Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 22 Dec 2011 17:50:20 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/22/t13245942368bux1mflqatg6lb.htm/, Retrieved Thu, 31 Oct 2024 23:02:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=160051, Retrieved Thu, 31 Oct 2024 23:02:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2011-12-22 22:50:20] [c7041fab4904771a5085f5eb0f28763f] [Current]
Feedback Forum

Post a new message
Dataseries X:
4581945	1.21	2.50	2.47	1.79	1.79	9656062
3874038	1.22	2.51	2.51	1.78	1.85	8063164
4086290	1.22	2.45	2.51	1.80	1.87	8514407
4364364	1.22	2.46	2.51	1.81	1.86	8829978
3793586	1.21	2.44	2.49	1.82	1.86	7920583
4533914	1.23	2.47	2.52	1.76	1.87	9385093
4823043	1.22	2.47	2.51	1.78	1.86	9898542
3981535	1.22	2.45	2.54	1.80	1.86	8322279
4746356	1.22	2.47	2.53	1.73	1.88	9837172
5284534	1.22	2.48	2.55	1.75	1.90	10839587
4264830	1.23	2.45	2.50	1.80	1.86	8890176
3924674	1.22	2.46	2.59	1.79	1.86	8194413
3734753	1.21	2.45	2.56	1.78	1.84	7722000
3762290	1.22	2.43	2.59	1.80	1.82	7769178
3609739	1.21	2.44	2.58	1.79	1.80	7449343
3877594	1.22	2.41	2.62	1.76	1.84	7929370
3636415	1.21	2.41	2.59	1.76	1.83	7473017
3578195	1.20	2.41	2.58	1.77	1.79	7472424
3604342	1.18	2.41	2.57	1.76	1.81	7292436
3459513	1.19	2.38	2.57	1.74	1.78	7215340
3366571	1.20	2.41	2.55	1.75	1.74	7216230
3371277	1.19	2.39	2.51	1.70	1.74	7378041
3724848	1.19	2.37	2.50	1.71	1.77	7877412
3350830	1.20	2.40	2.59	1.77	1.76	7158125
3305159	1.21	2.35	2.63	1.77	1.74	7137912
3390736	1.20	2.35	2.63	1.77	1.77	7290803
3349758	1.20	2.33	2.61	1.77	1.75	7425266
3253655	1.20	2.35	2.64	1.77	1.78	7450430
3734250	1.21	2.36	2.67	1.77	1.78	9214042
3455433	1.21	2.41	2.63	1.79	1.79	8158864
2966726	1.21	2.37	2.58	1.79	1.78	6515759
2993716	1.20	2.34	2.56	1.76	1.74	6308487
3009320	1.21	2.37	2.57	1.76	1.76	6366367
3169713	1.21	2.34	2.55	1.78	1.76	6770097
3170061	1.21	2.34	2.58	1.81	1.77	6700697
3368934	1.20	2.33	2.50	1.77	1.84	7140792
3292638	1.19	2.33	2.56	1.75	1.85	6891715
3337344	1.20	2.34	2.62	1.77	1.84	7057521
3208306	1.20	2.37	2.71	1.72	1.83	6806593
3359130	1.20	2.38	2.74	1.80	1.83	7068776
3223078	1.22	2.41	2.76	1.77	1.82	6868085
3437159	1.22	2.39	2.66	1.80	1.84	7245015
3400156	1.21	2.38	2.61	1.79	1.84	7160726
3657576	1.25	2.45	2.68	1.82	1.65	7927365
3765613	1.25	2.41	2.70	1.81	1.64	8275238
3481921	1.27	2.46	2.70	1.80	1.66	7510220
3604800	1.28	2.40	2.72	1.76	1.65	7751398
3981340	1.27	2.31	2.77	1.73	1.64	8701633
3734078	1.28	2.42	2.76	1.77	1.65	8164755
4018173	1.29	2.46	2.72	1.78	1.65	8534307
3887417	1.26	2.45	2.69	1.77	1.68	8333017
3919880	1.27	2.48	2.70	1.75	1.66	8568251
4014466	1.25	2.45	2.69	1.75	1.66	8613013
4197758	1.27	2.45	2.66	1.78	1.66	9139357
3896531	1.27	2.43	2.74	1.76	1.63	8385716
3964742	1.27	2.44	2.76	1.73	1.64	8451237
4201847	1.29	2.46	2.79	1.77	1.66	9033401
4050512	1.26	2.48	2.78	1.78	1.68	8565930
3997402	1.27	2.52	2.80	1.80	1.68	8562307
4314479	1.27	2.51	2.78	1.81	1.69	9255216
4925744	1.28	2.50	2.76	1.79	1.71	10502760
5130631	1.28	2.50	2.73	1.79	1.71	10855161
4444855	1.28	2.53	2.72	1.79	1.69	9473338
3967319	1.27	2.54	2.73	1.76	1.68	8521439
3931250	1.24	2.54	2.74	1.78	1.66	8169912
4235952	1.25	2.53	2.72	1.81	1.65	8705590
4169219	1.25	2.48	2.71	1.82	1.67	8600302
3779064	1.24	2.47	2.66	1.80	1.64	7884570
3558810	1.24	2.44	2.68	1.78	1.62	7509946
3699466	1.23	2.44	2.67	1.76	1.62	7796000
3650693	1.24	2.43	2.68	1.76	1.64	7651158
3525633	1.23	2.41	2.67	1.76	1.60	7430052
3470276	1.24	2.42	2.71	1.77	1.60	7581024
3859094	1.24	2.43	2.69	1.78	1.60	8431470
3661155	1.24	2.42	2.64	1.78	1.59	7903994
3356365	1.25	2.46	2.66	1.79	1.63	7462642
3344440	1.26	2.47	2.70	1.84	1.65	7424743
3338684	1.26	2.46	2.69	1.91	1.65	7480504
3404294	1.27	2.43	2.71	1.92	1.64	7863944
3289319	1.26	2.46	2.74	1.86	1.64	7703698
3469252	1.28	2.46	2.78	1.76	1.67	8508132
3571850	1.29	2.47	2.79	1.80	1.67	8933008
3639914	1.28	2.48	2.75	1.81	1.70	8491850
3091730	1.27	2.43	2.69	1.80	1.64	6940275
3078149	1.30	2.42	2.69	1.81	1.66	6917191
3188115	1.30	2.45	2.69	1.80	1.66	7096722
3246082	1.28	2.43	2.72	1.80	1.65	7105114
3486992	1.29	2.44	2.69	1.76	1.66	7647797
3378187	1.27	2.42	2.70	1.76	1.67	7440408
3282306	1.26	2.43	2.68	1.76	1.67	7255613
3288345	1.27	2.43	2.70	1.78	1.65	7231703
3325749	1.27	2.40	2.72	1.77	1.63	7278022
3352262	1.27	2.39	2.70	1.80	1.67	7382680
3531954	1.28	2.42	2.66	1.80	1.66	7622740
3722622	1.29	2.41	2.68	1.81	1.68	8295038
3809365	1.28	2.37	2.65	1.79	1.66	8136158
3750617	1.30	2.38	2.69	1.81	1.66	8240817
3615286	1.30	2.37	2.66	1.81	1.66	7993962
3696556	1.30	2.38	2.69	1.79	1.66	7997958
4123959	1.29	2.37	2.69	1.79	1.66	8914911
4136163	1.30	2.40	2.65	1.79	1.66	9082346
3933392	1.29	2.66	2.66	1.79	1.67	8690947
