Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 24 Nov 2011 14:38:35 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t1322163554gj9vjq3xe8oooaj.htm/, Retrieved Fri, 01 Nov 2024 00:15:47 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=147171, Retrieved Fri, 01 Nov 2024 00:15:47 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2011-11-24 19:38:35] [1e640daebbc6b5a89eef23229b5a56d5] [Current]
Feedback Forum

Post a new message
Dataseries X:
41	38	13	12	14	12	53	32
39	32	16	11	18	11	86	51
30	35	19	15	11	14	66	42
31	33	15	6	12	12	67	41
34	37	14	13	16	21	76	46
35	29	13	10	18	12	78	47
39	31	19	12	14	22	53	37
34	36	15	14	14	11	80	49
36	35	14	12	15	10	74	45
37	38	15	6	15	13	76	47
38	31	16	10	17	10	79	49
36	34	16	12	19	8	54	33
38	35	16	12	10	15	67	42
39	38	16	11	16	14	54	33
33	37	17	15	18	10	87	53
32	33	15	12	14	14	58	36
36	32	15	10	14	14	75	45
38	38	20	12	17	11	88	54
39	38	18	11	14	10	64	41
32	32	16	12	16	13	57	36
32	33	16	11	18	7	66	41
31	31	16	12	11	14	68	44
39	38	19	13	14	12	54	33
37	39	16	11	12	14	56	37
39	32	17	9	17	11	86	52
41	32	17	13	9	9	80	47
36	35	16	10	16	11	76	43
33	37	15	14	14	15	69	44
33	33	16	12	15	14	78	45
34	33	14	10	11	13	67	44
31	28	15	12	16	9	80	49
27	32	12	8	13	15	54	33
37	31	14	10	17	10	71	43
34	37	16	12	15	11	84	54
34	30	14	12	14	13	74	42
32	33	7	7	16	8	71	44
29	31	10	6	9	20	63	37
36	33	14	12	15	12	71	43
29	31	16	10	17	10	76	46
35	33	16	10	13	10	69	42
37	32	16	10	15	9	74	45
34	33	14	12	16	14	75	44
38	32	20	15	16	8	54	33
35	33	14	10	12	14	52	31
38	28	14	10	12	11	69	42
37	35	11	12	11	13	68	40
38	39	14	13	15	9	65	43
33	34	15	11	15	11	75	46
36	38	16	11	17	15	74	42
38	32	14	12	13	11	75	45
32	38	16	14	16	10	72	44
32	30	14	10	14	14	67	40
32	33	12	12	11	18	63	37
34	38	16	13	12	14	62	46
32	32	9	5	12	11	63	36
37	32	14	6	15	12	76	47
39	34	16	12	16	13	74	45
29	34	16	12	15	9	67	42
37	36	15	11	12	10	73	43
35	34	16	10	12	15	70	43
30	28	12	7	8	20	53	32
38	34	16	12	13	12	77	45
34	35	16	14	11	12	77	45
31	35	14	11	14	14	52	31
34	31	16	12	15	13	54	33
35	37	17	13	10	11	80	49
36	35	18	14	11	17	66	42
30	27	18	11	12	12	73	41
39	40	12	12	15	13	63	38
35	37	16	12	15	14	69	42
38	36	10	8	14	13	67	44
31	38	14	11	16	15	54	33
34	39	18	14	15	13	81	48
38	41	18	14	15	10	69	40
34	27	16	12	13	11	84	50
39	30	17	9	12	19	80	49
37	37	16	13	17	13	70	43
34	31	16	11	13	17	69	44
28	31	13	12	15	13	77	47
37	27	16	12	13	9	54	33
33	36	16	12	15	11	79	46
37	38	20	12	16	10	30	0
35	37	16	12	15	9	71	45
37	33	15	12	16	12	73	43
32	34	15	11	15	12	72	44
33	31	16	10	14	13	77	47
38	39	14	9	15	13	75	45
33	34	16	12	14	12	69	42
29	32	16	12	13	15	54	33
33	33	15	12	7	22	70	43
31	36	12	9	17	13	73	46
36	32	17	15	13	15	54	33
35	41	16	12	15	13	77	46
32	28	15	12	14	15	82	48
29	30	13	12	13	10	80	47
39	36	16	10	16	11	80	47
37	35	16	13	12	16	69	43
35	31	16	9	14	11	78	46
37	34	16	12	17	11	81	48
32	36	14	10	15	10	76	46
38	36	16	14	17	10	76	45
37	35	16	11	12	16	73	45
36	37	20	15	16	12	85	52
32	28	15	11	11	11	66	42
33	39	16	11	15	16	79	47
40	32	13	12	9	19	68	41
38	35	17	12	16	11	76	47
41	39	16	12	15	16	71	43
36	35	16	11	10	15	54	33
43	42	12	7	10	24	46	30
30	34	16	12	15	14	82	49
31	33	16	14	11	15	74	44
32	41	17	11	13	11	88	55
32	33	13	11	14	15	38	11
37	34	12	10	18	12	76	47
37	32	18	13	16	10	86	53
33	40	14	13	14	14	54	33
34	40	14	8	14	13	70	44
33	35	13	11	14	9	69	42
38	36	16	12	14	15	90	55
33	37	13	11	12	15	54	33
31	27	16	13	14	14	76	46
38	39	13	12	15	11	89	54
37	38	16	14	15	8	76	47
33	31	15	13	15	11	73	45
31	33	16	15	13	11	79	47
39	32	15	10	17	8	90	55
44	39	17	11	17	10	74	44
33	36	15	9	19	11	81	53
35	33	12	11	15	13	72	44
32	33	16	10	13	11	71	42
28	32	10	11	9	20	66	40
40	37	16	8	15	10	77	46
27	30	12	11	15	15	65	40
37	38	14	12	15	12	74	46
32	29	15	12	16	14	82	53
28	22	13	9	11	23	54	33
34	35	15	11	14	14	63	42
30	35	11	10	11	16	54	35
35	34	12	8	15	11	64	40
31	35	8	9	13	12	69	41
32	34	16	8	15	10	54	33
30	34	15	9	16	14	84	51
30	35	17	15	14	12	86	53
31	23	16	11	15	12	77	46
40	31	10	8	16	11	89	55
32	27	18	13	16	12	76	47
36	36	13	12	11	13	60	38
32	31	16	12	12	11	75	46
35	32	13	9	9	19	73	46
38	39	10	7	16	12	85	53
42	37	15	13	13	17	79	47
34	38	16	9	16	9	71	41
35	39	16	6	12	12	72	44
35	34	14	8	9	19	69	43
33	31	10	8	13	18	78	51
36	32	17	15	13	15	54	33
32	37	13	6	14	14	69	43
33	36	15	9	19	11	81	53
34	32	16	11	13	9	84	51
32	35	12	8	12	18	84	50
34	36	13	8	13	16	69	46




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=147171&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[ROW][C]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=147171&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
Connected[t] = + 15.5886641040148 + 0.357805077555355Separate[t] + 0.31517108383051Learning[t] -0.0824137951118428Software[t] + 0.0598385255150711Happiness[t] -0.00381399106234521Depression[t] + 0.0510682377658427Belonging[t] -0.0336166665709537`Belonging_Final `[t] + 0.800494994438859M1[t] + 2.0291165182108M2[t] -1.47286375263073M3[t] -0.885123734344128M4[t] -0.810164677375956M5[t] -0.126976715642024M6[t] + 0.496573819477727M7[t] + 1.31570706043209M8[t] -0.269303551515734M9[t] -0.444326763481997M10[t] + 0.418399611398388M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Connected[t] =  +  15.5886641040148 +  0.357805077555355Separate[t] +  0.31517108383051Learning[t] -0.0824137951118428Software[t] +  0.0598385255150711Happiness[t] -0.00381399106234521Depression[t] +  0.0510682377658427Belonging[t] -0.0336166665709537`Belonging_Final
`[t] +  0.800494994438859M1[t] +  2.0291165182108M2[t] -1.47286375263073M3[t] -0.885123734344128M4[t] -0.810164677375956M5[t] -0.126976715642024M6[t] +  0.496573819477727M7[t] +  1.31570706043209M8[t] -0.269303551515734M9[t] -0.444326763481997M10[t] +  0.418399611398388M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147171&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Connected[t] =  +  15.5886641040148 +  0.357805077555355Separate[t] +  0.31517108383051Learning[t] -0.0824137951118428Software[t] +  0.0598385255150711Happiness[t] -0.00381399106234521Depression[t] +  0.0510682377658427Belonging[t] -0.0336166665709537`Belonging_Final
`[t] +  0.800494994438859M1[t] +  2.0291165182108M2[t] -1.47286375263073M3[t] -0.885123734344128M4[t] -0.810164677375956M5[t] -0.126976715642024M6[t] +  0.496573819477727M7[t] +  1.31570706043209M8[t] -0.269303551515734M9[t] -0.444326763481997M10[t] +  0.418399611398388M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147171&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Connected[t] = + 15.5886641040148 + 0.357805077555355Separate[t] + 0.31517108383051Learning[t] -0.0824137951118428Software[t] + 0.0598385255150711Happiness[t] -0.00381399106234521Depression[t] + 0.0510682377658427Belonging[t] -0.0336166665709537`Belonging_Final `[t] + 0.800494994438859M1[t] + 2.0291165182108M2[t] -1.47286375263073M3[t] -0.885123734344128M4[t] -0.810164677375956M5[t] -0.126976715642024M6[t] + 0.496573819477727M7[t] + 1.31570706043209M8[t] -0.269303551515734M9[t] -0.444326763481997M10[t] + 0.418399611398388M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)15.58866410401484.4491073.50380.0006130.000306
Separate0.3578050775553550.0720864.96362e-061e-06
Learning0.315171083830510.1347442.3390.0207180.010359
Software-0.08241379511184280.138506-0.5950.552770.276385
Happiness0.05983852551507110.1328170.45050.6530090.326504
Depression-0.003813991062345210.099038-0.03850.9693340.484667
Belonging0.05106823776584270.0763950.66850.5049050.252453
`Belonging_Final `-0.03361666657095370.109613-0.30670.759530.379765
M10.8004949944388591.214340.65920.5108260.255413
M22.02911651821081.2002481.69060.0930950.046548
M3-1.472863752630731.216252-1.2110.2278980.113949
M4-0.8851237343441281.208615-0.73230.4651560.232578
M5-0.8101646773759561.204787-0.67250.5023790.25119
M6-0.1269767156420241.210079-0.10490.9165760.458288
M70.4965738194777271.2197040.40710.6845240.342262
M81.315707060432091.246611.05540.293010.146505
M9-0.2693035515157341.222222-0.22030.8259210.412961
M10-0.4443267634819971.240694-0.35810.7207760.360388
M110.4183996113983881.230350.34010.7343060.367153

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 15.5886641040148 & 4.449107 & 3.5038 & 0.000613 & 0.000306 \tabularnewline
Separate & 0.357805077555355 & 0.072086 & 4.9636 & 2e-06 & 1e-06 \tabularnewline
Learning & 0.31517108383051 & 0.134744 & 2.339 & 0.020718 & 0.010359 \tabularnewline
Software & -0.0824137951118428 & 0.138506 & -0.595 & 0.55277 & 0.276385 \tabularnewline
Happiness & 0.0598385255150711 & 0.132817 & 0.4505 & 0.653009 & 0.326504 \tabularnewline
Depression & -0.00381399106234521 & 0.099038 & -0.0385 & 0.969334 & 0.484667 \tabularnewline
Belonging & 0.0510682377658427 & 0.076395 & 0.6685 & 0.504905 & 0.252453 \tabularnewline
`Belonging_Final
` & -0.0336166665709537 & 0.109613 & -0.3067 & 0.75953 & 0.379765 \tabularnewline
M1 & 0.800494994438859 & 1.21434 & 0.6592 & 0.510826 & 0.255413 \tabularnewline
M2 & 2.0291165182108 & 1.200248 & 1.6906 & 0.093095 & 0.046548 \tabularnewline
M3 & -1.47286375263073 & 1.216252 & -1.211 & 0.227898 & 0.113949 \tabularnewline
M4 & -0.885123734344128 & 1.208615 & -0.7323 & 0.465156 & 0.232578 \tabularnewline
M5 & -0.810164677375956 & 1.204787 & -0.6725 & 0.502379 & 0.25119 \tabularnewline
M6 & -0.126976715642024 & 1.210079 & -0.1049 & 0.916576 & 0.458288 \tabularnewline
M7 & 0.496573819477727 & 1.219704 & 0.4071 & 0.684524 & 0.342262 \tabularnewline
M8 & 1.31570706043209 & 1.24661 & 1.0554 & 0.29301 & 0.146505 \tabularnewline
M9 & -0.269303551515734 & 1.222222 & -0.2203 & 0.825921 & 0.412961 \tabularnewline
M10 & -0.444326763481997 & 1.240694 & -0.3581 & 0.720776 & 0.360388 \tabularnewline
M11 & 0.418399611398388 & 1.23035 & 0.3401 & 0.734306 & 0.367153 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147171&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]15.5886641040148[/C][C]4.449107[/C][C]3.5038[/C][C]0.000613[/C][C]0.000306[/C][/ROW]
[ROW][C]Separate[/C][C]0.357805077555355[/C][C]0.072086[/C][C]4.9636[/C][C]2e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]Learning[/C][C]0.31517108383051[/C][C]0.134744[/C][C]2.339[/C][C]0.020718[/C][C]0.010359[/C][/ROW]
[ROW][C]Software[/C][C]-0.0824137951118428[/C][C]0.138506[/C][C]-0.595[/C][C]0.55277[/C][C]0.276385[/C][/ROW]
[ROW][C]Happiness[/C][C]0.0598385255150711[/C][C]0.132817[/C][C]0.4505[/C][C]0.653009[/C][C]0.326504[/C][/ROW]
[ROW][C]Depression[/C][C]-0.00381399106234521[/C][C]0.099038[/C][C]-0.0385[/C][C]0.969334[/C][C]0.484667[/C][/ROW]
[ROW][C]Belonging[/C][C]0.0510682377658427[/C][C]0.076395[/C][C]0.6685[/C][C]0.504905[/C][C]0.252453[/C][/ROW]
[ROW][C]`Belonging_Final
