & -342.568495934959 & 38.221763 & -8.9627 & 0 & 0 \tabularnewline
M9 & 146.098170731707 & 38.221763 & 3.8224 & 0.000329 & 0.000165 \tabularnewline
M10 & 76.4315040650406 & 38.221763 & 1.9997 & 0.050308 & 0.025154 \tabularnewline
M11 & -29.2 & 39.888177 & -0.732 & 0.46714 & 0.23357 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]661.39268292683[/C][C]28.884941[/C][C]22.8975[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]75.0182926829268[/C][C]15.573716[/C][C]4.817[/C][C]1.1e-05[/C][C]6e-06[/C][/ROW]
[ROW][C]M1[/C][C]7.60121951219552[/C][C]38.204132[/C][C]0.199[/C][C]0.842999[/C][C]0.4215[/C][/ROW]
[ROW][C]M2[/C][C]-8.06544715447153[/C][C]38.204132[/C][C]-0.2111[/C][C]0.833551[/C][C]0.416775[/C][/ROW]
[ROW][C]M3[/C][C]98.4345528455284[/C][C]38.204132[/C][C]2.5765[/C][C]0.012594[/C][C]0.006297[/C][/ROW]
[ROW][C]M4[/C][C]-9.06544715447148[/C][C]38.204132[/C][C]-0.2373[/C][C]0.813283[/C][C]0.406641[/C][/ROW]
[ROW][C]M5[/C][C]-2.89878048780486[/C][C]38.204132[/C][C]-0.0759[/C][C]0.939783[/C][C]0.469892[/C][/ROW]
[ROW][C]M6[/C][C]134.101219512195[/C][C]38.204132[/C][C]3.5101[/C][C]0.000883[/C][C]0.000441[/C][/ROW]
[ROW][C]M7[/C][C]-253.735162601626[/C][C]38.221763[/C][C]-6.6385[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]-342.568495934959[/C][C]38.221763[/C][C]-8.9627[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]146.098170731707[/C][C]38.221763[/C][C]3.8224[/C][C]0.000329[/C][C]0.000165[/C][/ROW]
[ROW][C]M10[/C][C]76.4315040650406[/C][C]38.221763[/C][C]1.9997[/C][C]0.050308[/C][C]0.025154[/C][/ROW]
[ROW][C]M11[/C][C]-29.2[/C][C]39.888177[/C][C]-0.732[/C][C]0.46714[/C][C]0.23357[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)661.3926829268328.88494122.897500
X75.018292682926815.5737164.8171.1e-056e-06
M17.6012195121955238.2041320.1990.8429990.4215
M2-8.0654471544715338.204132-0.21110.8335510.416775
M398.434552845528438.2041322.57650.0125940.006297
M4-9.0654471544714838.204132-0.23730.8132830.406641
M5-2.8987804878048638.204132-0.07590.9397830.469892
M6134.10121951219538.2041323.51010.0008830.000441
M7-253.73516260162638.221763-6.638500
M8-342.56849593495938.221763-8.962700
M9146.09817073170738.2217633.82240.0003290.000165
M1076.431504065040638.2217631.99970.0503080.025154
M11-29.239.888177-0.7320.467140.23357







Multiple Linear Regression - Regression Statistics
Multiple R0.930216186377923
R-squared0.865302153399486
Adjusted R-squared0.836944712009904
F-TEST (value)30.5141123810057
F-TEST (DF numerator)12
F-TEST (DF denominator)57
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation63.0687447979535
Sum Squared Residuals226726.994512195

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.930216186377923 \tabularnewline
R-squared & 0.865302153399486 \tabularnewline
Adjusted R-squared & 0.836944712009904 \tabularnewline
F-TEST (value) & 30.5141123810057 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 57 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 63.0687447979535 \tabularnewline
Sum Squared Residuals & 226726.994512195 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.930216186377923[/C][/ROW]
[ROW][C]R-squared[/C][C]0.865302153399486[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.836944712009904[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]30.5141123810057[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]57[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]63.0687447979535[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]226726.994512195[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.930216186377923
R-squared0.865302153399486
Adjusted R-squared0.836944712009904
F-TEST (value)30.5141123810057
F-TEST (DF numerator)12
F-TEST (DF denominator)57
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation63.0687447979535
Sum Squared Residuals226726.994512195







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1627668.993902439022-41.9939024390224
2696653.32723577235842.6727642276422