4035576	1.28	2.50	2.63	1.80	1.65	8678669
4551202	1.30	2.60	2.65	1.86	1.72	9768461
4032195	1.30	2.64	2.60	1.93	1.73	8751448
3970893	1.31	2.67	2.57	1.81	1.72	8737854
4489016	1.32	2.72	2.65	1.70	1.74	9684075
5426127	1.33	2.73	2.69	1.74	1.76	11529582
4578224	1.32	2.48	2.71	1.74	1.74	9854882
4126390	1.30	2.41	2.72	1.73	1.71	9030507
4892100	1.31	2.47	2.73	1.76	1.75	10656814
4128697	1.30	2.54	2.72	1.75	1.71	9111428
4408721	1.30	2.56	2.73	1.79	1.72	9642906
4199465	1.30	2.52	2.72	1.79	1.72	9217060
4074767	1.29	2.52	2.70	1.83	1.71	8816389
4161758	1.29	2.51	2.72	1.82	1.70	9074790
3891319	1.30	2.51	2.70	1.85	1.67	8601172
4470302	1.30	2.51	2.72	1.85	1.69	9735782
4283111	1.29	2.46	2.70	1.86	1.69	9222117
3845962	1.27	2.45	2.65	1.83	1.69	8197462
3911471	1.26	2.45	2.66	1.87	1.72	8161117
3798478	1.25	2.43	2.69	1.88	1.69	8085780
3644313	1.26	2.42	2.70	1.92	1.73	7777563
3784029	1.27	2.39	2.71	1.91	1.72	8192525
3647134	1.26	2.39	2.69	1.93	1.74	8222640
3994662	1.25	2.39	2.72	1.90	1.75	8852425
3607836	1.25	2.41	2.71	1.91	1.71	8047626
3566008	1.25	2.37	2.71	1.89	1.72	8079925
3511412	1.26	2.38	2.74	1.91	1.72	8099820
3258665	1.26	2.41	2.82	1.92	1.72	7444464
3486573	1.26	2.46	2.76	1.91	1.72	8060967
3369443	1.27	2.47	2.77	1.95	1.74	7904184
3465544	1.28	2.50	2.77	1.95	1.74	8532755
3905224	1.29	2.52	2.81	1.97	1.78	10077590
3733881	1.30	2.53	2.77	1.97	1.77	9163186
3220642	1.26	2.51	2.76	1.94	1.72	7027349
3225812	1.25	2.43	2.73	1.93	1.73	7000371
3354461	1.26	2.53	2.72	1.92	1.71	7234027
3352261	1.25	2.52	2.73	1.93	1.71	7166769
3450652	1.24	2.49	2.71	1.91	1.72	7538708




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Multiple Linear Regression - Estimated Regression Equation
QPILS[t] = + 3271584.40560798 -859881.771833768PPILS[t] + 479399.452074001PLUX[t] -686248.346784141PFRU[t] -727174.256662437PWIT[t] -108292.983518314PNA[t] + 0.458383474822082BUDBEER[t] -210.253558496648t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
QPILS[t] =  +  3271584.40560798 -859881.771833768PPILS[t] +  479399.452074001PLUX[t] -686248.346784141PFRU[t] -727174.256662437PWIT[t] -108292.983518314PNA[t] +  0.458383474822082BUDBEER[t] -210.253558496648t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]QPILS[t] =  +  3271584.40560798 -859881.771833768PPILS[t] +  479399.452074001PLUX[t] -686248.346784141PFRU[t] -727174.256662437PWIT[t] -108292.983518314PNA[t] +  0.458383474822082BUDBEER[t] -210.253558496648t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
QPILS[t] = + 3271584.40560798 -859881.771833768PPILS[t] + 479399.452074001PLUX[t] -686248.346784141PFRU[t] -727174.256662437PWIT[t] -108292.983518314PNA[t] + 0.458383474822082BUDBEER[t] -210.253558496648t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)3271584.405607981238900.4301382.64070.0092710.004636
PPILS-859881.771833768693943.458525-1.23910.2174980.108749
PLUX479399.452074001209591.3718222.28730.0237690.011884
PFRU-686248.346784141214844.474846-3.19420.0017540.000877
PWIT-727174.256662437276820.500268-2.62690.0096370.004818
PNA-108292.983518314230427.741395-0.470.6391550.319578
BUDBEER0.4583834748220820.01674927.367500
t-210.253558496648589.569548-0.35660.7219440.360972

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 3271584.40560798 & 1238900.430138 & 2.6407 & 0.009271 & 0.004636 \tabularnewline
PPILS & -859881.771833768 & 693943.458525 & -1.2391 & 0.217498 & 0.108749 \tabularnewline
PLUX & 479399.452074001 & 209591.371822 & 2.2873 & 0.023769 & 0.011884 \tabularnewline
PFRU & -686248.346784141 & 214844.474846 & -3.1942 & 0.001754 & 0.000877 \tabularnewline
PWIT & -727174.256662437 & 276820.500268 & -2.6269 & 0.009637 & 0.004818 \tabularnewline
PNA & -108292.983518314 & 230427.741395 & -0.47 & 0.639155 & 0.319578 \tabularnewline
BUDBEER & 0.458383474822082 & 0.016749 & 27.3675 & 0 & 0 \tabularnewline
t & -210.253558496648 & 589.569548 & -0.3566 & 0.721944 & 0.360972 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]3271584.40560798[/C][C]1238900.430138[/C][C]2.6407[/C][C]0.009271[/C][C]0.004636[/C][/ROW]
[ROW][C]PPILS[/C][C]-859881.771833768[/C][C]693943.458525[/C][C]-1.2391[/C][C]0.217498[/C][C]0.108749[/C][/ROW]
[ROW][C]PLUX[/C][C]479399.452074001[/C][C]209591.371822[/C][C]2.2873[/C][C]0.023769[/C][C]0.011884[/C][/ROW]
[ROW][C]PFRU[/C][C]-686248.346784141[/C][C]214844.474846[/C][C]-3.1942[/C][C]0.001754[/C][C]0.000877[/C][/ROW]
[ROW][C]PWIT[/C][C]-727174.256662437[/C][C]276820.500268[/C][C]-2.6269[/C][C]0.009637[/C][C]0.004818[/C][/ROW]
[ROW][C]PNA[/C][C]-108292.983518314[/C][C]230427.741395[/C][C]-0.47[/C][C]0.639155[/C][C]0.319578[/C][/ROW]