`[/C][C]-0.0336166665709537[/C][C]0.109613[/C][C]-0.3067[/C][C]0.75953[/C][C]0.379765[/C][/ROW]
[ROW][C]M1[/C][C]0.800494994438859[/C][C]1.21434[/C][C]0.6592[/C][C]0.510826[/C][C]0.255413[/C][/ROW]
[ROW][C]M2[/C][C]2.0291165182108[/C][C]1.200248[/C][C]1.6906[/C][C]0.093095[/C][C]0.046548[/C][/ROW]
[ROW][C]M3[/C][C]-1.47286375263073[/C][C]1.216252[/C][C]-1.211[/C][C]0.227898[/C][C]0.113949[/C][/ROW]
[ROW][C]M4[/C][C]-0.885123734344128[/C][C]1.208615[/C][C]-0.7323[/C][C]0.465156[/C][C]0.232578[/C][/ROW]
[ROW][C]M5[/C][C]-0.810164677375956[/C][C]1.204787[/C][C]-0.6725[/C][C]0.502379[/C][C]0.25119[/C][/ROW]
[ROW][C]M6[/C][C]-0.126976715642024[/C][C]1.210079[/C][C]-0.1049[/C][C]0.916576[/C][C]0.458288[/C][/ROW]
[ROW][C]M7[/C][C]0.496573819477727[/C][C]1.219704[/C][C]0.4071[/C][C]0.684524[/C][C]0.342262[/C][/ROW]
[ROW][C]M8[/C][C]1.31570706043209[/C][C]1.24661[/C][C]1.0554[/C][C]0.29301[/C][C]0.146505[/C][/ROW]
[ROW][C]M9[/C][C]-0.269303551515734[/C][C]1.222222[/C][C]-0.2203[/C][C]0.825921[/C][C]0.412961[/C][/ROW]
[ROW][C]M10[/C][C]-0.444326763481997[/C][C]1.240694[/C][C]-0.3581[/C][C]0.720776[/C][C]0.360388[/C][/ROW]
[ROW][C]M11[/C][C]0.418399611398388[/C][C]1.23035[/C][C]0.3401[/C][C]0.734306[/C][C]0.367153[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147171&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)15.58866410401484.4491073.50380.0006130.000306
Separate0.3578050775553550.0720864.96362e-061e-06
Learning0.315171083830510.1347442.3390.0207180.010359
Software-0.08241379511184280.138506-0.5950.552770.276385
Happiness0.05983852551507110.1328170.45050.6530090.326504
Depression-0.003813991062345210.099038-0.03850.9693340.484667
Belonging0.05106823776584270.0763950.66850.5049050.252453
`Belonging_Final `-0.03361666657095370.109613-0.30670.759530.379765
M10.8004949944388591.214340.65920.5108260.255413
M22.02911651821081.2002481.69060.0930950.046548
M3-1.472863752630731.216252-1.2110.2278980.113949
M4-0.8851237343441281.208615-0.73230.4651560.232578
M5-0.8101646773759561.204787-0.67250.5023790.25119
M6-0.1269767156420241.210079-0.10490.9165760.458288
M70.4965738194777271.2197040.40710.6845240.342262
M81.315707060432091.246611.05540.293010.146505
M9-0.2693035515157341.222222-0.22030.8259210.412961
M10-0.4443267634819971.240694-0.35810.7207760.360388
M110.4183996113983881.230350.34010.7343060.367153







Multiple Linear Regression - Regression Statistics
Multiple R0.509709060323183
R-squared0.259803326175542
Adjusted R-squared0.166631716882953
F-TEST (value)2.78843875455318
F-TEST (DF numerator)18
F-TEST (DF denominator)143
p-value0.00037005194832529
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.08112179345231
Sum Squared Residuals1357.54354537041

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.509709060323183 \tabularnewline
R-squared & 0.259803326175542 \tabularnewline
Adjusted R-squared & 0.166631716882953 \tabularnewline
F-TEST (value) & 2.78843875455318 \tabularnewline
F-TEST (DF numerator) & 18 \tabularnewline
F-TEST (DF denominator) & 143 \tabularnewline
p-value & 0.00037005194832529 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 3.08112179345231 \tabularnewline
Sum Squared Residuals & 1357.54354537041 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147171&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.509709060323183[/C][/ROW]
[ROW][C]R-squared[/C][C]0.259803326175542[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.166631716882953[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]2.78843875455318[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]18[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]143[/C][/ROW]
[ROW][C]p-value[/C][C]0.00037005194832529[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]3.08112179345231[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1357.54354537041[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147171&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.509709060323183
R-squared0.259803326175542
Adjusted R-squared0.166631716882953
F-TEST (value)2.78843875455318
F-TEST (DF numerator)18
F-TEST (DF denominator)143
p-value0.00037005194832529
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.08112179345231
Sum Squared Residuals1357.54354537041







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
14135.51686532979375.48313467020632
23936.91628670938412.08371329061588
33033.954453334282-3.95445333428201
43133.459774430119-2.45977443011901
53434.5704451372322-0.570445137232181
63532.54578555958032.45421444041972
73934.39311187144984.60688812855016
83436.5931548971474-2.59315489714736
93634.39170547030351.60829452969647
103736.12321251470760.876787485292358
113834.68390965445653.31609034554352
123634.56256343964451.4374365603555
133835.5169559363842.48304406361598
143937.90291454026931.09708545973073
153335.1764966253888-2.17649662538879
163232.7858099213156-0.785809921315586
173633.23340153383282.76659846616717
183838.0267424313774-0.026742431377373
193937.13804196750731.86195803249274
203235.0164295266936-3.01642952669361
213234.305729591855-2.305729591855
223132.8884012894431-1.8884012894431
233936.96083422581932.03916577418075
243735.95991880680141.04008119319859
253936.07420866758042.92579133241965
264136.36376869516884.63623130483125
273634.20870937019961.79129062980044
283334.3412059331076-1.34120593310761
293333.9545933438076-0.95459334380761
303433.4085926682530.591407331747048
313133.2037136591287-2.20371365912868
322733.8459020995644-6.84590209956437
333733.15901842118033.84098157881968
343435.7669529685665-1.7669529685665
353433.31995274645160.680047253548364
363232.0991487163674-0.0991487163673904
372932.5740937948152-3.5740937948152
383635.8809160226390.119083977360957
392932.7402915768427-3.74029157684269
403533.58127665010261.41872334989736
413733.57641286072433.4235871392757
423433.9476896166690.0523103833309814
433835.17745447745282.82254552254719
443534.57829407771460.421705922285446
453831.71407676091586.28592323908418
463732.88204683785814.11795316214187
473836.03964833263891.9603516673611
483334.7144264033388-1.71442640333881
493637.4491323071283-1.44913230712833
503835.54428750303742.45571249696265
513234.7183937958463-2.71839379584627
523231.88719866865150.112801331348532
533231.94220870825590.0577912917441039
543435.3141688508368-1.31416885083682
553232.642678571368-0.642678571368036
563735.42505878052141.57494121947856
573934.71263911273724.28736088726277
582934.2364056748572-5.23640567485724
593735.67144810854621.32855189145379
603534.76274855237020.237251447629787
613031.6461693643796-1.64616936437959
623836.98856231027841.01143768972158
633433.55988247573840.440117524261577
643133.1303366939673-2.13033669396734
653432.42055947223051.57944052776953
663535.9816780593412-0.981678059341177
673635.67969164448480.320308355515235
683034.3536284620905-4.35362846209047
693935.21251276780473.78748723219534
703535.3928874277433-0.392887427743265
713834.11104305940633.88895694059371
723135.2396418633351-4.23964186333511
733438.2337667630389-4.2337667630389
743839.8455548944861-1.8455548944861
753431.17515481911792.82484518088211
763933.13771580073035.86228419926966
773735.08557833202481.91442166797516
783433.44746844800390.552531551996134
792833.4857208542136-5.48572085421365
803733.01078981303633.98921018696367
813335.5977632467158-2.59776324671582
823736.50671005349730.493289946502698
833536.2759702337542-1.2759702337542
843734.32894558930552.67105441069449
853235.4251360265597-3.4251360265597
863336.0687658691469-3.06876586914686
873834.90623322932433.09376677067571
883333.8264646808247-0.826464680824687
892932.651059516631-3.65105951663098
903333.4720775201069-0.472077520106867
913135.1558373100332-4.15583731003316
923634.8448609529341.15513904706598
933537.2770241768362-2.27702417683622
943232.2560052208674-0.256005220867379
952933.0947112040334-4.09471120403338
963936.10918448516522.8908155148348
973735.61892501020071.38107498979929
983536.2434925507202-1.24349255072019
993733.833173083913.16682691608996
1003234.3670377642149-2.36703776421491
1013834.89597752599783.10402247400217
1023734.9933205082652.00667949173502
1033637.8956226068732-1.89562260687321
1043233.3188014227697-1.31880142276972
1053336.700905652611-3.70090565261105
1064032.26279610887797.73720389112208
1073836.11584956155171.88415043844831
1084136.6137161731724.38628382682799
1093635.23803263967850.761967360321504
1104337.69823872948835.30176127051174
1113033.7195056308877-3.71950563088774
1123133.3009823190007-2.3009823190007
1133237.2808994772986-5.28089947729858
1143232.8112664853632-0.811266485363159
1153734.54105392311462.4589460768854
1163736.4852954359330.514704564066956
1173335.4052578167386-2.4052578167386
1183436.0934260433669-2.09342604336689
1193334.6361356209299-1.63613562092991
1203836.05117292475281.94882707524721
1213335.1278065943278-2.12780659432782
1223134.3690386113327-3.36903861133268
1233834.76385407186623.23614592813384
1243735.3573462220931.642653777907
1253332.59749909411240.40250090588763
1263134.2661397469868-3.26613974698684
1273935.17239645438393.82760354561609
1284438.58915715667725.41084284332275
1293335.6360074598161-2.63600745981613
1303532.87318194852962.12681805147038
1313234.9831224803145-2.98312248031449
1322831.7716896159572-3.77168961595715
1334037.25669956620382.7433004337962
1342734.0425710173546-7.04257101735457
1353734.2203158531592.77968414684104
1363232.1284210367983-0.12842103679832
1372828.2245478953925-0.224547895392536
1383434.3956220796437-0.395622079643733
1393033.4294610419875-3.42946104198748
1403534.97181098161640.0281890183836476
1413132.4997407969558-1.49974079695577
1423234.2009097724249-2.20090977242489
1433035.6375809643267-5.63758096432673
1443035.635699900958-5.63569990095798
1453131.9925591129686-0.992559112968614
1464034.81375751016485.18624248983519
1473231.59108887473610.408911125263947
1483633.08808454322752.91191545677246
1493232.8840882054702-0.88408820547024
1503532.91464539802792.08535460197213
1513836.08521561800261.91478438199739
1524236.96681639330155.03318360669852
1533436.3876187255298-2.38761872552984
1543536.5170641392601-1.51706413926013
1553534.46979380777080.530206192229169
1563332.15114352883190.848856471168076
1573634.32964888694081.67035111305922
1583237.3218450365296-5.32184503652956
1593334.4324472587011-1.43244725870114
1603433.60834533584680.391654664153157
1613233.6827288969893-1.68272889698935
1623434.4748026275451-0.474802627545076

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 41 & 35.5168653297937 & 5.48313467020632 \tabularnewline
2 & 39 & 36.9162867093841 & 2.08371329061588 \tabularnewline