3825759.82723577235865.1727642276424
4677652.32723577235824.6727642276422
5656658.493902439024-2.49390243902429
6785795.493902439025-10.4939024390246
7412407.6575203252034.34247967479673
8352318.8241869918733.1758130081301
9839807.49085365853631.5091463414637
10729737.82418699187-8.82418699187037
11696632.19268292682963.8073170731707
12641661.392682926829-20.3926829268292
13695668.99390243902526.0060975609752
14638653.327235772358-15.3272357723577
15762759.8272357723582.17276422764226
16635652.327235772358-17.3272357723577
17721658.49390243902462.5060975609756
18854795.49390243902458.5060975609756
19418407.65752032520310.3424796747967
20367318.8241869918748.1758130081300
21824807.49085365853716.5091463414633
22687737.82418699187-50.8241869918699
23601632.192682926829-31.1926829268293
24676661.39268292682914.6073170731707
25740668.99390243902571.0060975609752
26691653.32723577235837.6727642276423
27683759.827235772358-76.8272357723577
28594652.327235772358-58.3272357723577
29729658.49390243902470.5060975609756
30731795.493902439024-64.4939024390244
31386407.657520325203-21.6575203252033
32331318.8241869918712.1758130081300
33707807.490853658537-100.490853658537
34715737.82418699187-22.8241869918699
35657632.19268292682924.8073170731707
36653661.392682926829-8.39268292682928
37642668.993902439025-26.9939024390248
38643653.327235772358-10.3272357723577
39718759.827235772358-41.8272357723578
40654652.3272357723581.67276422764227
41632658.493902439024-26.4939024390245
42731795.493902439024-64.4939024390244
43392482.67581300813-90.67581300813
44344393.842479674797-49.8424796747967
45792882.509146341463-90.5091463414634
46852812.84247967479739.1575203252033
47649707.210975609756-58.2109756097561
48629736.410975609756-107.410975609756
49685744.012195121952-59.0121951219516
50617728.345528455284-111.345528455284
51715834.845528455285-119.845528455285
52715727.345528455284-12.3455284552845
53629733.512195121951-104.512195121951
54916870.51219512195145.4878048780488
55531482.6758130081348.3241869918699
56357393.842479674797-36.8424796747967
57917882.50914634146434.4908536585365
58828812.84247967479715.1575203252034
59708707.2109756097560.789024390243946
60858736.410975609756121.589024390244
61775744.01219512195230.9878048780484
62785728.34552845528456.6544715447155
631006834.845528455285171.154471544715
64789727.34552845528461.6544715447155
65734733.5121951219510.487804878048803
66906870.51219512195135.4878048780488
67532482.6758130081349.3241869918699
68387393.842479674797-6.84247967479674
69991882.509146341463108.490853658537
70841812.84247967479728.1575203252033

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 627 & 668.993902439022 & -41.9939024390224 \tabularnewline
2 & 696 & 653.327235772358 & 42.6727642276422 \tabularnewline
3 & 825 & 759.827235772358 & 65.1727642276424 \tabularnewline
4 & 677 & 652.327235772358 & 24.6727642276422 \tabularnewline
5 & 656 & 658.493902439024 & -2.49390243902429 \tabularnewline
6 & 785 & 795.493902439025 & -10.4939024390246 \tabularnewline
7 & 412 & 407.657520325203 & 4.34247967479673 \tabularnewline
8 & 352 & 318.82418699187 & 33.1758130081301 \tabularnewline
9 & 839 & 807.490853658536 & 31.5091463414637 \tabularnewline
10 & 729 & 737.82418699187 & -8.82418699187037 \tabularnewline
11 & 696 & 632.192682926829 & 63.8073170731707 \tabularnewline
12 & 641 & 661.392682926829 & -20.3926829268292 \tabularnewline
13 & 695 & 668.993902439025 & 26.0060975609752 \tabularnewline
14 & 638 & 653.327235772358 & -15.3272357723577 \tabularnewline
15 & 762 & 759.827235772358 & 2.17276422764226 \tabularnewline
16 & 635 & 652.327235772358 & -17.3272357723577 \tabularnewline
17 & 721 & 658.493902439024 & 62.5060975609756 \tabularnewline
18 & 854 & 795.493902439024 & 58.5060975609756 \tabularnewline
19 & 418 & 407.657520325203 & 10.3424796747967 \tabularnewline
20 & 367 & 318.82418699187 & 48.1758130081300 \tabularnewline
21 & 824 & 807.490853658537 & 16.5091463414633 \tabularnewline