[ROW][C]BUDBEER[/C][C]0.458383474822082[/C][C]0.016749[/C][C]27.3675[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]t[/C][C]-210.253558496648[/C][C]589.569548[/C][C]-0.3566[/C][C]0.721944[/C][C]0.360972[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)3271584.405607981238900.4301382.64070.0092710.004636
PPILS-859881.771833768693943.458525-1.23910.2174980.108749
PLUX479399.452074001209591.3718222.28730.0237690.011884
PFRU-686248.346784141214844.474846-3.19420.0017540.000877
PWIT-727174.256662437276820.500268-2.62690.0096370.004818
PNA-108292.983518314230427.741395-0.470.6391550.319578
BUDBEER0.4583834748220820.01674927.367500
t-210.253558496648589.569548-0.35660.7219440.360972







Multiple Linear Regression - Regression Statistics
Multiple R0.962354878022859
R-squared0.926126911254391
Adjusted R-squared0.922209398972427
F-TEST (value)236.406894119567
F-TEST (DF numerator)7
F-TEST (DF denominator)132
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation132619.316437056
Sum Squared Residuals2321600568174.63

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.962354878022859 \tabularnewline
R-squared & 0.926126911254391 \tabularnewline
Adjusted R-squared & 0.922209398972427 \tabularnewline
F-TEST (value) & 236.406894119567 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 132 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 132619.316437056 \tabularnewline
Sum Squared Residuals & 2321600568174.63 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.962354878022859[/C][/ROW]
[ROW][C]R-squared[/C][C]0.926126911254391[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.922209398972427[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]236.406894119567[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]132[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]132619.316437056[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]2321600568174.63[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.962354878022859
R-squared0.926126911254391
Adjusted R-squared0.922209398972427
F-TEST (value)236.406894119567
F-TEST (DF numerator)7
F-TEST (DF denominator)132
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation132619.316437056
Sum Squared Residuals2321600568174.63







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
145819454665075.31449271-83130.3144927131
238740383904226.34714363-30188.3471436283
340862904065385.1159862220904.8840137823
443643644208432.5757501155931.424249901
537935863796834.73515169-3248.7351516912
645339144487076.0875914646837.9124085353
748230434724223.11668598819.8833149948
839815353956761.0273747824773.9726252237
947463564716139.5019452530216.4980547468
1052845345149779.40208198134754.597918024
1142648304235295.9830533529534.01694665
1239246743875061.6714973549612.3285026532
1337347533692134.9812858442618.0187141613
1437622903662398.4606762799891.5393237261
1536097393545274.0263919764464.9736080337
1638775943732152.99030911145441.009690894
1736364153553027.2608221783387.7391778265
1835781953565066.4638233913128.5361766055
1936043423511518.687199492823.3128006039
2034595133470780.37462426-11267.3746242566
2133665713487546.19191203-120975.191912025
2233712773624326.90217931-253049.90217931
2337248483839774.02518038-114926.025180378
2433508303411327.78623628-60497.7862362772
2533051593343999.36297817-38840.3629781648
2633907363419221.84548148-28485.8454814794
2733497583486950.04666255-137192.046662553
2832536553484026.30399689-230371.303996886
2937342504267834.37363519-533584.373635188
3034554333819741.45338751-364308.453387511
3129667263082578.38952291-115852.389522908
3229937163021446.82450349-27730.824503495
3330093203044522.62917338-35202.6291733753
3431697133214175.03414501-44462.0341450116
3531700613138667.3594952831393.6405047181
3633689343420400.53364915-51466.5336491538
3732926383286901.971541755736.02845824762
3833373443304254.1691068933089.8308931061
3932083063179083.9419981929222.0580018055
4033591303225086.6466032134043.353396804
4132230783139240.493824183837.5061759004
4234371593346864.4816969890294.5183030153
4334001563353406.5265326446749.4734673613
4436575763654496.667393813079.33260618612
4537656133789199.37575526-23586.3757552639
4634819213450195.7331186131725.2668813893
4736048003539619.6375739765180.3624260259
4839813403929020.0124405752319.9875594348
4937340783703541.461062530536.5389374977
5040181733903483.08906082114689.910939181
5138874173856617.6879542630799.3120457421
5239198803979864.83989171-59984.8398917145
5340144664009850.88277554615.11722449912
5441977584232482.60815573-34724.6081557335
5538965313840120.1921034456410.8078965647
5639647423881745.007648582996.9923514963
5742018474088939.18459075112907.815409254
5840505123907257.27310104143254.72689896
5939974023887695.00450895109706.995491046