3 & 30 & 33.954453334282 & -3.95445333428201 \tabularnewline
4 & 31 & 33.459774430119 & -2.45977443011901 \tabularnewline
5 & 34 & 34.5704451372322 & -0.570445137232181 \tabularnewline
6 & 35 & 32.5457855595803 & 2.45421444041972 \tabularnewline
7 & 39 & 34.3931118714498 & 4.60688812855016 \tabularnewline
8 & 34 & 36.5931548971474 & -2.59315489714736 \tabularnewline
9 & 36 & 34.3917054703035 & 1.60829452969647 \tabularnewline
10 & 37 & 36.1232125147076 & 0.876787485292358 \tabularnewline
11 & 38 & 34.6839096544565 & 3.31609034554352 \tabularnewline
12 & 36 & 34.5625634396445 & 1.4374365603555 \tabularnewline
13 & 38 & 35.516955936384 & 2.48304406361598 \tabularnewline
14 & 39 & 37.9029145402693 & 1.09708545973073 \tabularnewline
15 & 33 & 35.1764966253888 & -2.17649662538879 \tabularnewline
16 & 32 & 32.7858099213156 & -0.785809921315586 \tabularnewline
17 & 36 & 33.2334015338328 & 2.76659846616717 \tabularnewline
18 & 38 & 38.0267424313774 & -0.026742431377373 \tabularnewline
19 & 39 & 37.1380419675073 & 1.86195803249274 \tabularnewline
20 & 32 & 35.0164295266936 & -3.01642952669361 \tabularnewline
21 & 32 & 34.305729591855 & -2.305729591855 \tabularnewline
22 & 31 & 32.8884012894431 & -1.8884012894431 \tabularnewline
23 & 39 & 36.9608342258193 & 2.03916577418075 \tabularnewline
24 & 37 & 35.9599188068014 & 1.04008119319859 \tabularnewline
25 & 39 & 36.0742086675804 & 2.92579133241965 \tabularnewline
26 & 41 & 36.3637686951688 & 4.63623130483125 \tabularnewline
27 & 36 & 34.2087093701996 & 1.79129062980044 \tabularnewline
28 & 33 & 34.3412059331076 & -1.34120593310761 \tabularnewline
29 & 33 & 33.9545933438076 & -0.95459334380761 \tabularnewline
30 & 34 & 33.408592668253 & 0.591407331747048 \tabularnewline
31 & 31 & 33.2037136591287 & -2.20371365912868 \tabularnewline
32 & 27 & 33.8459020995644 & -6.84590209956437 \tabularnewline
33 & 37 & 33.1590184211803 & 3.84098157881968 \tabularnewline
34 & 34 & 35.7669529685665 & -1.7669529685665 \tabularnewline
35 & 34 & 33.3199527464516 & 0.680047253548364 \tabularnewline
36 & 32 & 32.0991487163674 & -0.0991487163673904 \tabularnewline
37 & 29 & 32.5740937948152 & -3.5740937948152 \tabularnewline
38 & 36 & 35.880916022639 & 0.119083977360957 \tabularnewline
39 & 29 & 32.7402915768427 & -3.74029157684269 \tabularnewline
40 & 35 & 33.5812766501026 & 1.41872334989736 \tabularnewline
41 & 37 & 33.5764128607243 & 3.4235871392757 \tabularnewline
42 & 34 & 33.947689616669 & 0.0523103833309814 \tabularnewline
43 & 38 & 35.1774544774528 & 2.82254552254719 \tabularnewline
44 & 35 & 34.5782940777146 & 0.421705922285446 \tabularnewline
45 & 38 & 31.7140767609158 & 6.28592323908418 \tabularnewline
46 & 37 & 32.8820468378581 & 4.11795316214187 \tabularnewline
47 & 38 & 36.0396483326389 & 1.9603516673611 \tabularnewline
48 & 33 & 34.7144264033388 & -1.71442640333881 \tabularnewline
49 & 36 & 37.4491323071283 & -1.44913230712833 \tabularnewline
50 & 38 & 35.5442875030374 & 2.45571249696265 \tabularnewline
51 & 32 & 34.7183937958463 & -2.71839379584627 \tabularnewline
52 & 32 & 31.8871986686515 & 0.112801331348532 \tabularnewline
53 & 32 & 31.9422087082559 & 0.0577912917441039 \tabularnewline
54 & 34 & 35.3141688508368 & -1.31416885083682 \tabularnewline
55 & 32 & 32.642678571368 & -0.642678571368036 \tabularnewline
56 & 37 & 35.4250587805214 & 1.57494121947856 \tabularnewline
57 & 39 & 34.7126391127372 & 4.28736088726277 \tabularnewline
58 & 29 & 34.2364056748572 & -5.23640567485724 \tabularnewline
59 & 37 & 35.6714481085462 & 1.32855189145379 \tabularnewline
60 & 35 & 34.7627485523702 & 0.237251447629787 \tabularnewline
61 & 30 & 31.6461693643796 & -1.64616936437959 \tabularnewline
62 & 38 & 36.9885623102784 & 1.01143768972158 \tabularnewline
63 & 34 & 33.5598824757384 & 0.440117524261577 \tabularnewline
64 & 31 & 33.1303366939673 & -2.13033669396734 \tabularnewline
65 & 34 & 32.4205594722305 & 1.57944052776953 \tabularnewline
66 & 35 & 35.9816780593412 & -0.981678059341177 \tabularnewline
67 & 36 & 35.6796916444848 & 0.320308355515235 \tabularnewline
68 & 30 & 34.3536284620905 & -4.35362846209047 \tabularnewline
69 & 39 & 35.2125127678047 & 3.78748723219534 \tabularnewline
70 & 35 & 35.3928874277433 & -0.392887427743265 \tabularnewline
71 & 38 & 34.1110430594063 & 3.88895694059371 \tabularnewline
72 & 31 & 35.2396418633351 & -4.23964186333511 \tabularnewline
73 & 34 & 38.2337667630389 & -4.2337667630389 \tabularnewline
74 & 38 & 39.8455548944861 & -1.8455548944861 \tabularnewline
75 & 34 & 31.1751548191179 & 2.82484518088211 \tabularnewline
76 & 39 & 33.1377158007303 & 5.86228419926966 \tabularnewline
77 & 37 & 35.0855783320248 & 1.91442166797516 \tabularnewline
78 & 34 & 33.4474684480039 & 0.552531551996134 \tabularnewline
79 & 28 & 33.4857208542136 & -5.48572085421365 \tabularnewline
80 & 37 & 33.0107898130363 & 3.98921018696367 \tabularnewline
81 & 33 & 35.5977632467158 & -2.59776324671582 \tabularnewline
82 & 37 & 36.5067100534973 & 0.493289946502698 \tabularnewline
83 & 35 & 36.2759702337542 & -1.2759702337542 \tabularnewline
84 & 37 & 34.3289455893055 & 2.67105441069449 \tabularnewline
85 & 32 & 35.4251360265597 & -3.4251360265597 \tabularnewline
86 & 33 & 36.0687658691469 & -3.06876586914686 \tabularnewline
87 & 38 & 34.9062332293243 & 3.09376677067571 \tabularnewline
88 & 33 & 33.8264646808247 & -0.826464680824687 \tabularnewline
89 & 29 & 32.651059516631 & -3.65105951663098 \tabularnewline
90 & 33 & 33.4720775201069 & -0.472077520106867 \tabularnewline
91 & 31 & 35.1558373100332 & -4.15583731003316 \tabularnewline
92 & 36 & 34.844860952934 & 1.15513904706598 \tabularnewline
93 & 35 & 37.2770241768362 & -2.27702417683622 \tabularnewline
94 & 32 & 32.2560052208674 & -0.256005220867379 \tabularnewline
95 & 29 & 33.0947112040334 & -4.09471120403338 \tabularnewline
96 & 39 & 36.1091844851652 & 2.8908155148348 \tabularnewline
97 & 37 & 35.6189250102007 & 1.38107498979929 \tabularnewline
98 & 35 & 36.2434925507202 & -1.24349255072019 \tabularnewline
99 & 37 & 33.83317308391 & 3.16682691608996 \tabularnewline
100 & 32 & 34.3670377642149 & -2.36703776421491 \tabularnewline
101 & 38 & 34.8959775259978 & 3.10402247400217 \tabularnewline
102 & 37 & 34.993320508265 & 2.00667949173502 \tabularnewline
103 & 36 & 37.8956226068732 & -1.89562260687321 \tabularnewline
104 & 32 & 33.3188014227697 & -1.31880142276972 \tabularnewline
105 & 33 & 36.700905652611 & -3.70090565261105 \tabularnewline
106 & 40 & 32.2627961088779 & 7.73720389112208 \tabularnewline
107 & 38 & 36.1158495615517 & 1.88415043844831 \tabularnewline
108 & 41 & 36.613716173172 & 4.38628382682799 \tabularnewline
109 & 36 & 35.2380326396785 & 0.761967360321504 \tabularnewline
110 & 43 & 37.6982387294883 & 5.30176127051174 \tabularnewline
111 & 30 & 33.7195056308877 & -3.71950563088774 \tabularnewline
112 & 31 & 33.3009823190007 & -2.3009823190007 \tabularnewline
113 & 32 & 37.2808994772986 & -5.28089947729858 \tabularnewline
114 & 32 & 32.8112664853632 & -0.811266485363159 \tabularnewline
115 & 37 & 34.5410539231146 & 2.4589460768854 \tabularnewline
116 & 37 & 36.485295435933 & 0.514704564066956 \tabularnewline
117 & 33 & 35.4052578167386 & -2.4052578167386 \tabularnewline
118 & 34 & 36.0934260433669 & -2.09342604336689 \tabularnewline
119 & 33 & 34.6361356209299 & -1.63613562092991 \tabularnewline
120 & 38 & 36.0511729247528 & 1.94882707524721 \tabularnewline
121 & 33 & 35.1278065943278 & -2.12780659432782 \tabularnewline
122 & 31 & 34.3690386113327 & -3.36903861133268 \tabularnewline
123 & 38 & 34.7638540718662 & 3.23614592813384 \tabularnewline
124 & 37 & 35.357346222093 & 1.642653777907 \tabularnewline
125 & 33 & 32.5974990941124 & 0.40250090588763 \tabularnewline
126 & 31 & 34.2661397469868 & -3.26613974698684 \tabularnewline
127 & 39 & 35.1723964543839 & 3.82760354561609 \tabularnewline
128 & 44 & 38.5891571566772 & 5.41084284332275 \tabularnewline
129 & 33 & 35.6360074598161 & -2.63600745981613 \tabularnewline
130 & 35 & 32.8731819485296 & 2.12681805147038 \tabularnewline
131 & 32 & 34.9831224803145 & -2.98312248031449 \tabularnewline
132 & 28 & 31.7716896159572 & -3.77168961595715 \tabularnewline
133 & 40 & 37.2566995662038 & 2.7433004337962 \tabularnewline
134 & 27 & 34.0425710173546 & -7.04257101735457 \tabularnewline
135 & 37 & 34.220315853159 & 2.77968414684104 \tabularnewline
136 & 32 & 32.1284210367983 & -0.12842103679832 \tabularnewline
137 & 28 & 28.2245478953925 & -0.224547895392536 \tabularnewline
138 & 34 & 34.3956220796437 & -0.395622079643733 \tabularnewline
139 & 30 & 33.4294610419875 & -3.42946104198748 \tabularnewline
140 & 35 & 34.9718109816164 & 0.0281890183836476 \tabularnewline
141 & 31 & 32.4997407969558 & -1.49974079695577 \tabularnewline
142 & 32 & 34.2009097724249 & -2.20090977242489 \tabularnewline
143 & 30 & 35.6375809643267 & -5.63758096432673 \tabularnewline
144 & 30 & 35.635699900958 & -5.63569990095798 \tabularnewline
145 & 31 & 31.9925591129686 & -0.992559112968614 \tabularnewline
146 & 40 & 34.8137575101648 & 5.18624248983519 \tabularnewline
147 & 32 & 31.5910888747361 & 0.408911125263947 \tabularnewline
148 & 36 & 33.0880845432275 & 2.91191545677246 \tabularnewline
149 & 32 & 32.8840882054702 & -0.88408820547024 \tabularnewline
150 & 35 & 32.9146453980279 & 2.08535460197213 \tabularnewline
151 & 38 & 36.0852156180026 & 1.91478438199739 \tabularnewline
152 & 42 & 36.9668163933015 & 5.03318360669852 \tabularnewline
153 & 34 & 36.3876187255298 & -2.38761872552984 \tabularnewline
154 & 35 & 36.5170641392601 & -1.51706413926013 \tabularnewline
155 & 35 & 34.4697938077708 & 0.530206192229169 \tabularnewline
156 & 33 & 32.1511435288319 & 0.848856471168076 \tabularnewline
157 & 36 & 34.3296488869408 & 1.67035111305922 \tabularnewline
158 & 32 & 37.3218450365296 & -5.32184503652956 \tabularnewline
159 & 33 & 34.4324472587011 & -1.43244725870114 \tabularnewline
160 & 34 & 33.6083453358468 & 0.391654664153157 \tabularnewline
161 & 32 & 33.6827288969893 & -1.68272889698935 \tabularnewline
162 & 34 & 34.4748026275451 & -0.474802627545076 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147171&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]41[/C][C]35.5168653297937[/C][C]5.48313467020632[/C][/ROW]
[ROW][C]2[/C][C]39[/C][C]36.9162867093841[/C][C]2.08371329061588[/C][/ROW]
[ROW][C]3[/C][C]30[/C][C]33.954453334282[/C][C]-3.95445333428201[/C][/ROW]
[ROW][C]4[/C][C]31[/C][C]33.459774430119[/C][C]-2.45977443011901[/C][/ROW]
[ROW][C]5[/C][C]34[/C][C]34.5704451372322[/C][C]-0.570445137232181[/C][/ROW]
[ROW][C]6[/C][C]35[/C][C]32.5457855595803[/C][C]2.45421444041972[/C][/ROW]