22 & 687 & 737.82418699187 & -50.8241869918699 \tabularnewline
23 & 601 & 632.192682926829 & -31.1926829268293 \tabularnewline
24 & 676 & 661.392682926829 & 14.6073170731707 \tabularnewline
25 & 740 & 668.993902439025 & 71.0060975609752 \tabularnewline
26 & 691 & 653.327235772358 & 37.6727642276423 \tabularnewline
27 & 683 & 759.827235772358 & -76.8272357723577 \tabularnewline
28 & 594 & 652.327235772358 & -58.3272357723577 \tabularnewline
29 & 729 & 658.493902439024 & 70.5060975609756 \tabularnewline
30 & 731 & 795.493902439024 & -64.4939024390244 \tabularnewline
31 & 386 & 407.657520325203 & -21.6575203252033 \tabularnewline
32 & 331 & 318.82418699187 & 12.1758130081300 \tabularnewline
33 & 707 & 807.490853658537 & -100.490853658537 \tabularnewline
34 & 715 & 737.82418699187 & -22.8241869918699 \tabularnewline
35 & 657 & 632.192682926829 & 24.8073170731707 \tabularnewline
36 & 653 & 661.392682926829 & -8.39268292682928 \tabularnewline
37 & 642 & 668.993902439025 & -26.9939024390248 \tabularnewline
38 & 643 & 653.327235772358 & -10.3272357723577 \tabularnewline
39 & 718 & 759.827235772358 & -41.8272357723578 \tabularnewline
40 & 654 & 652.327235772358 & 1.67276422764227 \tabularnewline
41 & 632 & 658.493902439024 & -26.4939024390245 \tabularnewline
42 & 731 & 795.493902439024 & -64.4939024390244 \tabularnewline
43 & 392 & 482.67581300813 & -90.67581300813 \tabularnewline
44 & 344 & 393.842479674797 & -49.8424796747967 \tabularnewline
45 & 792 & 882.509146341463 & -90.5091463414634 \tabularnewline
46 & 852 & 812.842479674797 & 39.1575203252033 \tabularnewline
47 & 649 & 707.210975609756 & -58.2109756097561 \tabularnewline
48 & 629 & 736.410975609756 & -107.410975609756 \tabularnewline
49 & 685 & 744.012195121952 & -59.0121951219516 \tabularnewline
50 & 617 & 728.345528455284 & -111.345528455284 \tabularnewline
51 & 715 & 834.845528455285 & -119.845528455285 \tabularnewline
52 & 715 & 727.345528455284 & -12.3455284552845 \tabularnewline
53 & 629 & 733.512195121951 & -104.512195121951 \tabularnewline
54 & 916 & 870.512195121951 & 45.4878048780488 \tabularnewline
55 & 531 & 482.67581300813 & 48.3241869918699 \tabularnewline
56 & 357 & 393.842479674797 & -36.8424796747967 \tabularnewline
57 & 917 & 882.509146341464 & 34.4908536585365 \tabularnewline
58 & 828 & 812.842479674797 & 15.1575203252034 \tabularnewline
59 & 708 & 707.210975609756 & 0.789024390243946 \tabularnewline
60 & 858 & 736.410975609756 & 121.589024390244 \tabularnewline
61 & 775 & 744.012195121952 & 30.9878048780484 \tabularnewline
62 & 785 & 728.345528455284 & 56.6544715447155 \tabularnewline
63 & 1006 & 834.845528455285 & 171.154471544715 \tabularnewline
64 & 789 & 727.345528455284 & 61.6544715447155 \tabularnewline
65 & 734 & 733.512195121951 & 0.487804878048803 \tabularnewline
66 & 906 & 870.512195121951 & 35.4878048780488 \tabularnewline
67 & 532 & 482.67581300813 & 49.3241869918699 \tabularnewline
68 & 387 & 393.842479674797 & -6.84247967479674 \tabularnewline
69 & 991 & 882.509146341463 & 108.490853658537 \tabularnewline
70 & 841 & 812.842479674797 & 28.1575203252033 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]627[/C][C]668.993902439022[/C][C]-41.9939024390224[/C][/ROW]
[ROW][C]2[/C][C]696[/C][C]653.327235772358[/C][C]42.6727642276422[/C][/ROW]
[ROW][C]3[/C][C]825[/C][C]759.827235772358[/C][C]65.1727642276424[/C][/ROW]
[ROW][C]4[/C][C]677[/C][C]652.327235772358[/C][C]24.6727642276422[/C][/ROW]
[ROW][C]5[/C][C]656[/C][C]658.493902439024[/C][C]-2.49390243902429[/C][/ROW]
[ROW][C]6[/C][C]785[/C][C]795.493902439025[/C][C]-10.4939024390246[/C][/ROW]
[ROW][C]7[/C][C]412[/C][C]407.657520325203[/C][C]4.34247967479673[/C][/ROW]
[ROW][C]8[/C][C]352[/C][C]318.82418699187[/C][C]33.1758130081301[/C][/ROW]
[ROW][C]9[/C][C]839[/C][C]807.490853658536[/C][C]31.5091463414637[/C][/ROW]
[ROW][C]10[/C][C]729[/C][C]737.82418699187[/C][C]-8.82418699187037[/C][/ROW]
[ROW][C]11[/C][C]696[/C][C]632.192682926829[/C][C]63.8073170731707[/C][/ROW]