6043144794205679.08611909108799.913880914
6149257444790032.16643352135711.833566484
6251306314971944.15818932158686.84181068
6344448554361739.4030021883115.5969978229
6439673193954622.8644503112696.1355496913
6539312503799834.78736232131415.212637681
6642359524024770.33366148211181.666338519
6741692193949752.70943307219466.290566932
6837790643677372.24984882101691.750151184
6935588103494042.9397242864767.0602757163
7036994663654959.8989919744506.1010080292
7136506933565935.3107960184757.6892039912
7235256333474578.7521389351054.2478610673
7334702763505045.06890569-34769.0689056876
7438590943905912.42686553-46818.4268655295
7536611553694517.24419543-33362.2441954304
7633563653477247.25877884-120882.258778841
7733444403389885.40033561-45445.400335611
7833386843366401.3586974-27717.3586973993
7934042943499059.083777-94765.0837770002
8032893193471418.51818894-182099.518188943
8134692523864768.58366813-395516.583668127
8235718504019560.1904262-447710.1904262
8336399143847452.61392041-207538.613920413
8430917303175599.08791425-83869.0879142547
8530781493124779.46031022-46630.4603102212
8631881153228516.97649885-40401.9764988522
8732460823220258.6028879225823.3971120833
8834869923513591.93623353-26599.9362335326
8933781873417982.22530733-39795.22530733
9032823063360182.77669385-77876.7766938474
9132883453314311.16413545-25966.1641354518
9233257493316663.426486339085.57351367312
9333522623347210.69601015051.30398990314
9435319543491356.0089678240597.9910321799
9537226223762760.66735351-40138.6673535082
9638093653716442.082157892922.9178422037
9737506173709808.7247701540808.275229846
9836152863612237.674417243048.32558276337
9936965563612609.1504745983946.8495254064
10041239594036519.8225022387439.1774977732
10141361634146292.10576581-10129.1057658133
10239333924091968.28049998-158576.280499982
10340355764033506.467531382069.53246861631
10445512024498645.2363552152556.7636447935
10540321954033756.29753809-1561.29753809357
10639708934142029.23590495-171136.235904948
10744890164613845.64798121-124829.647981209
10854261275397077.7188853629049.2811146397
10945782244506402.5074768471821.4925231553
11041263904115610.0992577210779.9007422778
11148921004848027.8183843644072.1816156442
11241286974200060.88494318-71363.8849431778
11344087214416026.96928813-7305.96928812949
11441994654208302.45189543-8837.45189543002
11540747674018750.977319256016.0226807987
11641617584126823.1829835934934.8170164101
11738913193896073.97586983-4754.97586983007
11844703024400059.3700731770242.6299268338
11942831114155475.63840388127635.361596119
12038459623754111.7514065891850.2485934196
12139114713706642.12493412204828.875065876
12237984783646299.06074522152178.939254785
12336443133451133.24241333193179.757586668
12437840293619646.09998736164382.900012636
12536471343638854.504623548279.49537645976
12639946623936070.9529353758591.0470646286
12736078363580464.5865069727371.4134930317
12835660083589344.23801686-23336.2380168556
12935114123559317.76495557-47905.7649555734
13032586653210913.5241244447751.4758755586
13134865733565714.67392156-79141.6739215553
13233694433451717.54742773-82274.5474277253
13334655443745417.0188655-279873.018865502
13439052244407997.63361157-502773.633611571
13537338814013367.73765081-279486.737650814
13632206423093024.74055425127617.259445751
13732258123077471.34229938148340.657700615
13833544613240006.35112781114454.648872189
13933522613198636.73898286153624.261017137
14034506523390319.5330560860332.4669439176

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 4581945 & 4665075.31449271 & -83130.3144927131 \tabularnewline
2 & 3874038 & 3904226.34714363 & -30188.3471436283 \tabularnewline
3 & 4086290 & 4065385.11598622 & 20904.8840137823 \tabularnewline
4 & 4364364 & 4208432.5757501 & 155931.424249901 \tabularnewline
5 & 3793586 & 3796834.73515169 & -3248.7351516912 \tabularnewline
6 & 4533914 & 4487076.08759146 & 46837.9124085353 \tabularnewline
7 & 4823043 & 4724223.116685 & 98819.8833149948 \tabularnewline
8 & 3981535 & 3956761.02737478 & 24773.9726252237 \tabularnewline
9 & 4746356 & 4716139.50194525 & 30216.4980547468 \tabularnewline
10 & 5284534 & 5149779.40208198 & 134754.597918024 \tabularnewline
11 & 4264830 & 4235295.98305335 & 29534.01694665 \tabularnewline
12 & 3924674 & 3875061.67149735 & 49612.3285026532 \tabularnewline
13 & 3734753 & 3692134.98128584 & 42618.0187141613 \tabularnewline
14 & 3762290 & 3662398.46067627 & 99891.5393237261 \tabularnewline
15 & 3609739 & 3545274.02639197 & 64464.9736080337 \tabularnewline
16 & 3877594 & 3732152.99030911 & 145441.009690894 \tabularnewline
17 & 3636415 & 3553027.26082217 & 83387.7391778265 \tabularnewline