[ROW][C]7[/C][C]39[/C][C]34.3931118714498[/C][C]4.60688812855016[/C][/ROW]
[ROW][C]8[/C][C]34[/C][C]36.5931548971474[/C][C]-2.59315489714736[/C][/ROW]
[ROW][C]9[/C][C]36[/C][C]34.3917054703035[/C][C]1.60829452969647[/C][/ROW]
[ROW][C]10[/C][C]37[/C][C]36.1232125147076[/C][C]0.876787485292358[/C][/ROW]
[ROW][C]11[/C][C]38[/C][C]34.6839096544565[/C][C]3.31609034554352[/C][/ROW]
[ROW][C]12[/C][C]36[/C][C]34.5625634396445[/C][C]1.4374365603555[/C][/ROW]
[ROW][C]13[/C][C]38[/C][C]35.516955936384[/C][C]2.48304406361598[/C][/ROW]
[ROW][C]14[/C][C]39[/C][C]37.9029145402693[/C][C]1.09708545973073[/C][/ROW]
[ROW][C]15[/C][C]33[/C][C]35.1764966253888[/C][C]-2.17649662538879[/C][/ROW]
[ROW][C]16[/C][C]32[/C][C]32.7858099213156[/C][C]-0.785809921315586[/C][/ROW]
[ROW][C]17[/C][C]36[/C][C]33.2334015338328[/C][C]2.76659846616717[/C][/ROW]
[ROW][C]18[/C][C]38[/C][C]38.0267424313774[/C][C]-0.026742431377373[/C][/ROW]
[ROW][C]19[/C][C]39[/C][C]37.1380419675073[/C][C]1.86195803249274[/C][/ROW]
[ROW][C]20[/C][C]32[/C][C]35.0164295266936[/C][C]-3.01642952669361[/C][/ROW]
[ROW][C]21[/C][C]32[/C][C]34.305729591855[/C][C]-2.305729591855[/C][/ROW]
[ROW][C]22[/C][C]31[/C][C]32.8884012894431[/C][C]-1.8884012894431[/C][/ROW]
[ROW][C]23[/C][C]39[/C][C]36.9608342258193[/C][C]2.03916577418075[/C][/ROW]
[ROW][C]24[/C][C]37[/C][C]35.9599188068014[/C][C]1.04008119319859[/C][/ROW]
[ROW][C]25[/C][C]39[/C][C]36.0742086675804[/C][C]2.92579133241965[/C][/ROW]
[ROW][C]26[/C][C]41[/C][C]36.3637686951688[/C][C]4.63623130483125[/C][/ROW]
[ROW][C]27[/C][C]36[/C][C]34.2087093701996[/C][C]1.79129062980044[/C][/ROW]
[ROW][C]28[/C][C]33[/C][C]34.3412059331076[/C][C]-1.34120593310761[/C][/ROW]
[ROW][C]29[/C][C]33[/C][C]33.9545933438076[/C][C]-0.95459334380761[/C][/ROW]
[ROW][C]30[/C][C]34[/C][C]33.408592668253[/C][C]0.591407331747048[/C][/ROW]
[ROW][C]31[/C][C]31[/C][C]33.2037136591287[/C][C]-2.20371365912868[/C][/ROW]
[ROW][C]32[/C][C]27[/C][C]33.8459020995644[/C][C]-6.84590209956437[/C][/ROW]
[ROW][C]33[/C][C]37[/C][C]33.1590184211803[/C][C]3.84098157881968[/C][/ROW]
[ROW][C]34[/C][C]34[/C][C]35.7669529685665[/C][C]-1.7669529685665[/C][/ROW]
[ROW][C]35[/C][C]34[/C][C]33.3199527464516[/C][C]0.680047253548364[/C][/ROW]
[ROW][C]36[/C][C]32[/C][C]32.0991487163674[/C][C]-0.0991487163673904[/C][/ROW]
[ROW][C]37[/C][C]29[/C][C]32.5740937948152[/C][C]-3.5740937948152[/C][/ROW]
[ROW][C]38[/C][C]36[/C][C]35.880916022639[/C][C]0.119083977360957[/C][/ROW]
[ROW][C]39[/C][C]29[/C][C]32.7402915768427[/C][C]-3.74029157684269[/C][/ROW]
[ROW][C]40[/C][C]35[/C][C]33.5812766501026[/C][C]1.41872334989736[/C][/ROW]
[ROW][C]41[/C][C]37[/C][C]33.5764128607243[/C][C]3.4235871392757[/C][/ROW]
[ROW][C]42[/C][C]34[/C][C]33.947689616669[/C][C]0.0523103833309814[/C][/ROW]
[ROW][C]43[/C][C]38[/C][C]35.1774544774528[/C][C]2.82254552254719[/C][/ROW]
[ROW][C]44[/C][C]35[/C][C]34.5782940777146[/C][C]0.421705922285446[/C][/ROW]
[ROW][C]45[/C][C]38[/C][C]31.7140767609158[/C][C]6.28592323908418[/C][/ROW]
[ROW][C]46[/C][C]37[/C][C]32.8820468378581[/C][C]4.11795316214187[/C][/ROW]
[ROW][C]47[/C][C]38[/C][C]36.0396483326389[/C][C]1.9603516673611[/C][/ROW]
[ROW][C]48[/C][C]33[/C][C]34.7144264033388[/C][C]-1.71442640333881[/C][/ROW]
[ROW][C]49[/C][C]36[/C][C]37.4491323071283[/C][C]-1.44913230712833[/C][/ROW]
[ROW][C]50[/C][C]38[/C][C]35.5442875030374[/C][C]2.45571249696265[/C][/ROW]
[ROW][C]51[/C][C]32[/C][C]34.7183937958463[/C][C]-2.71839379584627[/C][/ROW]
[ROW][C]52[/C][C]32[/C][C]31.8871986686515[/C][C]0.112801331348532[/C][/ROW]
[ROW][C]53[/C][C]32[/C][C]31.9422087082559[/C][C]0.0577912917441039[/C][/ROW]
[ROW][C]54[/C][C]34[/C][C]35.3141688508368[/C][C]-1.31416885083682[/C][/ROW]
[ROW][C]55[/C][C]32[/C][C]32.642678571368[/C][C]-0.642678571368036[/C][/ROW]
[ROW][C]56[/C][C]37[/C][C]35.4250587805214[/C][C]1.57494121947856[/C][/ROW]
[ROW][C]57[/C][C]39[/C][C]34.7126391127372[/C][C]4.28736088726277[/C][/ROW]
[ROW][C]58[/C][C]29[/C][C]34.2364056748572[/C][C]-5.23640567485724[/C][/ROW]
[ROW][C]59[/C][C]37[/C][C]35.6714481085462[/C][C]1.32855189145379[/C][/ROW]
[ROW][C]60[/C][C]35[/C][C]34.7627485523702[/C][C]0.237251447629787[/C][/ROW]
[ROW][C]61[/C][C]30[/C][C]31.6461693643796[/C][C]-1.64616936437959[/C][/ROW]
[ROW][C]62[/C][C]38[/C][C]36.9885623102784[/C][C]1.01143768972158[/C][/ROW]
[ROW][C]63[/C][C]34[/C][C]33.5598824757384[/C][C]0.440117524261577[/C][/ROW]
[ROW][C]64[/C][C]31[/C][C]33.1303366939673[/C][C]-2.13033669396734[/C][/ROW]
[ROW][C]65[/C][C]34[/C][C]32.4205594722305[/C][C]1.57944052776953[/C][/ROW]
[ROW][C]66[/C][C]35[/C][C]35.9816780593412[/C][C]-0.981678059341177[/C][/ROW]
[ROW][C]67[/C][C]36[/C][C]35.6796916444848[/C][C]0.320308355515235[/C][/ROW]
[ROW][C]68[/C][C]30[/C][C]34.3536284620905[/C][C]-4.35362846209047[/C][/ROW]
[ROW][C]69[/C][C]39[/C][C]35.2125127678047[/C][C]3.78748723219534[/C][/ROW]
[ROW][C]70[/C][C]35[/C][C]35.3928874277433[/C][C]-0.392887427743265[/C][/ROW]
[ROW][C]71[/C][C]38[/C][C]34.1110430594063[/C][C]3.88895694059371[/C][/ROW]
[ROW][C]72[/C][C]31[/C][C]35.2396418633351[/C][C]-4.23964186333511[/C][/ROW]
[ROW][C]73[/C][C]34[/C][C]38.2337667630389[/C][C]-4.2337667630389[/C][/ROW]
[ROW][C]74[/C][C]38[/C][C]39.8455548944861[/C][C]-1.8455548944861[/C][/ROW]
[ROW][C]75[/C][C]34[/C][C]31.1751548191179[/C][C]2.82484518088211[/C][/ROW]
[ROW][C]76[/C][C]39[/C][C]33.1377158007303[/C][C]5.86228419926966[/C][/ROW]
[ROW][C]77[/C][C]37[/C][C]35.0855783320248[/C][C]1.91442166797516[/C][/ROW]
[ROW][C]78[/C][C]34[/C][C]33.4474684480039[/C][C]0.552531551996134[/C][/ROW]
[ROW][C]79[/C][C]28[/C][C]33.4857208542136[/C][C]-5.48572085421365[/C][/ROW]
[ROW][C]80[/C][C]37[/C][C]33.0107898130363[/C][C]3.98921018696367[/C][/ROW]
[ROW][C]81[/C][C]33[/C][C]35.5977632467158[/C][C]-2.59776324671582[/C][/ROW]
[ROW][C]82[/C][C]37[/C][C]36.5067100534973[/C][C]0.493289946502698[/C][/ROW]
[ROW][C]83[/C][C]35[/C][C]36.2759702337542[/C][C]-1.2759702337542[/C][/ROW]
[ROW][C]84[/C][C]37[/C][C]34.3289455893055[/C][C]2.67105441069449[/C][/ROW]
[ROW][C]85[/C][C]32[/C][C]35.4251360265597[/C][C]-3.4251360265597[/C][/ROW]
[ROW][C]86[/C][C]33[/C][C]36.0687658691469[/C][C]-3.06876586914686[/C][/ROW]
[ROW][C]87[/C][C]38[/C][C]34.9062332293243[/C][C]3.09376677067571[/C][/ROW]
[ROW][C]88[/C][C]33[/C][C]33.8264646808247[/C][C]-0.826464680824687[/C][/ROW]
[ROW][C]89[/C][C]29[/C][C]32.651059516631[/C][C]-3.65105951663098[/C][/ROW]
[ROW][C]90[/C][C]33[/C][C]33.4720775201069[/C][C]-0.472077520106867[/C][/ROW]
[ROW][C]91[/C][C]31[/C][C]35.1558373100332[/C][C]-4.15583731003316[/C][/ROW]
[ROW][C]92[/C][C]36[/C][C]34.844860952934[/C][C]1.15513904706598[/C][/ROW]
[ROW][C]93[/C][C]35[/C][C]37.2770241768362[/C][C]-2.27702417683622[/C][/ROW]
[ROW][C]94[/C][C]32[/C][C]32.2560052208674[/C][C]-0.256005220867379[/C][/ROW]
[ROW][C]95[/C][C]29[/C][C]33.0947112040334[/C][C]-4.09471120403338[/C][/ROW]
[ROW][C]96[/C][C]39[/C][C]36.1091844851652[/C][C]2.8908155148348[/C][/ROW]
[ROW][C]97[/C][C]37[/C][C]35.6189250102007[/C][C]1.38107498979929[/C][/ROW]
[ROW][C]98[/C][C]35[/C][C]36.2434925507202[/C][C]-1.24349255072019[/C][/ROW]
[ROW][C]99[/C][C]37[/C][C]33.83317308391[/C][C]3.16682691608996[/C][/ROW]
[ROW][C]100[/C][C]32[/C][C]34.3670377642149[/C][C]-2.36703776421491[/C][/ROW]
[ROW][C]101[/C][C]38[/C][C]34.8959775259978[/C][C]3.10402247400217[/C][/ROW]
[ROW][C]102[/C][C]37[/C][C]34.993320508265[/C][C]2.00667949173502[/C][/ROW]
[ROW][C]103[/C][C]36[/C][C]37.8956226068732[/C][C]-1.89562260687321[/C][/ROW]
[ROW][C]104[/C][C]32[/C][C]33.3188014227697[/C][C]-1.31880142276972[/C][/ROW]
[ROW][C]105[/C][C]33[/C][C]36.700905652611[/C][C]-3.70090565261105[/C][/ROW]
[ROW][C]106[/C][C]40[/C][C]32.2627961088779[/C][C]7.73720389112208[/C][/ROW]
[ROW][C]107[/C][C]38[/C][C]36.1158495615517[/C][C]1.88415043844831[/C][/ROW]
[ROW][C]108[/C][C]41[/C][C]36.613716173172[/C][C]4.38628382682799[/C][/ROW]
[ROW][C]109[/C][C]36[/C][C]35.2380326396785[/C][C]0.761967360321504[/C][/ROW]
[ROW][C]110[/C][C]43[/C][C]37.6982387294883[/C][C]5.30176127051174[/C][/ROW]
[ROW][C]111[/C][C]30[/C][C]33.7195056308877[/C][C]-3.71950563088774[/C][/ROW]
[ROW][C]112[/C][C]31[/C][C]33.3009823190007[/C][C]-2.3009823190007[/C][/ROW]
[ROW][C]113[/C][C]32[/C][C]37.2808994772986[/C][C]-5.28089947729858[/C][/ROW]
[ROW][C]114[/C][C]32[/C][C]32.8112664853632[/C][C]-0.811266485363159[/C][/ROW]
[ROW][C]115[/C][C]37[/C][C]34.5410539231146[/C][C]2.4589460768854[/C][/ROW]
[ROW][C]116[/C][C]37[/C][C]36.485295435933[/C][C]0.514704564066956[/C][/ROW]
[ROW][C]117[/C][C]33[/C][C]35.4052578167386[/C][C]-2.4052578167386[/C][/ROW]
[ROW][C]118[/C][C]34[/C][C]36.0934260433669[/C][C]-2.09342604336689[/C][/ROW]
[ROW][C]119[/C][C]33[/C][C]34.6361356209299[/C][C]-1.63613562092991[/C][/ROW]
[ROW][C]120[/C][C]38[/C][C]36.0511729247528[/C][C]1.94882707524721[/C][/ROW]
[ROW][C]121[/C][C]33[/C][C]35.1278065943278[/C][C]-2.12780659432782[/C][/ROW]
[ROW][C]122[/C][C]31[/C][C]34.3690386113327[/C][C]-3.36903861133268[/C][/ROW]
[ROW][C]123[/C][C]38[/C][C]34.7638540718662[/C][C]3.23614592813384[/C][/ROW]
[ROW][C]124[/C][C]37[/C][C]35.357346222093[/C][C]1.642653777907[/C][/ROW]
[ROW][C]125[/C][C]33[/C][C]32.5974990941124[/C][C]0.40250090588763[/C][/ROW]
[ROW][C]126[/C][C]31[/C][C]34.2661397469868[/C][C]-3.26613974698684[/C][/ROW]
[ROW][C]127[/C][C]39[/C][C]35.1723964543839[/C][C]3.82760354561609[/C][/ROW]
[ROW][C]128[/C][C]44[/C][C]38.5891571566772[/C][C]5.41084284332275[/C][/ROW]
[ROW][C]129[/C][C]33[/C][C]35.6360074598161[/C][C]-2.63600745981613[/C][/ROW]
[ROW][C]130[/C][C]35[/C][C]32.8731819485296[/C][C]2.12681805147038[/C][/ROW]
[ROW][C]131[/C][C]32[/C][C]34.9831224803145[/C][C]-2.98312248031449[/C][/ROW]
[ROW][C]132[/C][C]28[/C][C]31.7716896159572[/C][C]-3.77168961595715[/C][/ROW]
[ROW][C]133[/C][C]40[/C][C]37.2566995662038[/C][C]2.7433004337962[/C][/ROW]
[ROW][C]134[/C][C]27[/C][C]34.0425710173546[/C][C]-7.04257101735457[/C][/ROW]
[ROW][C]135[/C][C]37[/C][C]34.220315853159[/C][C]2.77968414684104[/C][/ROW]
[ROW][C]136[/C][C]32[/C][C]32.1284210367983[/C][C]-0.12842103679832[/C][/ROW]
[ROW][C]137[/C][C]28[/C][C]28.2245478953925[/C][C]-0.224547895392536[/C][/ROW]
[ROW][C]138[/C][C]34[/C][C]34.3956220796437[/C][C]-0.395622079643733[/C][/ROW]
[ROW][C]139[/C][C]30[/C][C]33.4294610419875[/C][C]-3.42946104198748[/C][/ROW]
[ROW][C]140[/C][C]35[/C][C]34.9718109816164[/C][C]0.0281890183836476[/C][/ROW]
[ROW][C]141[/C][C]31[/C][C]32.4997407969558[/C][C]-1.49974079695577[/C][/ROW]
[ROW][C]142[/C][C]32[/C][C]34.2009097724249[/C][C]-2.20090977242489[/C][/ROW]
[ROW][C]143[/C][C]30[/C][C]35.6375809643267[/C][C]-5.63758096432673[/C][/ROW]