[ROW][C]12[/C][C]641[/C][C]661.392682926829[/C][C]-20.3926829268292[/C][/ROW]
[ROW][C]13[/C][C]695[/C][C]668.993902439025[/C][C]26.0060975609752[/C][/ROW]
[ROW][C]14[/C][C]638[/C][C]653.327235772358[/C][C]-15.3272357723577[/C][/ROW]
[ROW][C]15[/C][C]762[/C][C]759.827235772358[/C][C]2.17276422764226[/C][/ROW]
[ROW][C]16[/C][C]635[/C][C]652.327235772358[/C][C]-17.3272357723577[/C][/ROW]
[ROW][C]17[/C][C]721[/C][C]658.493902439024[/C][C]62.5060975609756[/C][/ROW]
[ROW][C]18[/C][C]854[/C][C]795.493902439024[/C][C]58.5060975609756[/C][/ROW]
[ROW][C]19[/C][C]418[/C][C]407.657520325203[/C][C]10.3424796747967[/C][/ROW]
[ROW][C]20[/C][C]367[/C][C]318.82418699187[/C][C]48.1758130081300[/C][/ROW]
[ROW][C]21[/C][C]824[/C][C]807.490853658537[/C][C]16.5091463414633[/C][/ROW]
[ROW][C]22[/C][C]687[/C][C]737.82418699187[/C][C]-50.8241869918699[/C][/ROW]
[ROW][C]23[/C][C]601[/C][C]632.192682926829[/C][C]-31.1926829268293[/C][/ROW]
[ROW][C]24[/C][C]676[/C][C]661.392682926829[/C][C]14.6073170731707[/C][/ROW]
[ROW][C]25[/C][C]740[/C][C]668.993902439025[/C][C]71.0060975609752[/C][/ROW]
[ROW][C]26[/C][C]691[/C][C]653.327235772358[/C][C]37.6727642276423[/C][/ROW]
[ROW][C]27[/C][C]683[/C][C]759.827235772358[/C][C]-76.8272357723577[/C][/ROW]
[ROW][C]28[/C][C]594[/C][C]652.327235772358[/C][C]-58.3272357723577[/C][/ROW]
[ROW][C]29[/C][C]729[/C][C]658.493902439024[/C][C]70.5060975609756[/C][/ROW]
[ROW][C]30[/C][C]731[/C][C]795.493902439024[/C][C]-64.4939024390244[/C][/ROW]
[ROW][C]31[/C][C]386[/C][C]407.657520325203[/C][C]-21.6575203252033[/C][/ROW]
[ROW][C]32[/C][C]331[/C][C]318.82418699187[/C][C]12.1758130081300[/C][/ROW]
[ROW][C]33[/C][C]707[/C][C]807.490853658537[/C][C]-100.490853658537[/C][/ROW]
[ROW][C]34[/C][C]715[/C][C]737.82418699187[/C][C]-22.8241869918699[/C][/ROW]
[ROW][C]35[/C][C]657[/C][C]632.192682926829[/C][C]24.8073170731707[/C][/ROW]
[ROW][C]36[/C][C]653[/C][C]661.392682926829[/C][C]-8.39268292682928[/C][/ROW]
[ROW][C]37[/C][C]642[/C][C]668.993902439025[/C][C]-26.9939024390248[/C][/ROW]
[ROW][C]38[/C][C]643[/C][C]653.327235772358[/C][C]-10.3272357723577[/C][/ROW]
[ROW][C]39[/C][C]718[/C][C]759.827235772358[/C][C]-41.8272357723578[/C][/ROW]
[ROW][C]40[/C][C]654[/C][C]652.327235772358[/C][C]1.67276422764227[/C][/ROW]
[ROW][C]41[/C][C]632[/C][C]658.493902439024[/C][C]-26.4939024390245[/C][/ROW]
[ROW][C]42[/C][C]731[/C][C]795.493902439024[/C][C]-64.4939024390244[/C][/ROW]
[ROW][C]43[/C][C]392[/C][C]482.67581300813[/C][C]-90.67581300813[/C][/ROW]
[ROW][C]44[/C][C]344[/C][C]393.842479674797[/C][C]-49.8424796747967[/C][/ROW]
[ROW][C]45[/C][C]792[/C][C]882.509146341463[/C][C]-90.5091463414634[/C][/ROW]
[ROW][C]46[/C][C]852[/C][C]812.842479674797[/C][C]39.1575203252033[/C][/ROW]
[ROW][C]47[/C][C]649[/C][C]707.210975609756[/C][C]-58.2109756097561[/C][/ROW]
[ROW][C]48[/C][C]629[/C][C]736.410975609756[/C][C]-107.410975609756[/C][/ROW]
[ROW][C]49[/C][C]685[/C][C]744.012195121952[/C][C]-59.0121951219516[/C][/ROW]
[ROW][C]50[/C][C]617[/C][C]728.345528455284[/C][C]-111.345528455284[/C][/ROW]
[ROW][C]51[/C][C]715[/C][C]834.845528455285[/C][C]-119.845528455285[/C][/ROW]
[ROW][C]52[/C][C]715[/C][C]727.345528455284[/C][C]-12.3455284552845[/C][/ROW]
[ROW][C]53[/C][C]629[/C][C]733.512195121951[/C][C]-104.512195121951[/C][/ROW]
[ROW][C]54[/C][C]916[/C][C]870.512195121951[/C][C]45.4878048780488[/C][/ROW]
[ROW][C]55[/C][C]531[/C][C]482.67581300813[/C][C]48.3241869918699[/C][/ROW]
[ROW][C]56[/C][C]357[/C][C]393.842479674797[/C][C]-36.8424796747967[/C][/ROW]
[ROW][C]57[/C][C]917[/C][C]882.509146341464[/C][C]34.4908536585365[/C][/ROW]
[ROW][C]58[/C][C]828[/C][C]812.842479674797[/C][C]15.1575203252034[/C][/ROW]
[ROW][C]59[/C][C]708[/C][C]707.210975609756[/C][C]0.789024390243946[/C][/ROW]
[ROW][C]60[/C][C]858[/C][C]736.410975609756[/C][C]121.589024390244[/C][/ROW]
[ROW][C]61[/C][C]775[/C][C]744.012195121952[/C][C]30.9878048780484[/C][/ROW]
[ROW][C]62[/C][C]785[/C][C]728.345528455284[/C][C]56.6544715447155[/C][/ROW]