18 & 3578195 & 3565066.46382339 & 13128.5361766055 \tabularnewline
19 & 3604342 & 3511518.6871994 & 92823.3128006039 \tabularnewline
20 & 3459513 & 3470780.37462426 & -11267.3746242566 \tabularnewline
21 & 3366571 & 3487546.19191203 & -120975.191912025 \tabularnewline
22 & 3371277 & 3624326.90217931 & -253049.90217931 \tabularnewline
23 & 3724848 & 3839774.02518038 & -114926.025180378 \tabularnewline
24 & 3350830 & 3411327.78623628 & -60497.7862362772 \tabularnewline
25 & 3305159 & 3343999.36297817 & -38840.3629781648 \tabularnewline
26 & 3390736 & 3419221.84548148 & -28485.8454814794 \tabularnewline
27 & 3349758 & 3486950.04666255 & -137192.046662553 \tabularnewline
28 & 3253655 & 3484026.30399689 & -230371.303996886 \tabularnewline
29 & 3734250 & 4267834.37363519 & -533584.373635188 \tabularnewline
30 & 3455433 & 3819741.45338751 & -364308.453387511 \tabularnewline
31 & 2966726 & 3082578.38952291 & -115852.389522908 \tabularnewline
32 & 2993716 & 3021446.82450349 & -27730.824503495 \tabularnewline
33 & 3009320 & 3044522.62917338 & -35202.6291733753 \tabularnewline
34 & 3169713 & 3214175.03414501 & -44462.0341450116 \tabularnewline
35 & 3170061 & 3138667.35949528 & 31393.6405047181 \tabularnewline
36 & 3368934 & 3420400.53364915 & -51466.5336491538 \tabularnewline
37 & 3292638 & 3286901.97154175 & 5736.02845824762 \tabularnewline
38 & 3337344 & 3304254.16910689 & 33089.8308931061 \tabularnewline
39 & 3208306 & 3179083.94199819 & 29222.0580018055 \tabularnewline
40 & 3359130 & 3225086.6466032 & 134043.353396804 \tabularnewline
41 & 3223078 & 3139240.4938241 & 83837.5061759004 \tabularnewline
42 & 3437159 & 3346864.48169698 & 90294.5183030153 \tabularnewline
43 & 3400156 & 3353406.52653264 & 46749.4734673613 \tabularnewline
44 & 3657576 & 3654496.66739381 & 3079.33260618612 \tabularnewline
45 & 3765613 & 3789199.37575526 & -23586.3757552639 \tabularnewline
46 & 3481921 & 3450195.73311861 & 31725.2668813893 \tabularnewline
47 & 3604800 & 3539619.63757397 & 65180.3624260259 \tabularnewline
48 & 3981340 & 3929020.01244057 & 52319.9875594348 \tabularnewline
49 & 3734078 & 3703541.4610625 & 30536.5389374977 \tabularnewline
50 & 4018173 & 3903483.08906082 & 114689.910939181 \tabularnewline
51 & 3887417 & 3856617.68795426 & 30799.3120457421 \tabularnewline
52 & 3919880 & 3979864.83989171 & -59984.8398917145 \tabularnewline
53 & 4014466 & 4009850.8827755 & 4615.11722449912 \tabularnewline
54 & 4197758 & 4232482.60815573 & -34724.6081557335 \tabularnewline
55 & 3896531 & 3840120.19210344 & 56410.8078965647 \tabularnewline
56 & 3964742 & 3881745.0076485 & 82996.9923514963 \tabularnewline
57 & 4201847 & 4088939.18459075 & 112907.815409254 \tabularnewline
58 & 4050512 & 3907257.27310104 & 143254.72689896 \tabularnewline
59 & 3997402 & 3887695.00450895 & 109706.995491046 \tabularnewline
60 & 4314479 & 4205679.08611909 & 108799.913880914 \tabularnewline
61 & 4925744 & 4790032.16643352 & 135711.833566484 \tabularnewline
62 & 5130631 & 4971944.15818932 & 158686.84181068 \tabularnewline
63 & 4444855 & 4361739.40300218 & 83115.5969978229 \tabularnewline
64 & 3967319 & 3954622.86445031 & 12696.1355496913 \tabularnewline
65 & 3931250 & 3799834.78736232 & 131415.212637681 \tabularnewline
66 & 4235952 & 4024770.33366148 & 211181.666338519 \tabularnewline
67 & 4169219 & 3949752.70943307 & 219466.290566932 \tabularnewline
68 & 3779064 & 3677372.24984882 & 101691.750151184 \tabularnewline
69 & 3558810 & 3494042.93972428 & 64767.0602757163 \tabularnewline
70 & 3699466 & 3654959.89899197 & 44506.1010080292 \tabularnewline
71 & 3650693 & 3565935.31079601 & 84757.6892039912 \tabularnewline
72 & 3525633 & 3474578.75213893 & 51054.2478610673 \tabularnewline
73 & 3470276 & 3505045.06890569 & -34769.0689056876 \tabularnewline
74 & 3859094 & 3905912.42686553 & -46818.4268655295 \tabularnewline
75 & 3661155 & 3694517.24419543 & -33362.2441954304 \tabularnewline
76 & 3356365 & 3477247.25877884 & -120882.258778841 \tabularnewline
77 & 3344440 & 3389885.40033561 & -45445.400335611 \tabularnewline
78 & 3338684 & 3366401.3586974 & -27717.3586973993 \tabularnewline
79 & 3404294 & 3499059.083777 & -94765.0837770002 \tabularnewline
80 & 3289319 & 3471418.51818894 & -182099.518188943 \tabularnewline
81 & 3469252 & 3864768.58366813 & -395516.583668127 \tabularnewline
82 & 3571850 & 4019560.1904262 & -447710.1904262 \tabularnewline
83 & 3639914 & 3847452.61392041 & -207538.613920413 \tabularnewline
84 & 3091730 & 3175599.08791425 & -83869.0879142547 \tabularnewline
85 & 3078149 & 3124779.46031022 & -46630.4603102212 \tabularnewline
86 & 3188115 & 3228516.97649885 & -40401.9764988522 \tabularnewline