[ROW][C]144[/C][C]30[/C][C]35.635699900958[/C][C]-5.63569990095798[/C][/ROW]
[ROW][C]145[/C][C]31[/C][C]31.9925591129686[/C][C]-0.992559112968614[/C][/ROW]
[ROW][C]146[/C][C]40[/C][C]34.8137575101648[/C][C]5.18624248983519[/C][/ROW]
[ROW][C]147[/C][C]32[/C][C]31.5910888747361[/C][C]0.408911125263947[/C][/ROW]
[ROW][C]148[/C][C]36[/C][C]33.0880845432275[/C][C]2.91191545677246[/C][/ROW]
[ROW][C]149[/C][C]32[/C][C]32.8840882054702[/C][C]-0.88408820547024[/C][/ROW]
[ROW][C]150[/C][C]35[/C][C]32.9146453980279[/C][C]2.08535460197213[/C][/ROW]
[ROW][C]151[/C][C]38[/C][C]36.0852156180026[/C][C]1.91478438199739[/C][/ROW]
[ROW][C]152[/C][C]42[/C][C]36.9668163933015[/C][C]5.03318360669852[/C][/ROW]
[ROW][C]153[/C][C]34[/C][C]36.3876187255298[/C][C]-2.38761872552984[/C][/ROW]
[ROW][C]154[/C][C]35[/C][C]36.5170641392601[/C][C]-1.51706413926013[/C][/ROW]
[ROW][C]155[/C][C]35[/C][C]34.4697938077708[/C][C]0.530206192229169[/C][/ROW]
[ROW][C]156[/C][C]33[/C][C]32.1511435288319[/C][C]0.848856471168076[/C][/ROW]
[ROW][C]157[/C][C]36[/C][C]34.3296488869408[/C][C]1.67035111305922[/C][/ROW]
[ROW][C]158[/C][C]32[/C][C]37.3218450365296[/C][C]-5.32184503652956[/C][/ROW]
[ROW][C]159[/C][C]33[/C][C]34.4324472587011[/C][C]-1.43244725870114[/C][/ROW]
[ROW][C]160[/C][C]34[/C][C]33.6083453358468[/C][C]0.391654664153157[/C][/ROW]
[ROW][C]161[/C][C]32[/C][C]33.6827288969893[/C][C]-1.68272889698935[/C][/ROW]
[ROW][C]162[/C][C]34[/C][C]34.4748026275451[/C][C]-0.474802627545076[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147171&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
14135.51686532979375.48313467020632
23936.91628670938412.08371329061588
33033.954453334282-3.95445333428201
43133.459774430119-2.45977443011901
53434.5704451372322-0.570445137232181
63532.54578555958032.45421444041972
73934.39311187144984.60688812855016
83436.5931548971474-2.59315489714736
93634.39170547030351.60829452969647
103736.12321251470760.876787485292358
113834.68390965445653.31609034554352
123634.56256343964451.4374365603555
133835.5169559363842.48304406361598
143937.90291454026931.09708545973073
153335.1764966253888-2.17649662538879
163232.7858099213156-0.785809921315586
173633.23340153383282.76659846616717
183838.0267424313774-0.026742431377373
193937.13804196750731.86195803249274
203235.0164295266936-3.01642952669361
213234.305729591855-2.305729591855
223132.8884012894431-1.8884012894431
233936.96083422581932.03916577418075
243735.95991880680141.04008119319859
253936.07420866758042.92579133241965
264136.36376869516884.63623130483125
273634.20870937019961.79129062980044
283334.3412059331076-1.34120593310761
293333.9545933438076-0.95459334380761
303433.4085926682530.591407331747048
313133.2037136591287-2.20371365912868
322733.8459020995644-6.84590209956437
333733.15901842118033.84098157881968
343435.7669529685665-1.7669529685665
353433.31995274645160.680047253548364
363232.0991487163674-0.0991487163673904
372932.5740937948152-3.5740937948152
383635.8809160226390.119083977360957
392932.7402915768427-3.74029157684269
403533.58127665010261.41872334989736
413733.57641286072433.4235871392757
423433.9476896166690.0523103833309814
433835.17745447745282.82254552254719
443534.57829407771460.421705922285446
453831.71407676091586.28592323908418
463732.88204683785814.11795316214187
473836.03964833263891.9603516673611
483334.7144264033388-1.71442640333881
493637.4491323071283-1.44913230712833
503835.54428750303742.45571249696265
513234.7183937958463-2.71839379584627
523231.88719866865150.112801331348532
533231.94220870825590.0577912917441039
543435.3141688508368-1.31416885083682
553232.642678571368-0.642678571368036
563735.42505878052141.57494121947856
573934.71263911273724.28736088726277
582934.2364056748572-5.23640567485724
593735.67144810854621.32855189145379
603534.76274855237020.237251447629787
613031.6461693643796-1.64616936437959
623836.98856231027841.01143768972158
633433.55988247573840.440117524261577
643133.1303366939673-2.13033669396734
653432.42055947223051.57944052776953
663535.9816780593412-0.981678059341177
673635.67969164448480.320308355515235
683034.3536284620905-4.35362846209047
693935.21251276780473.78748723219534
703535.3928874277433-0.392887427743265
713834.11104305940633.88895694059371
723135.2396418633351-4.23964186333511
733438.2337667630389-4.2337667630389
743839.8455548944861-1.8455548944861
753431.17515481911792.82484518088211
763933.13771580073035.86228419926966
773735.08557833202481.91442166797516
783433.44746844800390.552531551996134
792833.4857208542136-5.48572085421365
803733.01078981303633.98921018696367
813335.5977632467158-2.59776324671582
823736.50671005349730.493289946502698
833536.2759702337542-1.2759702337542
843734.32894558930552.67105441069449
853235.4251360265597-3.4251360265597
863336.0687658691469-3.06876586914686
873834.90623322932433.09376677067571
883333.8264646808247-0.826464680824687
892932.651059516631-3.65105951663098
903333.4720775201069-0.472077520106867
913135.1558373100332-4.15583731003316
923634.8448609529341.15513904706598
933537.2770241768362-2.27702417683622
943232.2560052208674-0.256005220867379
952933.0947112040334-4.09471120403338
963936.10918448516522.8908155148348
973735.61892501020071.38107498979929
983536.2434925507202-1.24349255072019
993733.833173083913.16682691608996
1003234.3670377642149-2.36703776421491
1013834.89597752599783.10402247400217
1023734.9933205082652.00667949173502
1033637.8956226068732-1.89562260687321
1043233.3188014227697-1.31880142276972
1053336.700905652611-3.70090565261105
1064032.26279610887797.73720389112208
1073836.11584956155171.88415043844831
1084136.6137161731724.38628382682799
1093635.23803263967850.761967360321504
1104337.69823872948835.30176127051174
1113033.7195056308877-3.71950563088774
1123133.3009823190007-2.3009823190007
1133237.2808994772986-5.28089947729858
1143232.8112664853632-0.811266485363159
1153734.54105392311462.4589460768854
1163736.4852954359330.514704564066956
1173335.4052578167386-2.4052578167386
1183436.0934260433669-2.09342604336689
1193334.6361356209299-1.63613562092991
1203836.05117292475281.94882707524721
1213335.1278065943278-2.12780659432782
1223134.3690386113327-3.36903861133268
1233834.76385407186623.23614592813384
1243735.3573462220931.642653777907
1253332.59749909411240.40250090588763
1263134.2661397469868-3.26613974698684
1273935.17239645438393.82760354561609
1284438.58915715667725.41084284332275
1293335.6360074598161-2.63600745981613
1303532.87318194852962.12681805147038
1313234.9831224803145-2.98312248031449
1322831.7716896159572-3.77168961595715
1334037.25669956620382.7433004337962
1342734.0425710173546-7.04257101735457
1353734.2203158531592.77968414684104
1363232.1284210367983-0.12842103679832
1372828.2245478953925-0.224547895392536
1383434.3956220796437-0.395622079643733
1393033.4294610419875-3.42946104198748
1403534.97181098161640.0281890183836476
1413132.4997407969558-1.49974079695577
1423234.2009097724249-2.20090977242489
1433035.6375809643267-5.63758096432673
1443035.635699900958-5.63569990095798
1453131.9925591129686-0.992559112968614
1464034.81375751016485.18624248983519
1473231.59108887473610.408911125263947
1483633.08808454322752.91191545677246
1493232.8840882054702-0.88408820547024
1503532.91464539802792.08535460197213
1513836.08521561800261.91478438199739
1524236.96681639330155.03318360669852
1533436.3876187255298-2.38761872552984
1543536.5170641392601-1.51706413926013
1553534.46979380777080.530206192229169
1563332.15114352883190.848856471168076
1573634.32964888694081.67035111305922
1583237.3218450365296-5.32184503652956
1593334.4324472587011-1.43244725870114
1603433.60834533584680.391654664153157
1613233.6827288969893-1.68272889698935
1623434.4748026275451-0.474802627545076







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
220.3268474371674150.653694874334830.673152562832585
230.2503191508760330.5006383017520660.749680849123967
240.1553873471968460.3107746943936910.844612652803154
250.09082459764860710.1816491952972140.909175402351393
260.06706864916010070.1341372983202010.932931350839899
270.03444149483363810.06888298966727620.965558505166362
280.0241358525643930.04827170512878610.975864147435607
290.02235446986093830.04470893972187660.977645530139062
300.01127602486022570.02255204972045140.988723975139774
310.08577874899851840.1715574979970370.914221251001482
320.2071861871939150.4143723743878290.792813812806085
330.2179408967789510.4358817935579010.782059103221049
340.1627030999802080.3254061999604160.837296900019792
350.1597749812710370.3195499625420740.840225018728963
360.1173299369585110.2346598739170220.882670063041489
370.2551007424788660.5102014849577320.744899257521134
380.2168649639998220.4337299279996440.783135036000178
390.1924007405684740.3848014811369480.807599259431526
400.1714151085008950.342830217001790.828584891499105
410.155476280760120.310952561520240.84452371923988
420.1180039963826940.2360079927653880.881996003617306
430.09878073806451310.1975614761290260.901219261935487
440.1201834919641290.2403669839282590.879816508035871
450.2242520514071750.4485041028143510.775747948592825
460.2733906820784530.5467813641569050.726609317921547
470.2352457201108410.4704914402216810.764754279889159
480.2080336653857120.4160673307714240.791966334614288
490.2014367564492310.4028735128984610.798563243550769
500.1760946656614010.3521893313228030.823905334338599
510.1525634482593850.3051268965187710.847436551740615
520.122849530542160.2456990610843210.87715046945784
530.09908947325569320.1981789465113860.900910526744307
540.07958946489326840.1591789297865370.920410535106732
550.06554734219648340.1310946843929670.934452657803516
560.08967512566327050.1793502513265410.910324874336729
570.1020921794436320.2041843588872640.897907820556368
580.1771724541561130.3543449083122270.822827545843887
590.1538779624297230.3077559248594460.846122037570277
600.1248235719341760.2496471438683520.875176428065824
610.1125074600630280.2250149201260570.887492539936972
620.09747811686965520.194956233739310.902521883130345
630.08362665961090860.1672533192218170.916373340389091
640.07286445135320490.145728902706410.927135548646795
650.06029651565793690.1205930313158740.939703484342063
660.05148326778508060.1029665355701610.948516732214919
670.04116176087125360.08232352174250720.958838239128746
680.05004014798823150.1000802959764630.949959852011768
690.054461992787550.10892398557510.94553800721245
700.04196333967272160.08392667934544310.958036660327278
710.04722440460013850.0944488092002770.952775595399861
720.06267388858541230.1253477771708250.937326111414588
730.09525645640911220.1905129128182240.904743543590888