[ROW][C]63[/C][C]1006[/C][C]834.845528455285[/C][C]171.154471544715[/C][/ROW]
[ROW][C]64[/C][C]789[/C][C]727.345528455284[/C][C]61.6544715447155[/C][/ROW]
[ROW][C]65[/C][C]734[/C][C]733.512195121951[/C][C]0.487804878048803[/C][/ROW]
[ROW][C]66[/C][C]906[/C][C]870.512195121951[/C][C]35.4878048780488[/C][/ROW]
[ROW][C]67[/C][C]532[/C][C]482.67581300813[/C][C]49.3241869918699[/C][/ROW]
[ROW][C]68[/C][C]387[/C][C]393.842479674797[/C][C]-6.84247967479674[/C][/ROW]
[ROW][C]69[/C][C]991[/C][C]882.509146341463[/C][C]108.490853658537[/C][/ROW]
[ROW][C]70[/C][C]841[/C][C]812.842479674797[/C][C]28.1575203252033[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1627668.993902439022-41.9939024390224
2696653.32723577235842.6727642276422
3825759.82723577235865.1727642276424
4677652.32723577235824.6727642276422
5656658.493902439024-2.49390243902429
6785795.493902439025-10.4939024390246
7412407.6575203252034.34247967479673
8352318.8241869918733.1758130081301
9839807.49085365853631.5091463414637
10729737.82418699187-8.82418699187037
11696632.19268292682963.8073170731707
12641661.392682926829-20.3926829268292
13695668.99390243902526.0060975609752
14638653.327235772358-15.3272357723577
15762759.8272357723582.17276422764226
16635652.327235772358-17.3272357723577
17721658.49390243902462.5060975609756
18854795.49390243902458.5060975609756
19418407.65752032520310.3424796747967
20367318.8241869918748.1758130081300
21824807.49085365853716.5091463414633
22687737.82418699187-50.8241869918699
23601632.192682926829-31.1926829268293
24676661.39268292682914.6073170731707
25740668.99390243902571.0060975609752
26691653.32723577235837.6727642276423
27683759.827235772358-76.8272357723577
28594652.327235772358-58.3272357723577
29729658.49390243902470.5060975609756
30731795.493902439024-64.4939024390244
31386407.657520325203-21.6575203252033
32331318.8241869918712.1758130081300
33707807.490853658537-100.490853658537
34715737.82418699187-22.8241869918699
35657632.19268292682924.8073170731707
36653661.392682926829-8.39268292682928
37642668.993902439025-26.9939024390248
38643653.327235772358-10.3272357723577
39718759.827235772358-41.8272357723578
40654652.3272357723581.67276422764227
41632658.493902439024-26.4939024390245
42731795.493902439024-64.4939024390244
43392482.67581300813-90.67581300813
44344393.842479674797-49.8424796747967
45792882.509146341463-90.5091463414634
46852812.84247967479739.1575203252033
47649707.210975609756-58.2109756097561
48629736.410975609756-107.410975609756
49685744.012195121952-59.0121951219516
50617728.345528455284-111.345528455284
51715834.845528455285-119.845528455285
52715727.345528455284-12.3455284552845
53629733.512195121951-104.512195121951
54916870.51219512195145.4878048780488
55531482.6758130081348.3241869918699
56357393.842479674797-36.8424796747967
57917882.50914634146434.4908536585365
58828812.84247967479715.1575203252034
59708707.2109756097560.789024390243946
60858736.410975609756121.589024390244
61775744.01219512195230.9878048780484
62785728.34552845528456.6544715447155
631006834.845528455285171.154471544715
64789727.34552845528461.6544715447155
65734733.5121951219510.487804878048803
66906870.51219512195135.4878048780488
67532482.6758130081349.3241869918699
68387393.842479674797-6.84247967479674
69991882.509146341463108.490853658537
70841812.84247967479728.1575203252033







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.2839949487791620.5679898975583240.716005051220838
170.2252729706206280.4505459412412570.774727029379372
180.1895958305586810.3791916611173620.810404169441319
190.1048017631213370.2096035262426740.895198236878663
200.05873011085001350.1174602217000270.941269889149986
210.02998883517230920.05997767034461830.97001116482769
220.01843251358100610.03686502716201220.981567486418994
230.02613328362503750.0522665672500750.973866716374962
240.01492179146540330.02984358293080660.985078208534597
250.02085888845192470.04171777690384940.979141111548075