87 & 3246082 & 3220258.60288792 & 25823.3971120833 \tabularnewline
88 & 3486992 & 3513591.93623353 & -26599.9362335326 \tabularnewline
89 & 3378187 & 3417982.22530733 & -39795.22530733 \tabularnewline
90 & 3282306 & 3360182.77669385 & -77876.7766938474 \tabularnewline
91 & 3288345 & 3314311.16413545 & -25966.1641354518 \tabularnewline
92 & 3325749 & 3316663.42648633 & 9085.57351367312 \tabularnewline
93 & 3352262 & 3347210.6960101 & 5051.30398990314 \tabularnewline
94 & 3531954 & 3491356.00896782 & 40597.9910321799 \tabularnewline
95 & 3722622 & 3762760.66735351 & -40138.6673535082 \tabularnewline
96 & 3809365 & 3716442.0821578 & 92922.9178422037 \tabularnewline
97 & 3750617 & 3709808.72477015 & 40808.275229846 \tabularnewline
98 & 3615286 & 3612237.67441724 & 3048.32558276337 \tabularnewline
99 & 3696556 & 3612609.15047459 & 83946.8495254064 \tabularnewline
100 & 4123959 & 4036519.82250223 & 87439.1774977732 \tabularnewline
101 & 4136163 & 4146292.10576581 & -10129.1057658133 \tabularnewline
102 & 3933392 & 4091968.28049998 & -158576.280499982 \tabularnewline
103 & 4035576 & 4033506.46753138 & 2069.53246861631 \tabularnewline
104 & 4551202 & 4498645.23635521 & 52556.7636447935 \tabularnewline
105 & 4032195 & 4033756.29753809 & -1561.29753809357 \tabularnewline
106 & 3970893 & 4142029.23590495 & -171136.235904948 \tabularnewline
107 & 4489016 & 4613845.64798121 & -124829.647981209 \tabularnewline
108 & 5426127 & 5397077.71888536 & 29049.2811146397 \tabularnewline
109 & 4578224 & 4506402.50747684 & 71821.4925231553 \tabularnewline
110 & 4126390 & 4115610.09925772 & 10779.9007422778 \tabularnewline
111 & 4892100 & 4848027.81838436 & 44072.1816156442 \tabularnewline
112 & 4128697 & 4200060.88494318 & -71363.8849431778 \tabularnewline
113 & 4408721 & 4416026.96928813 & -7305.96928812949 \tabularnewline
114 & 4199465 & 4208302.45189543 & -8837.45189543002 \tabularnewline
115 & 4074767 & 4018750.9773192 & 56016.0226807987 \tabularnewline
116 & 4161758 & 4126823.18298359 & 34934.8170164101 \tabularnewline
117 & 3891319 & 3896073.97586983 & -4754.97586983007 \tabularnewline
118 & 4470302 & 4400059.37007317 & 70242.6299268338 \tabularnewline
119 & 4283111 & 4155475.63840388 & 127635.361596119 \tabularnewline
120 & 3845962 & 3754111.75140658 & 91850.2485934196 \tabularnewline
121 & 3911471 & 3706642.12493412 & 204828.875065876 \tabularnewline
122 & 3798478 & 3646299.06074522 & 152178.939254785 \tabularnewline
123 & 3644313 & 3451133.24241333 & 193179.757586668 \tabularnewline
124 & 3784029 & 3619646.09998736 & 164382.900012636 \tabularnewline
125 & 3647134 & 3638854.50462354 & 8279.49537645976 \tabularnewline
126 & 3994662 & 3936070.95293537 & 58591.0470646286 \tabularnewline
127 & 3607836 & 3580464.58650697 & 27371.4134930317 \tabularnewline
128 & 3566008 & 3589344.23801686 & -23336.2380168556 \tabularnewline
129 & 3511412 & 3559317.76495557 & -47905.7649555734 \tabularnewline
130 & 3258665 & 3210913.52412444 & 47751.4758755586 \tabularnewline
131 & 3486573 & 3565714.67392156 & -79141.6739215553 \tabularnewline
132 & 3369443 & 3451717.54742773 & -82274.5474277253 \tabularnewline
133 & 3465544 & 3745417.0188655 & -279873.018865502 \tabularnewline
134 & 3905224 & 4407997.63361157 & -502773.633611571 \tabularnewline
135 & 3733881 & 4013367.73765081 & -279486.737650814 \tabularnewline
136 & 3220642 & 3093024.74055425 & 127617.259445751 \tabularnewline
137 & 3225812 & 3077471.34229938 & 148340.657700615 \tabularnewline
138 & 3354461 & 3240006.35112781 & 114454.648872189 \tabularnewline
139 & 3352261 & 3198636.73898286 & 153624.261017137 \tabularnewline
140 & 3450652 & 3390319.53305608 & 60332.4669439176 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]4581945[/C][C]4665075.31449271[/C][C]-83130.3144927131[/C][/ROW]
[ROW][C]2[/C][C]3874038[/C][C]3904226.34714363[/C][C]-30188.3471436283[/C][/ROW]
[ROW][C]3[/C][C]4086290[/C][C]4065385.11598622[/C][C]20904.8840137823[/C][/ROW]
[ROW][C]4[/C][C]4364364[/C][C]4208432.5757501[/C][C]155931.424249901[/C][/ROW]
[ROW][C]5[/C][C]3793586[/C][C]3796834.73515169[/C][C]-3248.7351516912[/C][/ROW]
[ROW][C]6[/C][C]4533914[/C][C]4487076.08759146[/C][C]46837.9124085353[/C][/ROW]
[ROW][C]7[/C][C]4823043[/C][C]4724223.116685[/C][C]98819.8833149948[/C][/ROW]
[ROW][C]8[/C][C]3981535[/C][C]3956761.02737478[/C][C]24773.9726252237[/C][/ROW]
[ROW][C]9[/C][C]4746356[/C][C]4716139.50194525[/C][C]30216.4980547468[/C][/ROW]
[ROW][C]10[/C][C]5284534[/C][C]5149779.40208198[/C][C]134754.597918024[/C][/ROW]
[ROW][C]11[/C][C]4264830[/C][C]4235295.98305335[/C][C]29534.01694665[/C][/ROW]
[ROW][C]12[/C][C]3924674[/C][C]3875061.67149735[/C][C]49612.3285026532[/C][/ROW]