740.09209860924180960.1841972184836190.90790139075819
750.1025777390494980.2051554780989950.897422260950502
760.1805553378609960.3611106757219930.819444662139004
770.1586825336289470.3173650672578950.841317466371053
780.1313472968626630.2626945937253260.868652703137337
790.2102613157351530.4205226314703060.789738684264847
800.2794800128333910.5589600256667820.720519987166609
810.2935443133706020.5870886267412040.706455686629398
820.2598945334976480.5197890669952960.740105466502352
830.2465885254921150.4931770509842310.753411474507885
840.2494023663103930.4988047326207860.750597633689607
850.2745216480371250.549043296074250.725478351962875
860.2909639821448080.5819279642896160.709036017855192
870.3019781631228970.6039563262457930.698021836877103
880.2603384486407110.5206768972814230.739661551359289
890.2847625513246860.5695251026493720.715237448675314
900.2444018530189450.4888037060378910.755598146981055
910.2842074780360580.5684149560721160.715792521963942
920.2586452469447190.5172904938894390.741354753055281
930.2380569902125990.4761139804251990.7619430097874
940.2037156321441210.4074312642882420.796284367855879
950.2290672721879520.4581345443759040.770932727812048
960.2428191680396890.4856383360793780.757180831960311
970.2096813950060480.4193627900120960.790318604993952
980.1904660761725010.3809321523450010.809533923827499
990.1929976775404840.3859953550809680.807002322459516
1000.1792112374384420.3584224748768840.820788762561558
1010.1875809486745770.3751618973491550.812419051325423
1020.1696728017903340.3393456035806690.830327198209666
1030.1471910741064010.2943821482128020.852808925893599
1040.1222030751539760.2444061503079510.877796924846024
1050.1261626826907070.2523253653814140.873837317309293
1060.2976065219782630.5952130439565270.702393478021737
1070.303465126520110.6069302530402190.69653487347989
1080.3918708770600980.7837417541201960.608129122939902
1090.3409050856903870.6818101713807740.659094914309613
1100.5732072072764530.8535855854470950.426792792723547
1110.6291478264025460.7417043471949080.370852173597454
1120.6258319291022390.7483361417955210.374168070897761
1130.6896741526616540.6206516946766920.310325847338346
1140.6408610600169180.7182778799661640.359138939983082
1150.6183679897936990.7632640204126010.381632010206301
1160.6249561737540720.7500876524918550.375043826245928
1170.5924580051188030.8150839897623940.407541994881197
1180.5590841023725120.8818317952549760.440915897627488
1190.5105063533350590.9789872933298810.489493646664941
1200.5553030798492370.8893938403015260.444696920150763
1210.5387213955769510.9225572088460970.461278604423049
1220.5045573892221720.9908852215556550.495442610777828
1230.4610912932174450.9221825864348890.538908706782555
1240.4106482711295690.8212965422591380.589351728870431
1250.3601304450221050.720260890044210.639869554977895
1260.3679498308169030.7358996616338050.632050169183097
1270.4143247225575220.8286494451150450.585675277442478
1280.5303663725374510.9392672549250980.469633627462549
1290.461364845405540.922729690811080.53863515459446
1300.3913031606662560.7826063213325110.608696839333744
1310.3368235560136280.6736471120272550.663176443986372
1320.2984770568691460.5969541137382920.701522943130854
1330.2507136054602840.5014272109205670.749286394539716
1340.4182298794670250.8364597589340510.581770120532975
1350.337709035451330.6754180709026610.66229096454867
1360.3924968046151860.7849936092303730.607503195384814
1370.2913371933495060.5826743866990120.708662806650494
1380.1952121489894780.3904242979789570.804787851010522
1390.418170197806190.836340395612380.58182980219381
1400.5961025960626860.8077948078746280.403897403937314

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
22 & 0.326847437167415 & 0.65369487433483 & 0.673152562832585 \tabularnewline
23 & 0.250319150876033 & 0.500638301752066 & 0.749680849123967 \tabularnewline
24 & 0.155387347196846 & 0.310774694393691 & 0.844612652803154 \tabularnewline
25 & 0.0908245976486071 & 0.181649195297214 & 0.909175402351393 \tabularnewline
26 & 0.0670686491601007 & 0.134137298320201 & 0.932931350839899 \tabularnewline
27 & 0.0344414948336381 & 0.0688829896672762 & 0.965558505166362 \tabularnewline
28 & 0.024135852564393 & 0.0482717051287861 & 0.975864147435607 \tabularnewline
29 & 0.0223544698609383 & 0.0447089397218766 & 0.977645530139062 \tabularnewline
30 & 0.0112760248602257 & 0.0225520497204514 & 0.988723975139774 \tabularnewline
31 & 0.0857787489985184 & 0.171557497997037 & 0.914221251001482 \tabularnewline
32 & 0.207186187193915 & 0.414372374387829 & 0.792813812806085 \tabularnewline
33 & 0.217940896778951 & 0.435881793557901 & 0.782059103221049 \tabularnewline
34 & 0.162703099980208 & 0.325406199960416 & 0.837296900019792 \tabularnewline
35 & 0.159774981271037 & 0.319549962542074 & 0.840225018728963 \tabularnewline
36 & 0.117329936958511 & 0.234659873917022 & 0.882670063041489 \tabularnewline
37 & 0.255100742478866 & 0.510201484957732 & 0.744899257521134 \tabularnewline
38 & 0.216864963999822 & 0.433729927999644 & 0.783135036000178 \tabularnewline
39 & 0.192400740568474 & 0.384801481136948 & 0.807599259431526 \tabularnewline
40 & 0.171415108500895 & 0.34283021700179 & 0.828584891499105 \tabularnewline
41 & 0.15547628076012 & 0.31095256152024 & 0.84452371923988 \tabularnewline
42 & 0.118003996382694 & 0.236007992765388 & 0.881996003617306 \tabularnewline
43 & 0.0987807380645131 & 0.197561476129026 & 0.901219261935487 \tabularnewline
44 & 0.120183491964129 & 0.240366983928259 & 0.879816508035871 \tabularnewline
45 & 0.224252051407175 & 0.448504102814351 & 0.775747948592825 \tabularnewline
46 & 0.273390682078453 & 0.546781364156905 & 0.726609317921547 \tabularnewline
47 & 0.235245720110841 & 0.470491440221681 & 0.764754279889159 \tabularnewline
48 & 0.208033665385712 & 0.416067330771424 & 0.791966334614288 \tabularnewline
49 & 0.201436756449231 & 0.402873512898461 & 0.798563243550769 \tabularnewline
50 & 0.176094665661401 & 0.352189331322803 & 0.823905334338599 \tabularnewline
51 & 0.152563448259385 & 0.305126896518771 & 0.847436551740615 \tabularnewline
52 & 0.12284953054216 & 0.245699061084321 & 0.87715046945784 \tabularnewline
53 & 0.0990894732556932 & 0.198178946511386 & 0.900910526744307 \tabularnewline
54 & 0.0795894648932684 & 0.159178929786537 & 0.920410535106732 \tabularnewline
55 & 0.0655473421964834 & 0.131094684392967 & 0.934452657803516 \tabularnewline
56 & 0.0896751256632705 & 0.179350251326541 & 0.910324874336729 \tabularnewline
57 & 0.102092179443632 & 0.204184358887264 & 0.897907820556368 \tabularnewline
58 & 0.177172454156113 & 0.354344908312227 & 0.822827545843887 \tabularnewline
59 & 0.153877962429723 & 0.307755924859446 & 0.846122037570277 \tabularnewline
60 & 0.124823571934176 & 0.249647143868352 & 0.875176428065824 \tabularnewline
61 & 0.112507460063028 & 0.225014920126057 & 0.887492539936972 \tabularnewline
62 & 0.0974781168696552 & 0.19495623373931 & 0.902521883130345 \tabularnewline
63 & 0.0836266596109086 & 0.167253319221817 & 0.916373340389091 \tabularnewline
64 & 0.0728644513532049 & 0.14572890270641 & 0.927135548646795 \tabularnewline
65 & 0.0602965156579369 & 0.120593031315874 & 0.939703484342063 \tabularnewline
66 & 0.0514832677850806 & 0.102966535570161 & 0.948516732214919 \tabularnewline
67 & 0.0411617608712536 & 0.0823235217425072 & 0.958838239128746 \tabularnewline
68 & 0.0500401479882315 & 0.100080295976463 & 0.949959852011768 \tabularnewline
69 & 0.05446199278755 & 0.1089239855751 & 0.94553800721245 \tabularnewline
70 & 0.0419633396727216 & 0.0839266793454431 & 0.958036660327278 \tabularnewline
71 & 0.0472244046001385 & 0.094448809200277 & 0.952775595399861 \tabularnewline
72 & 0.0626738885854123 & 0.125347777170825 & 0.937326111414588 \tabularnewline
73 & 0.0952564564091122 & 0.190512912818224 & 0.904743543590888 \tabularnewline
74 & 0.0920986092418096 & 0.184197218483619 & 0.90790139075819 \tabularnewline
75 & 0.102577739049498 & 0.205155478098995 & 0.897422260950502 \tabularnewline
76 & 0.180555337860996 & 0.361110675721993 & 0.819444662139004 \tabularnewline
77 & 0.158682533628947 & 0.317365067257895 & 0.841317466371053 \tabularnewline
78 & 0.131347296862663 & 0.262694593725326 & 0.868652703137337 \tabularnewline
79 & 0.210261315735153 & 0.420522631470306 & 0.789738684264847 \tabularnewline
80 & 0.279480012833391 & 0.558960025666782 & 0.720519987166609 \tabularnewline
81 & 0.293544313370602 & 0.587088626741204 & 0.706455686629398 \tabularnewline
82 & 0.259894533497648 & 0.519789066995296 & 0.740105466502352 \tabularnewline
83 & 0.246588525492115 & 0.493177050984231 & 0.753411474507885 \tabularnewline
84 & 0.249402366310393 & 0.498804732620786 & 0.750597633689607 \tabularnewline
85 & 0.274521648037125 & 0.54904329607425 & 0.725478351962875 \tabularnewline
86 & 0.290963982144808 & 0.581927964289616 & 0.709036017855192 \tabularnewline
87 & 0.301978163122897 & 0.603956326245793 & 0.698021836877103 \tabularnewline
88 & 0.260338448640711 & 0.520676897281423 & 0.739661551359289 \tabularnewline
89 & 0.284762551324686 & 0.569525102649372 & 0.715237448675314 \tabularnewline
90 & 0.244401853018945 & 0.488803706037891 & 0.755598146981055 \tabularnewline
91 & 0.284207478036058 & 0.568414956072116 & 0.715792521963942 \tabularnewline
92 & 0.258645246944719 & 0.517290493889439 & 0.741354753055281 \tabularnewline
93 & 0.238056990212599 & 0.476113980425199 & 0.7619430097874 \tabularnewline
94 & 0.203715632144121 & 0.407431264288242 & 0.796284367855879 \tabularnewline
95 & 0.229067272187952 & 0.458134544375904 & 0.770932727812048 \tabularnewline
96 & 0.242819168039689 & 0.485638336079378 & 0.757180831960311 \tabularnewline
97 & 0.209681395006048 & 0.419362790012096 & 0.790318604993952 \tabularnewline
98 & 0.190466076172501 & 0.380932152345001 & 0.809533923827499 \tabularnewline
99 & 0.192997677540484 & 0.385995355080968 & 0.807002322459516 \tabularnewline
100 & 0.179211237438442 & 0.358422474876884 & 0.820788762561558 \tabularnewline
101 & 0.187580948674577 & 0.375161897349155 & 0.812419051325423 \tabularnewline
102 & 0.169672801790334 & 0.339345603580669 & 0.830327198209666 \tabularnewline
103 & 0.147191074106401 & 0.294382148212802 & 0.852808925893599 \tabularnewline
104 & 0.122203075153976 & 0.244406150307951 & 0.877796924846024 \tabularnewline
105 & 0.126162682690707 & 0.252325365381414 & 0.873837317309293 \tabularnewline
106 & 0.297606521978263 & 0.595213043956527 & 0.702393478021737 \tabularnewline
107 & 0.30346512652011 & 0.606930253040219 & 0.69653487347989 \tabularnewline
108 & 0.391870877060098 & 0.783741754120196 & 0.608129122939902 \tabularnewline