260.01277492017093480.02554984034186950.987225079829065
270.02862875602528790.05725751205057580.971371243974712
280.02462892377255290.04925784754510580.975371076227447
290.02292825141039490.04585650282078980.977071748589605
300.02732167169615650.0546433433923130.972678328303843
310.01675672379783790.03351344759567590.983243276202162
320.01135925989257070.02271851978514140.98864074010743
330.02678792540992780.05357585081985560.973212074590072
340.01614534007436320.03229068014872640.983854659925637
350.01059861075444180.02119722150888360.989401389245558
360.00580822558414140.01161645116828280.994191774415859
370.003729676438000050.007459352876000110.996270323562
380.002303957552649150.004607915105298290.997696042447351
390.001360745824220310.002721491648440630.99863925417578
400.0006757842610146190.001351568522029240.999324215738985
410.0007281278764030020.001456255752806000.999271872123597
420.0004750304686471810.0009500609372943630.999524969531353
430.0004995146009157290.0009990292018314580.999500485399084
440.0002292704056530650.000458540811306130.999770729594347
450.0003887307828844890.0007774615657689790.999611269217116
460.0007696859012225760.001539371802445150.999230314098777
470.0004182596572012880.0008365193144025750.999581740342799
480.002329529527821950.004659059055643890.997670470472178
490.001594355875182080.003188711750364160.998405644124818
500.004391311114800570.008782622229601140.9956086888852
510.4888262924709250.977652584941850.511173707529075
520.5372287023667550.925542595266490.462771297633245
530.8177980651588850.3644038696822300.182201934841115
540.7206681732471860.5586636535056290.279331826752814

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.283994948779162 & 0.567989897558324 & 0.716005051220838 \tabularnewline
17 & 0.225272970620628 & 0.450545941241257 & 0.774727029379372 \tabularnewline
18 & 0.189595830558681 & 0.379191661117362 & 0.810404169441319 \tabularnewline
19 & 0.104801763121337 & 0.209603526242674 & 0.895198236878663 \tabularnewline
20 & 0.0587301108500135 & 0.117460221700027 & 0.941269889149986 \tabularnewline
21 & 0.0299888351723092 & 0.0599776703446183 & 0.97001116482769 \tabularnewline
22 & 0.0184325135810061 & 0.0368650271620122 & 0.981567486418994 \tabularnewline
23 & 0.0261332836250375 & 0.052266567250075 & 0.973866716374962 \tabularnewline
24 & 0.0149217914654033 & 0.0298435829308066 & 0.985078208534597 \tabularnewline
25 & 0.0208588884519247 & 0.0417177769038494 & 0.979141111548075 \tabularnewline
26 & 0.0127749201709348 & 0.0255498403418695 & 0.987225079829065 \tabularnewline
27 & 0.0286287560252879 & 0.0572575120505758 & 0.971371243974712 \tabularnewline
28 & 0.0246289237725529 & 0.0492578475451058 & 0.975371076227447 \tabularnewline
29 & 0.0229282514103949 & 0.0458565028207898 & 0.977071748589605 \tabularnewline
30 & 0.0273216716961565 & 0.054643343392313 & 0.972678328303843 \tabularnewline
31 & 0.0167567237978379 & 0.0335134475956759 & 0.983243276202162 \tabularnewline
32 & 0.0113592598925707 & 0.0227185197851414 & 0.98864074010743 \tabularnewline
33 & 0.0267879254099278 & 0.0535758508198556 & 0.973212074590072 \tabularnewline
34 & 0.0161453400743632 & 0.0322906801487264 & 0.983854659925637 \tabularnewline
35 & 0.0105986107544418 & 0.0211972215088836 & 0.989401389245558 \tabularnewline
36 & 0.0058082255841414 & 0.0116164511682828 & 0.994191774415859 \tabularnewline
37 & 0.00372967643800005 & 0.00745935287600011 & 0.996270323562 \tabularnewline
38 & 0.00230395755264915 & 0.00460791510529829 & 0.997696042447351 \tabularnewline
39 & 0.00136074582422031 & 0.00272149164844063 & 0.99863925417578 \tabularnewline
40 & 0.000675784261014619 & 0.00135156852202924 & 0.999324215738985 \tabularnewline
41 & 0.000728127876403002 & 0.00145625575280600 & 0.999271872123597 \tabularnewline
42 & 0.000475030468647181 & 0.000950060937294363 & 0.999524969531353 \tabularnewline
43 & 0.000499514600915729 & 0.000999029201831458 & 0.999500485399084 \tabularnewline