[ROW][C]13[/C][C]3734753[/C][C]3692134.98128584[/C][C]42618.0187141613[/C][/ROW]
[ROW][C]14[/C][C]3762290[/C][C]3662398.46067627[/C][C]99891.5393237261[/C][/ROW]
[ROW][C]15[/C][C]3609739[/C][C]3545274.02639197[/C][C]64464.9736080337[/C][/ROW]
[ROW][C]16[/C][C]3877594[/C][C]3732152.99030911[/C][C]145441.009690894[/C][/ROW]
[ROW][C]17[/C][C]3636415[/C][C]3553027.26082217[/C][C]83387.7391778265[/C][/ROW]
[ROW][C]18[/C][C]3578195[/C][C]3565066.46382339[/C][C]13128.5361766055[/C][/ROW]
[ROW][C]19[/C][C]3604342[/C][C]3511518.6871994[/C][C]92823.3128006039[/C][/ROW]
[ROW][C]20[/C][C]3459513[/C][C]3470780.37462426[/C][C]-11267.3746242566[/C][/ROW]
[ROW][C]21[/C][C]3366571[/C][C]3487546.19191203[/C][C]-120975.191912025[/C][/ROW]
[ROW][C]22[/C][C]3371277[/C][C]3624326.90217931[/C][C]-253049.90217931[/C][/ROW]
[ROW][C]23[/C][C]3724848[/C][C]3839774.02518038[/C][C]-114926.025180378[/C][/ROW]
[ROW][C]24[/C][C]3350830[/C][C]3411327.78623628[/C][C]-60497.7862362772[/C][/ROW]
[ROW][C]25[/C][C]3305159[/C][C]3343999.36297817[/C][C]-38840.3629781648[/C][/ROW]
[ROW][C]26[/C][C]3390736[/C][C]3419221.84548148[/C][C]-28485.8454814794[/C][/ROW]
[ROW][C]27[/C][C]3349758[/C][C]3486950.04666255[/C][C]-137192.046662553[/C][/ROW]
[ROW][C]28[/C][C]3253655[/C][C]3484026.30399689[/C][C]-230371.303996886[/C][/ROW]
[ROW][C]29[/C][C]3734250[/C][C]4267834.37363519[/C][C]-533584.373635188[/C][/ROW]
[ROW][C]30[/C][C]3455433[/C][C]3819741.45338751[/C][C]-364308.453387511[/C][/ROW]
[ROW][C]31[/C][C]2966726[/C][C]3082578.38952291[/C][C]-115852.389522908[/C][/ROW]
[ROW][C]32[/C][C]2993716[/C][C]3021446.82450349[/C][C]-27730.824503495[/C][/ROW]
[ROW][C]33[/C][C]3009320[/C][C]3044522.62917338[/C][C]-35202.6291733753[/C][/ROW]
[ROW][C]34[/C][C]3169713[/C][C]3214175.03414501[/C][C]-44462.0341450116[/C][/ROW]
[ROW][C]35[/C][C]3170061[/C][C]3138667.35949528[/C][C]31393.6405047181[/C][/ROW]
[ROW][C]36[/C][C]3368934[/C][C]3420400.53364915[/C][C]-51466.5336491538[/C][/ROW]
[ROW][C]37[/C][C]3292638[/C][C]3286901.97154175[/C][C]5736.02845824762[/C][/ROW]
[ROW][C]38[/C][C]3337344[/C][C]3304254.16910689[/C][C]33089.8308931061[/C][/ROW]
[ROW][C]39[/C][C]3208306[/C][C]3179083.94199819[/C][C]29222.0580018055[/C][/ROW]
[ROW][C]40[/C][C]3359130[/C][C]3225086.6466032[/C][C]134043.353396804[/C][/ROW]
[ROW][C]41[/C][C]3223078[/C][C]3139240.4938241[/C][C]83837.5061759004[/C][/ROW]
[ROW][C]42[/C][C]3437159[/C][C]3346864.48169698[/C][C]90294.5183030153[/C][/ROW]
[ROW][C]43[/C][C]3400156[/C][C]3353406.52653264[/C][C]46749.4734673613[/C][/ROW]
[ROW][C]44[/C][C]3657576[/C][C]3654496.66739381[/C][C]3079.33260618612[/C][/ROW]
[ROW][C]45[/C][C]3765613[/C][C]3789199.37575526[/C][C]-23586.3757552639[/C][/ROW]
[ROW][C]46[/C][C]3481921[/C][C]3450195.73311861[/C][C]31725.2668813893[/C][/ROW]
[ROW][C]47[/C][C]3604800[/C][C]3539619.63757397[/C][C]65180.3624260259[/C][/ROW]
[ROW][C]48[/C][C]3981340[/C][C]3929020.01244057[/C][C]52319.9875594348[/C][/ROW]
[ROW][C]49[/C][C]3734078[/C][C]3703541.4610625[/C][C]30536.5389374977[/C][/ROW]
[ROW][C]50[/C][C]4018173[/C][C]3903483.08906082[/C][C]114689.910939181[/C][/ROW]
[ROW][C]51[/C][C]3887417[/C][C]3856617.68795426[/C][C]30799.3120457421[/C][/ROW]
[ROW][C]52[/C][C]3919880[/C][C]3979864.83989171[/C][C]-59984.8398917145[/C][/ROW]
[ROW][C]53[/C][C]4014466[/C][C]4009850.8827755[/C][C]4615.11722449912[/C][/ROW]
[ROW][C]54[/C][C]4197758[/C][C]4232482.60815573[/C][C]-34724.6081557335[/C][/ROW]
[ROW][C]55[/C][C]3896531[/C][C]3840120.19210344[/C][C]56410.8078965647[/C][/ROW]
[ROW][C]56[/C][C]3964742[/C][C]3881745.0076485[/C][C]82996.9923514963[/C][/ROW]
[ROW][C]57[/C][C]4201847[/C][C]4088939.18459075[/C][C]112907.815409254[/C][/ROW]
[ROW][C]58[/C][C]4050512[/C][C]3907257.27310104[/C][C]143254.72689896[/C][/ROW]
[ROW][C]59[/C][C]3997402[/C][C]3887695.00450895[/C][C]109706.995491046[/C][/ROW]
[ROW][C]60[/C][C]4314479[/C][C]4205679.08611909[/C][C]108799.913880914[/C][/ROW]
[ROW][C]61[/C][C]4925744[/C][C]4790032.16643352[/C][C]135711.833566484[/C][/ROW]
[ROW][C]62[/C][C]5130631[/C][C]4971944.15818932[/C][C]158686.84181068[/C][/ROW]
[ROW][C]63[/C][C]4444855[/C][C]4361739.40300218[/C][C]83115.5969978229[/C][/ROW]
[ROW][C]64[/C][C]3967319[/C][C]3954622.86445031[/C][C]12696.1355496913[/C][/ROW]
[ROW][C]65[/C][C]3931250[/C][C]3799834.78736232[/C][C]131415.212637681[/C][/ROW]
[ROW][C]66[/C][C]4235952[/C][C]4024770.33366148[/C][C]211181.666338519[/C][/ROW]
[ROW][C]67[/C][C]4169219[/C][C]3949752.70943307[/C][C]219466.290566932[/C][/ROW]
[ROW][C]68[/C][C]3779064[/C][C]3677372.24984882[/C][C]101691.750151184[/C][/ROW]
[ROW][C]69[/C][C]3558810[/C][C]3494042.93972428[/C][C]64767.0602757163[/C][/ROW]
[ROW][C]70[/C][C]3699466[/C][C]3654959.89899197[/C][C]44506.1010080292[/C][/ROW]