109 & 0.340905085690387 & 0.681810171380774 & 0.659094914309613 \tabularnewline
110 & 0.573207207276453 & 0.853585585447095 & 0.426792792723547 \tabularnewline
111 & 0.629147826402546 & 0.741704347194908 & 0.370852173597454 \tabularnewline
112 & 0.625831929102239 & 0.748336141795521 & 0.374168070897761 \tabularnewline
113 & 0.689674152661654 & 0.620651694676692 & 0.310325847338346 \tabularnewline
114 & 0.640861060016918 & 0.718277879966164 & 0.359138939983082 \tabularnewline
115 & 0.618367989793699 & 0.763264020412601 & 0.381632010206301 \tabularnewline
116 & 0.624956173754072 & 0.750087652491855 & 0.375043826245928 \tabularnewline
117 & 0.592458005118803 & 0.815083989762394 & 0.407541994881197 \tabularnewline
118 & 0.559084102372512 & 0.881831795254976 & 0.440915897627488 \tabularnewline
119 & 0.510506353335059 & 0.978987293329881 & 0.489493646664941 \tabularnewline
120 & 0.555303079849237 & 0.889393840301526 & 0.444696920150763 \tabularnewline
121 & 0.538721395576951 & 0.922557208846097 & 0.461278604423049 \tabularnewline
122 & 0.504557389222172 & 0.990885221555655 & 0.495442610777828 \tabularnewline
123 & 0.461091293217445 & 0.922182586434889 & 0.538908706782555 \tabularnewline
124 & 0.410648271129569 & 0.821296542259138 & 0.589351728870431 \tabularnewline
125 & 0.360130445022105 & 0.72026089004421 & 0.639869554977895 \tabularnewline
126 & 0.367949830816903 & 0.735899661633805 & 0.632050169183097 \tabularnewline
127 & 0.414324722557522 & 0.828649445115045 & 0.585675277442478 \tabularnewline
128 & 0.530366372537451 & 0.939267254925098 & 0.469633627462549 \tabularnewline
129 & 0.46136484540554 & 0.92272969081108 & 0.53863515459446 \tabularnewline
130 & 0.391303160666256 & 0.782606321332511 & 0.608696839333744 \tabularnewline
131 & 0.336823556013628 & 0.673647112027255 & 0.663176443986372 \tabularnewline
132 & 0.298477056869146 & 0.596954113738292 & 0.701522943130854 \tabularnewline
133 & 0.250713605460284 & 0.501427210920567 & 0.749286394539716 \tabularnewline
134 & 0.418229879467025 & 0.836459758934051 & 0.581770120532975 \tabularnewline
135 & 0.33770903545133 & 0.675418070902661 & 0.66229096454867 \tabularnewline
136 & 0.392496804615186 & 0.784993609230373 & 0.607503195384814 \tabularnewline
137 & 0.291337193349506 & 0.582674386699012 & 0.708662806650494 \tabularnewline
138 & 0.195212148989478 & 0.390424297978957 & 0.804787851010522 \tabularnewline
139 & 0.41817019780619 & 0.83634039561238 & 0.58182980219381 \tabularnewline
140 & 0.596102596062686 & 0.807794807874628 & 0.403897403937314 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147171&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]22[/C][C]0.326847437167415[/C][C]0.65369487433483[/C][C]0.673152562832585[/C][/ROW]
[ROW][C]23[/C][C]0.250319150876033[/C][C]0.500638301752066[/C][C]0.749680849123967[/C][/ROW]
[ROW][C]24[/C][C]0.155387347196846[/C][C]0.310774694393691[/C][C]0.844612652803154[/C][/ROW]
[ROW][C]25[/C][C]0.0908245976486071[/C][C]0.181649195297214[/C][C]0.909175402351393[/C][/ROW]
[ROW][C]26[/C][C]0.0670686491601007[/C][C]0.134137298320201[/C][C]0.932931350839899[/C][/ROW]
[ROW][C]27[/C][C]0.0344414948336381[/C][C]0.0688829896672762[/C][C]0.965558505166362[/C][/ROW]
[ROW][C]28[/C][C]0.024135852564393[/C][C]0.0482717051287861[/C][C]0.975864147435607[/C][/ROW]
[ROW][C]29[/C][C]0.0223544698609383[/C][C]0.0447089397218766[/C][C]0.977645530139062[/C][/ROW]
[ROW][C]30[/C][C]0.0112760248602257[/C][C]0.0225520497204514[/C][C]0.988723975139774[/C][/ROW]
[ROW][C]31[/C][C]0.0857787489985184[/C][C]0.171557497997037[/C][C]0.914221251001482[/C][/ROW]
[ROW][C]32[/C][C]0.207186187193915[/C][C]0.414372374387829[/C][C]0.792813812806085[/C][/ROW]
[ROW][C]33[/C][C]0.217940896778951[/C][C]0.435881793557901[/C][C]0.782059103221049[/C][/ROW]
[ROW][C]34[/C][C]0.162703099980208[/C][C]0.325406199960416[/C][C]0.837296900019792[/C][/ROW]
[ROW][C]35[/C][C]0.159774981271037[/C][C]0.319549962542074[/C][C]0.840225018728963[/C][/ROW]
[ROW][C]36[/C][C]0.117329936958511[/C][C]0.234659873917022[/C][C]0.882670063041489[/C][/ROW]
[ROW][C]37[/C][C]0.255100742478866[/C][C]0.510201484957732[/C][C]0.744899257521134[/C][/ROW]
[ROW][C]38[/C][C]0.216864963999822[/C][C]0.433729927999644[/C][C]0.783135036000178[/C][/ROW]
[ROW][C]39[/C][C]0.192400740568474[/C][C]0.384801481136948[/C][C]0.807599259431526[/C][/ROW]
[ROW][C]40[/C][C]0.171415108500895[/C][C]0.34283021700179[/C][C]0.828584891499105[/C][/ROW]
[ROW][C]41[/C][C]0.15547628076012[/C][C]0.31095256152024[/C][C]0.84452371923988[/C][/ROW]
[ROW][C]42[/C][C]0.118003996382694[/C][C]0.236007992765388[/C][C]0.881996003617306[/C][/ROW]
[ROW][C]43[/C][C]0.0987807380645131[/C][C]0.197561476129026[/C][C]0.901219261935487[/C][/ROW]
[ROW][C]44[/C][C]0.120183491964129[/C][C]0.240366983928259[/C][C]0.879816508035871[/C][/ROW]
[ROW][C]45[/C][C]0.224252051407175[/C][C]0.448504102814351[/C][C]0.775747948592825[/C][/ROW]
[ROW][C]46[/C][C]0.273390682078453[/C][C]0.546781364156905[/C][C]0.726609317921547[/C][/ROW]
[ROW][C]47[/C][C]0.235245720110841[/C][C]0.470491440221681[/C][C]0.764754279889159[/C][/ROW]
[ROW][C]48[/C][C]0.208033665385712[/C][C]0.416067330771424[/C][C]0.791966334614288[/C][/ROW]
[ROW][C]49[/C][C]0.201436756449231[/C][C]0.402873512898461[/C][C]0.798563243550769[/C][/ROW]
[ROW][C]50[/C][C]0.176094665661401[/C][C]0.352189331322803[/C][C]0.823905334338599[/C][/ROW]
[ROW][C]51[/C][C]0.152563448259385[/C][C]0.305126896518771[/C][C]0.847436551740615[/C][/ROW]
[ROW][C]52[/C][C]0.12284953054216[/C][C]0.245699061084321[/C][C]0.87715046945784[/C][/ROW]
[ROW][C]53[/C][C]0.0990894732556932[/C][C]0.198178946511386[/C][C]0.900910526744307[/C][/ROW]
[ROW][C]54[/C][C]0.0795894648932684[/C][C]0.159178929786537[/C][C]0.920410535106732[/C][/ROW]
[ROW][C]55[/C][C]0.0655473421964834[/C][C]0.131094684392967[/C][C]0.934452657803516[/C][/ROW]
[ROW][C]56[/C][C]0.0896751256632705[/C][C]0.179350251326541[/C][C]0.910324874336729[/C][/ROW]
[ROW][C]57[/C][C]0.102092179443632[/C][C]0.204184358887264[/C][C]0.897907820556368[/C][/ROW]
[ROW][C]58[/C][C]0.177172454156113[/C][C]0.354344908312227[/C][C]0.822827545843887[/C][/ROW]
[ROW][C]59[/C][C]0.153877962429723[/C][C]0.307755924859446[/C][C]0.846122037570277[/C][/ROW]
[ROW][C]60[/C][C]0.124823571934176[/C][C]0.249647143868352[/C][C]0.875176428065824[/C][/ROW]
[ROW][C]61[/C][C]0.112507460063028[/C][C]0.225014920126057[/C][C]0.887492539936972[/C][/ROW]
[ROW][C]62[/C][C]0.0974781168696552[/C][C]0.19495623373931[/C][C]0.902521883130345[/C][/ROW]
[ROW][C]63[/C][C]0.0836266596109086[/C][C]0.167253319221817[/C][C]0.916373340389091[/C][/ROW]
[ROW][C]64[/C][C]0.0728644513532049[/C][C]0.14572890270641[/C][C]0.927135548646795[/C][/ROW]
[ROW][C]65[/C][C]0.0602965156579369[/C][C]0.120593031315874[/C][C]0.939703484342063[/C][/ROW]
[ROW][C]66[/C][C]0.0514832677850806[/C][C]0.102966535570161[/C][C]0.948516732214919[/C][/ROW]
[ROW][C]67[/C][C]0.0411617608712536[/C][C]0.0823235217425072[/C][C]0.958838239128746[/C][/ROW]
[ROW][C]68[/C][C]0.0500401479882315[/C][C]0.100080295976463[/C][C]0.949959852011768[/C][/ROW]
[ROW][C]69[/C][C]0.05446199278755[/C][C]0.1089239855751[/C][C]0.94553800721245[/C][/ROW]
[ROW][C]70[/C][C]0.0419633396727216[/C][C]0.0839266793454431[/C][C]0.958036660327278[/C][/ROW]
[ROW][C]71[/C][C]0.0472244046001385[/C][C]0.094448809200277[/C][C]0.952775595399861[/C][/ROW]
[ROW][C]72[/C][C]0.0626738885854123[/C][C]0.125347777170825[/C][C]0.937326111414588[/C][/ROW]
[ROW][C]73[/C][C]0.0952564564091122[/C][C]0.190512912818224[/C][C]0.904743543590888[/C][/ROW]
[ROW][C]74[/C][C]0.0920986092418096[/C][C]0.184197218483619[/C][C]0.90790139075819[/C][/ROW]
[ROW][C]75[/C][C]0.102577739049498[/C][C]0.205155478098995[/C][C]0.897422260950502[/C][/ROW]
[ROW][C]76[/C][C]0.180555337860996[/C][C]0.361110675721993[/C][C]0.819444662139004[/C][/ROW]
[ROW][C]77[/C][C]0.158682533628947[/C][C]0.317365067257895[/C][C]0.841317466371053[/C][/ROW]
[ROW][C]78[/C][C]0.131347296862663[/C][C]0.262694593725326[/C][C]0.868652703137337[/C][/ROW]
[ROW][C]79[/C][C]0.210261315735153[/C][C]0.420522631470306[/C][C]0.789738684264847[/C][/ROW]
[ROW][C]80[/C][C]0.279480012833391[/C][C]0.558960025666782[/C][C]0.720519987166609[/C][/ROW]
[ROW][C]81[/C][C]0.293544313370602[/C][C]0.587088626741204[/C][C]0.706455686629398[/C][/ROW]
[ROW][C]82[/C][C]0.259894533497648[/C][C]0.519789066995296[/C][C]0.740105466502352[/C][/ROW]
[ROW][C]83[/C][C]0.246588525492115[/C][C]0.493177050984231[/C][C]0.753411474507885[/C][/ROW]
[ROW][C]84[/C][C]0.249402366310393[/C][C]0.498804732620786[/C][C]0.750597633689607[/C][/ROW]
[ROW][C]85[/C][C]0.274521648037125[/C][C]0.54904329607425[/C][C]0.725478351962875[/C][/ROW]
[ROW][C]86[/C][C]0.290963982144808[/C][C]0.581927964289616[/C][C]0.709036017855192[/C][/ROW]
[ROW][C]87[/C][C]0.301978163122897[/C][C]0.603956326245793[/C][C]0.698021836877103[/C][/ROW]
[ROW][C]88[/C][C]0.260338448640711[/C][C]0.520676897281423[/C][C]0.739661551359289[/C][/ROW]
[ROW][C]89[/C][C]0.284762551324686[/C][C]0.569525102649372[/C][C]0.715237448675314[/C][/ROW]
[ROW][C]90[/C][C]0.244401853018945[/C][C]0.488803706037891[/C][C]0.755598146981055[/C][/ROW]
[ROW][C]91[/C][C]0.284207478036058[/C][C]0.568414956072116[/C][C]0.715792521963942[/C][/ROW]
[ROW][C]92[/C][C]0.258645246944719[/C][C]0.517290493889439[/C][C]0.741354753055281[/C][/ROW]
[ROW][C]93[/C][C]0.238056990212599[/C][C]0.476113980425199[/C][C]0.7619430097874[/C][/ROW]
[ROW][C]94[/C][C]0.203715632144121[/C][C]0.407431264288242[/C][C]0.796284367855879[/C][/ROW]
[ROW][C]95[/C][C]0.229067272187952[/C][C]0.458134544375904[/C][C]0.770932727812048[/C][/ROW]
[ROW][C]96[/C][C]0.242819168039689[/C][C]0.485638336079378[/C][C]0.757180831960311[/C][/ROW]
[ROW][C]97[/C][C]0.209681395006048[/C][C]0.419362790012096[/C][C]0.790318604993952[/C][/ROW]
[ROW][C]98[/C][C]0.190466076172501[/C][C]0.380932152345001[/C][C]0.809533923827499[/C][/ROW]
[ROW][C]99[/C][C]0.192997677540484[/C][C]0.385995355080968[/C][C]0.807002322459516[/C][/ROW]
[ROW][C]100[/C][C]0.179211237438442[/C][C]0.358422474876884[/C][C]0.820788762561558[/C][/ROW]
[ROW][C]101[/C][C]0.187580948674577[/C][C]0.375161897349155[/C][C]0.812419051325423[/C][/ROW]
[ROW][C]102[/C][C]0.169672801790334[/C][C]0.339345603580669[/C][C]0.830327198209666[/C][/ROW]
[ROW][C]103[/C][C]0.147191074106401[/C][C]0.294382148212802[/C][C]0.852808925893599[/C][/ROW]
[ROW][C]104[/C][C]0.122203075153976[/C][C]0.244406150307951[/C][C]0.877796924846024[/C][/ROW]
[ROW][C]105[/C][C]0.126162682690707[/C][C]0.252325365381414[/C][C]0.873837317309293[/C][/ROW]
[ROW][C]106[/C][C]0.297606521978263[/C][C]0.595213043956527[/C][C]0.702393478021737[/C][/ROW]