44 & 0.000229270405653065 & 0.00045854081130613 & 0.999770729594347 \tabularnewline
45 & 0.000388730782884489 & 0.000777461565768979 & 0.999611269217116 \tabularnewline
46 & 0.000769685901222576 & 0.00153937180244515 & 0.999230314098777 \tabularnewline
47 & 0.000418259657201288 & 0.000836519314402575 & 0.999581740342799 \tabularnewline
48 & 0.00232952952782195 & 0.00465905905564389 & 0.997670470472178 \tabularnewline
49 & 0.00159435587518208 & 0.00318871175036416 & 0.998405644124818 \tabularnewline
50 & 0.00439131111480057 & 0.00878262222960114 & 0.9956086888852 \tabularnewline
51 & 0.488826292470925 & 0.97765258494185 & 0.511173707529075 \tabularnewline
52 & 0.537228702366755 & 0.92554259526649 & 0.462771297633245 \tabularnewline
53 & 0.817798065158885 & 0.364403869682230 & 0.182201934841115 \tabularnewline
54 & 0.720668173247186 & 0.558663653505629 & 0.279331826752814 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.283994948779162[/C][C]0.567989897558324[/C][C]0.716005051220838[/C][/ROW]
[ROW][C]17[/C][C]0.225272970620628[/C][C]0.450545941241257[/C][C]0.774727029379372[/C][/ROW]
[ROW][C]18[/C][C]0.189595830558681[/C][C]0.379191661117362[/C][C]0.810404169441319[/C][/ROW]
[ROW][C]19[/C][C]0.104801763121337[/C][C]0.209603526242674[/C][C]0.895198236878663[/C][/ROW]
[ROW][C]20[/C][C]0.0587301108500135[/C][C]0.117460221700027[/C][C]0.941269889149986[/C][/ROW]
[ROW][C]21[/C][C]0.0299888351723092[/C][C]0.0599776703446183[/C][C]0.97001116482769[/C][/ROW]
[ROW][C]22[/C][C]0.0184325135810061[/C][C]0.0368650271620122[/C][C]0.981567486418994[/C][/ROW]
[ROW][C]23[/C][C]0.0261332836250375[/C][C]0.052266567250075[/C][C]0.973866716374962[/C][/ROW]
[ROW][C]24[/C][C]0.0149217914654033[/C][C]0.0298435829308066[/C][C]0.985078208534597[/C][/ROW]
[ROW][C]25[/C][C]0.0208588884519247[/C][C]0.0417177769038494[/C][C]0.979141111548075[/C][/ROW]
[ROW][C]26[/C][C]0.0127749201709348[/C][C]0.0255498403418695[/C][C]0.987225079829065[/C][/ROW]
[ROW][C]27[/C][C]0.0286287560252879[/C][C]0.0572575120505758[/C][C]0.971371243974712[/C][/ROW]
[ROW][C]28[/C][C]0.0246289237725529[/C][C]0.0492578475451058[/C][C]0.975371076227447[/C][/ROW]
[ROW][C]29[/C][C]0.0229282514103949[/C][C]0.0458565028207898[/C][C]0.977071748589605[/C][/ROW]
[ROW][C]30[/C][C]0.0273216716961565[/C][C]0.054643343392313[/C][C]0.972678328303843[/C][/ROW]
[ROW][C]31[/C][C]0.0167567237978379[/C][C]0.0335134475956759[/C][C]0.983243276202162[/C][/ROW]
[ROW][C]32[/C][C]0.0113592598925707[/C][C]0.0227185197851414[/C][C]0.98864074010743[/C][/ROW]
[ROW][C]33[/C][C]0.0267879254099278[/C][C]0.0535758508198556[/C][C]0.973212074590072[/C][/ROW]
[ROW][C]34[/C][C]0.0161453400743632[/C][C]0.0322906801487264[/C][C]0.983854659925637[/C][/ROW]
[ROW][C]35[/C][C]0.0105986107544418[/C][C]0.0211972215088836[/C][C]0.989401389245558[/C][/ROW]
[ROW][C]36[/C][C]0.0058082255841414[/C][C]0.0116164511682828[/C][C]0.994191774415859[/C][/ROW]
[ROW][C]37[/C][C]0.00372967643800005[/C][C]0.00745935287600011[/C][C]0.996270323562[/C][/ROW]
[ROW][C]38[/C][C]0.00230395755264915[/C][C]0.00460791510529829[/C][C]0.997696042447351[/C][/ROW]
[ROW][C]39[/C][C]0.00136074582422031[/C][C]0.00272149164844063[/C][C]0.99863925417578[/C][/ROW]
[ROW][C]40[/C][C]0.000675784261014619[/C][C]0.00135156852202924[/C][C]0.999324215738985[/C][/ROW]
[ROW][C]41[/C][C]0.000728127876403002[/C][C]0.00145625575280600[/C][C]0.999271872123597[/C][/ROW]
[ROW][C]42[/C][C]0.000475030468647181[/C][C]0.000950060937294363[/C][C]0.999524969531353[/C][/ROW]
[ROW][C]43[/C][C]0.000499514600915729[/C][C]0.000999029201831458[/C][C]0.999500485399084[/C][/ROW]
[ROW][C]44[/C][C]0.000229270405653065[/C][C]0.00045854081130613[/C][C]0.999770729594347[/C][/ROW]
[ROW][C]45[/C][C]0.000388730782884489[/C][C]0.000777461565768979[/C][C]0.999611269217116[/C][/ROW]
[ROW][C]46[/C][C]0.000769685901222576[/C][C]0.00153937180244515[/C][C]0.999230314098777[/C][/ROW]
[ROW][C]47[/C][C]0.000418259657201288[/C][C]0.000836519314402575[/C][C]0.999581740342799[/C][/ROW]