[ROW][C]107[/C][C]0.30346512652011[/C][C]0.606930253040219[/C][C]0.69653487347989[/C][/ROW]
[ROW][C]108[/C][C]0.391870877060098[/C][C]0.783741754120196[/C][C]0.608129122939902[/C][/ROW]
[ROW][C]109[/C][C]0.340905085690387[/C][C]0.681810171380774[/C][C]0.659094914309613[/C][/ROW]
[ROW][C]110[/C][C]0.573207207276453[/C][C]0.853585585447095[/C][C]0.426792792723547[/C][/ROW]
[ROW][C]111[/C][C]0.629147826402546[/C][C]0.741704347194908[/C][C]0.370852173597454[/C][/ROW]
[ROW][C]112[/C][C]0.625831929102239[/C][C]0.748336141795521[/C][C]0.374168070897761[/C][/ROW]
[ROW][C]113[/C][C]0.689674152661654[/C][C]0.620651694676692[/C][C]0.310325847338346[/C][/ROW]
[ROW][C]114[/C][C]0.640861060016918[/C][C]0.718277879966164[/C][C]0.359138939983082[/C][/ROW]
[ROW][C]115[/C][C]0.618367989793699[/C][C]0.763264020412601[/C][C]0.381632010206301[/C][/ROW]
[ROW][C]116[/C][C]0.624956173754072[/C][C]0.750087652491855[/C][C]0.375043826245928[/C][/ROW]
[ROW][C]117[/C][C]0.592458005118803[/C][C]0.815083989762394[/C][C]0.407541994881197[/C][/ROW]
[ROW][C]118[/C][C]0.559084102372512[/C][C]0.881831795254976[/C][C]0.440915897627488[/C][/ROW]
[ROW][C]119[/C][C]0.510506353335059[/C][C]0.978987293329881[/C][C]0.489493646664941[/C][/ROW]
[ROW][C]120[/C][C]0.555303079849237[/C][C]0.889393840301526[/C][C]0.444696920150763[/C][/ROW]
[ROW][C]121[/C][C]0.538721395576951[/C][C]0.922557208846097[/C][C]0.461278604423049[/C][/ROW]
[ROW][C]122[/C][C]0.504557389222172[/C][C]0.990885221555655[/C][C]0.495442610777828[/C][/ROW]
[ROW][C]123[/C][C]0.461091293217445[/C][C]0.922182586434889[/C][C]0.538908706782555[/C][/ROW]
[ROW][C]124[/C][C]0.410648271129569[/C][C]0.821296542259138[/C][C]0.589351728870431[/C][/ROW]
[ROW][C]125[/C][C]0.360130445022105[/C][C]0.72026089004421[/C][C]0.639869554977895[/C][/ROW]
[ROW][C]126[/C][C]0.367949830816903[/C][C]0.735899661633805[/C][C]0.632050169183097[/C][/ROW]
[ROW][C]127[/C][C]0.414324722557522[/C][C]0.828649445115045[/C][C]0.585675277442478[/C][/ROW]
[ROW][C]128[/C][C]0.530366372537451[/C][C]0.939267254925098[/C][C]0.469633627462549[/C][/ROW]
[ROW][C]129[/C][C]0.46136484540554[/C][C]0.92272969081108[/C][C]0.53863515459446[/C][/ROW]
[ROW][C]130[/C][C]0.391303160666256[/C][C]0.782606321332511[/C][C]0.608696839333744[/C][/ROW]
[ROW][C]131[/C][C]0.336823556013628[/C][C]0.673647112027255[/C][C]0.663176443986372[/C][/ROW]
[ROW][C]132[/C][C]0.298477056869146[/C][C]0.596954113738292[/C][C]0.701522943130854[/C][/ROW]
[ROW][C]133[/C][C]0.250713605460284[/C][C]0.501427210920567[/C][C]0.749286394539716[/C][/ROW]
[ROW][C]134[/C][C]0.418229879467025[/C][C]0.836459758934051[/C][C]0.581770120532975[/C][/ROW]
[ROW][C]135[/C][C]0.33770903545133[/C][C]0.675418070902661[/C][C]0.66229096454867[/C][/ROW]
[ROW][C]136[/C][C]0.392496804615186[/C][C]0.784993609230373[/C][C]0.607503195384814[/C][/ROW]
[ROW][C]137[/C][C]0.291337193349506[/C][C]0.582674386699012[/C][C]0.708662806650494[/C][/ROW]
[ROW][C]138[/C][C]0.195212148989478[/C][C]0.390424297978957[/C][C]0.804787851010522[/C][/ROW]
[ROW][C]139[/C][C]0.41817019780619[/C][C]0.83634039561238[/C][C]0.58182980219381[/C][/ROW]
[ROW][C]140[/C][C]0.596102596062686[/C][C]0.807794807874628[/C][C]0.403897403937314[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147171&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
220.3268474371674150.653694874334830.673152562832585
230.2503191508760330.5006383017520660.749680849123967
240.1553873471968460.3107746943936910.844612652803154
250.09082459764860710.1816491952972140.909175402351393
260.06706864916010070.1341372983202010.932931350839899
270.03444149483363810.06888298966727620.965558505166362
280.0241358525643930.04827170512878610.975864147435607
290.02235446986093830.04470893972187660.977645530139062
300.01127602486022570.02255204972045140.988723975139774
310.08577874899851840.1715574979970370.914221251001482
320.2071861871939150.4143723743878290.792813812806085
330.2179408967789510.4358817935579010.782059103221049
340.1627030999802080.3254061999604160.837296900019792
350.1597749812710370.3195499625420740.840225018728963
360.1173299369585110.2346598739170220.882670063041489
370.2551007424788660.5102014849577320.744899257521134
380.2168649639998220.4337299279996440.783135036000178
390.1924007405684740.3848014811369480.807599259431526
400.1714151085008950.342830217001790.828584891499105
410.155476280760120.310952561520240.84452371923988
420.1180039963826940.2360079927653880.881996003617306
430.09878073806451310.1975614761290260.901219261935487
440.1201834919641290.2403669839282590.879816508035871
450.2242520514071750.4485041028143510.775747948592825
460.2733906820784530.5467813641569050.726609317921547
470.2352457201108410.4704914402216810.764754279889159
480.2080336653857120.4160673307714240.791966334614288
490.2014367564492310.4028735128984610.798563243550769
500.1760946656614010.3521893313228030.823905334338599
510.1525634482593850.3051268965187710.847436551740615
520.122849530542160.2456990610843210.87715046945784
530.09908947325569320.1981789465113860.900910526744307
540.07958946489326840.1591789297865370.920410535106732
550.06554734219648340.1310946843929670.934452657803516
560.08967512566327050.1793502513265410.910324874336729
570.1020921794436320.2041843588872640.897907820556368
580.1771724541561130.3543449083122270.822827545843887
590.1538779624297230.3077559248594460.846122037570277
600.1248235719341760.2496471438683520.875176428065824
610.1125074600630280.2250149201260570.887492539936972
620.09747811686965520.194956233739310.902521883130345
630.08362665961090860.1672533192218170.916373340389091
640.07286445135320490.145728902706410.927135548646795
650.06029651565793690.1205930313158740.939703484342063
660.05148326778508060.1029665355701610.948516732214919
670.04116176087125360.08232352174250720.958838239128746
680.05004014798823150.1000802959764630.949959852011768
690.054461992787550.10892398557510.94553800721245
700.04196333967272160.08392667934544310.958036660327278
710.04722440460013850.0944488092002770.952775595399861
720.06267388858541230.1253477771708250.937326111414588
730.09525645640911220.1905129128182240.904743543590888
740.09209860924180960.1841972184836190.90790139075819
750.1025777390494980.2051554780989950.897422260950502
760.1805553378609960.3611106757219930.819444662139004
770.1586825336289470.3173650672578950.841317466371053
780.1313472968626630.2626945937253260.868652703137337
790.2102613157351530.4205226314703060.789738684264847
800.2794800128333910.5589600256667820.720519987166609
810.2935443133706020.5870886267412040.706455686629398
820.2598945334976480.5197890669952960.740105466502352
830.2465885254921150.4931770509842310.753411474507885
840.2494023663103930.4988047326207860.750597633689607
850.2745216480371250.549043296074250.725478351962875
860.2909639821448080.5819279642896160.709036017855192
870.3019781631228970.6039563262457930.698021836877103
880.2603384486407110.5206768972814230.739661551359289
890.2847625513246860.5695251026493720.715237448675314
900.2444018530189450.4888037060378910.755598146981055
910.2842074780360580.5684149560721160.715792521963942
920.2586452469447190.5172904938894390.741354753055281
930.2380569902125990.4761139804251990.7619430097874
940.2037156321441210.4074312642882420.796284367855879
950.2290672721879520.4581345443759040.770932727812048
960.2428191680396890.4856383360793780.757180831960311
970.2096813950060480.4193627900120960.790318604993952
980.1904660761725010.3809321523450010.809533923827499
990.1929976775404840.3859953550809680.807002322459516
1000.1792112374384420.3584224748768840.820788762561558
1010.1875809486745770.3751618973491550.812419051325423
1020.1696728017903340.3393456035806690.830327198209666
1030.1471910741064010.2943821482128020.852808925893599
1040.1222030751539760.2444061503079510.877796924846024
1050.1261626826907070.2523253653814140.873837317309293
1060.2976065219782630.5952130439565270.702393478021737
1070.303465126520110.6069302530402190.69653487347989
1080.3918708770600980.7837417541201960.608129122939902
1090.3409050856903870.6818101713807740.659094914309613
1100.5732072072764530.8535855854470950.426792792723547
1110.6291478264025460.7417043471949080.370852173597454
1120.6258319291022390.7483361417955210.374168070897761
1130.6896741526616540.6206516946766920.310325847338346
1140.6408610600169180.7182778799661640.359138939983082
1150.6183679897936990.7632640204126010.381632010206301
1160.6249561737540720.7500876524918550.375043826245928
1170.5924580051188030.8150839897623940.407541994881197
1180.5590841023725120.8818317952549760.440915897627488
1190.5105063533350590.9789872933298810.489493646664941
1200.5553030798492370.8893938403015260.444696920150763
1210.5387213955769510.9225572088460970.461278604423049
1220.5045573892221720.9908852215556550.495442610777828
1230.4610912932174450.9221825864348890.538908706782555
1240.4106482711295690.8212965422591380.589351728870431
1250.3601304450221050.720260890044210.639869554977895
1260.3679498308169030.7358996616338050.632050169183097
1270.4143247225575220.8286494451150450.585675277442478
1280.5303663725374510.9392672549250980.469633627462549
1290.461364845405540.922729690811080.53863515459446
1300.3913031606662560.7826063213325110.608696839333744
1310.3368235560136280.6736471120272550.663176443986372
1320.2984770568691460.5969541137382920.701522943130854
1330.2507136054602840.5014272109205670.749286394539716
1340.4182298794670250.8364597589340510.581770120532975
1350.337709035451330.6754180709026610.66229096454867
1360.3924968046151860.7849936092303730.607503195384814
1370.2913371933495060.5826743866990120.708662806650494
1380.1952121489894780.3904242979789570.804787851010522
1390.418170197806190.836340395612380.58182980219381
1400.5961025960626860.8077948078746280.403897403937314







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level30.0252100840336134OK
10% type I error level70.0588235294117647OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 3 & 0.0252100840336134 & OK \tabularnewline
10% type I error level & 7 & 0.0588235294117647 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147171&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]3[/C][C]0.0252100840336134[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]7[/C][C]0.0588235294117647[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147171&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147171&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level30.0252100840336134OK
10% type I error level70.0588235294117647OK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}