[ROW][C]48[/C][C]0.00232952952782195[/C][C]0.00465905905564389[/C][C]0.997670470472178[/C][/ROW]
[ROW][C]49[/C][C]0.00159435587518208[/C][C]0.00318871175036416[/C][C]0.998405644124818[/C][/ROW]
[ROW][C]50[/C][C]0.00439131111480057[/C][C]0.00878262222960114[/C][C]0.9956086888852[/C][/ROW]
[ROW][C]51[/C][C]0.488826292470925[/C][C]0.97765258494185[/C][C]0.511173707529075[/C][/ROW]
[ROW][C]52[/C][C]0.537228702366755[/C][C]0.92554259526649[/C][C]0.462771297633245[/C][/ROW]
[ROW][C]53[/C][C]0.817798065158885[/C][C]0.364403869682230[/C][C]0.182201934841115[/C][/ROW]
[ROW][C]54[/C][C]0.720668173247186[/C][C]0.558663653505629[/C][C]0.279331826752814[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.2839949487791620.5679898975583240.716005051220838
170.2252729706206280.4505459412412570.774727029379372
180.1895958305586810.3791916611173620.810404169441319
190.1048017631213370.2096035262426740.895198236878663
200.05873011085001350.1174602217000270.941269889149986
210.02998883517230920.05997767034461830.97001116482769
220.01843251358100610.03686502716201220.981567486418994
230.02613328362503750.0522665672500750.973866716374962
240.01492179146540330.02984358293080660.985078208534597
250.02085888845192470.04171777690384940.979141111548075
260.01277492017093480.02554984034186950.987225079829065
270.02862875602528790.05725751205057580.971371243974712
280.02462892377255290.04925784754510580.975371076227447
290.02292825141039490.04585650282078980.977071748589605
300.02732167169615650.0546433433923130.972678328303843
310.01675672379783790.03351344759567590.983243276202162
320.01135925989257070.02271851978514140.98864074010743
330.02678792540992780.05357585081985560.973212074590072
340.01614534007436320.03229068014872640.983854659925637
350.01059861075444180.02119722150888360.989401389245558
360.00580822558414140.01161645116828280.994191774415859
370.003729676438000050.007459352876000110.996270323562
380.002303957552649150.004607915105298290.997696042447351
390.001360745824220310.002721491648440630.99863925417578
400.0006757842610146190.001351568522029240.999324215738985
410.0007281278764030020.001456255752806000.999271872123597
420.0004750304686471810.0009500609372943630.999524969531353
430.0004995146009157290.0009990292018314580.999500485399084
440.0002292704056530650.000458540811306130.999770729594347
450.0003887307828844890.0007774615657689790.999611269217116
460.0007696859012225760.001539371802445150.999230314098777
470.0004182596572012880.0008365193144025750.999581740342799
480.002329529527821950.004659059055643890.997670470472178
490.001594355875182080.003188711750364160.998405644124818
500.004391311114800570.008782622229601140.9956086888852
510.4888262924709250.977652584941850.511173707529075
520.5372287023667550.925542595266490.462771297633245
530.8177980651588850.3644038696822300.182201934841115
540.7206681732471860.5586636535056290.279331826752814







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level140.358974358974359NOK
5% type I error level250.641025641025641NOK
10% type I error level300.769230769230769NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 14 & 0.358974358974359 & NOK \tabularnewline
5% type I error level & 25 & 0.641025641025641 & NOK \tabularnewline
10% type I error level & 30 & 0.769230769230769 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=113819&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]14[/C][C]0.358974358974359[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]25[/C][C]0.641025641025641[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]30[/C][C]0.769230769230769[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=113819&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=113819&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level140.358974358974359NOK
5% type I error level250.641025641025641NOK
10% type I error level300.769230769230769NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}