[ROW][C]71[/C][C]3650693[/C][C]3565935.31079601[/C][C]84757.6892039912[/C][/ROW]
[ROW][C]72[/C][C]3525633[/C][C]3474578.75213893[/C][C]51054.2478610673[/C][/ROW]
[ROW][C]73[/C][C]3470276[/C][C]3505045.06890569[/C][C]-34769.0689056876[/C][/ROW]
[ROW][C]74[/C][C]3859094[/C][C]3905912.42686553[/C][C]-46818.4268655295[/C][/ROW]
[ROW][C]75[/C][C]3661155[/C][C]3694517.24419543[/C][C]-33362.2441954304[/C][/ROW]
[ROW][C]76[/C][C]3356365[/C][C]3477247.25877884[/C][C]-120882.258778841[/C][/ROW]
[ROW][C]77[/C][C]3344440[/C][C]3389885.40033561[/C][C]-45445.400335611[/C][/ROW]
[ROW][C]78[/C][C]3338684[/C][C]3366401.3586974[/C][C]-27717.3586973993[/C][/ROW]
[ROW][C]79[/C][C]3404294[/C][C]3499059.083777[/C][C]-94765.0837770002[/C][/ROW]
[ROW][C]80[/C][C]3289319[/C][C]3471418.51818894[/C][C]-182099.518188943[/C][/ROW]
[ROW][C]81[/C][C]3469252[/C][C]3864768.58366813[/C][C]-395516.583668127[/C][/ROW]
[ROW][C]82[/C][C]3571850[/C][C]4019560.1904262[/C][C]-447710.1904262[/C][/ROW]
[ROW][C]83[/C][C]3639914[/C][C]3847452.61392041[/C][C]-207538.613920413[/C][/ROW]
[ROW][C]84[/C][C]3091730[/C][C]3175599.08791425[/C][C]-83869.0879142547[/C][/ROW]
[ROW][C]85[/C][C]3078149[/C][C]3124779.46031022[/C][C]-46630.4603102212[/C][/ROW]
[ROW][C]86[/C][C]3188115[/C][C]3228516.97649885[/C][C]-40401.9764988522[/C][/ROW]
[ROW][C]87[/C][C]3246082[/C][C]3220258.60288792[/C][C]25823.3971120833[/C][/ROW]
[ROW][C]88[/C][C]3486992[/C][C]3513591.93623353[/C][C]-26599.9362335326[/C][/ROW]
[ROW][C]89[/C][C]3378187[/C][C]3417982.22530733[/C][C]-39795.22530733[/C][/ROW]
[ROW][C]90[/C][C]3282306[/C][C]3360182.77669385[/C][C]-77876.7766938474[/C][/ROW]
[ROW][C]91[/C][C]3288345[/C][C]3314311.16413545[/C][C]-25966.1641354518[/C][/ROW]
[ROW][C]92[/C][C]3325749[/C][C]3316663.42648633[/C][C]9085.57351367312[/C][/ROW]
[ROW][C]93[/C][C]3352262[/C][C]3347210.6960101[/C][C]5051.30398990314[/C][/ROW]
[ROW][C]94[/C][C]3531954[/C][C]3491356.00896782[/C][C]40597.9910321799[/C][/ROW]
[ROW][C]95[/C][C]3722622[/C][C]3762760.66735351[/C][C]-40138.6673535082[/C][/ROW]
[ROW][C]96[/C][C]3809365[/C][C]3716442.0821578[/C][C]92922.9178422037[/C][/ROW]
[ROW][C]97[/C][C]3750617[/C][C]3709808.72477015[/C][C]40808.275229846[/C][/ROW]
[ROW][C]98[/C][C]3615286[/C][C]3612237.67441724[/C][C]3048.32558276337[/C][/ROW]
[ROW][C]99[/C][C]3696556[/C][C]3612609.15047459[/C][C]83946.8495254064[/C][/ROW]
[ROW][C]100[/C][C]4123959[/C][C]4036519.82250223[/C][C]87439.1774977732[/C][/ROW]
[ROW][C]101[/C][C]4136163[/C][C]4146292.10576581[/C][C]-10129.1057658133[/C][/ROW]
[ROW][C]102[/C][C]3933392[/C][C]4091968.28049998[/C][C]-158576.280499982[/C][/ROW]
[ROW][C]103[/C][C]4035576[/C][C]4033506.46753138[/C][C]2069.53246861631[/C][/ROW]
[ROW][C]104[/C][C]4551202[/C][C]4498645.23635521[/C][C]52556.7636447935[/C][/ROW]
[ROW][C]105[/C][C]4032195[/C][C]4033756.29753809[/C][C]-1561.29753809357[/C][/ROW]
[ROW][C]106[/C][C]3970893[/C][C]4142029.23590495[/C][C]-171136.235904948[/C][/ROW]
[ROW][C]107[/C][C]4489016[/C][C]4613845.64798121[/C][C]-124829.647981209[/C][/ROW]
[ROW][C]108[/C][C]5426127[/C][C]5397077.71888536[/C][C]29049.2811146397[/C][/ROW]
[ROW][C]109[/C][C]4578224[/C][C]4506402.50747684[/C][C]71821.4925231553[/C][/ROW]
[ROW][C]110[/C][C]4126390[/C][C]4115610.09925772[/C][C]10779.9007422778[/C][/ROW]
[ROW][C]111[/C][C]4892100[/C][C]4848027.81838436[/C][C]44072.1816156442[/C][/ROW]
[ROW][C]112[/C][C]4128697[/C][C]4200060.88494318[/C][C]-71363.8849431778[/C][/ROW]
[ROW][C]113[/C][C]4408721[/C][C]4416026.96928813[/C][C]-7305.96928812949[/C][/ROW]
[ROW][C]114[/C][C]4199465[/C][C]4208302.45189543[/C][C]-8837.45189543002[/C][/ROW]
[ROW][C]115[/C][C]4074767[/C][C]4018750.9773192[/C][C]56016.0226807987[/C][/ROW]
[ROW][C]116[/C][C]4161758[/C][C]4126823.18298359[/C][C]34934.8170164101[/C][/ROW]
[ROW][C]117[/C][C]3891319[/C][C]3896073.97586983[/C][C]-4754.97586983007[/C][/ROW]
[ROW][C]118[/C][C]4470302[/C][C]4400059.37007317[/C][C]70242.6299268338[/C][/ROW]
[ROW][C]119[/C][C]4283111[/C][C]4155475.63840388[/C][C]127635.361596119[/C][/ROW]
[ROW][C]120[/C][C]3845962[/C][C]3754111.75140658[/C][C]91850.2485934196[/C][/ROW]
[ROW][C]121[/C][C]3911471[/C][C]3706642.12493412[/C][C]204828.875065876[/C][/ROW]
[ROW][C]122[/C][C]3798478[/C][C]3646299.06074522[/C][C]152178.939254785[/C][/ROW]
[ROW][C]123[/C][C]3644313[/C][C]3451133.24241333[/C][C]193179.757586668[/C][/ROW]
[ROW][C]124[/C][C]3784029[/C][C]3619646.09998736[/C][C]164382.900012636[/C][/ROW]
[ROW][C]125[/C][C]3647134[/C][C]3638854.50462354[/C][C]8279.49537645976[/C][/ROW]
[ROW][C]126[/C][C]3994662[/C][C]3936070.95293537[/C][C]58591.0470646286[/C][/ROW]
[ROW][C]127[/C][C]3607836[/C][C]3580464.58650697[/C][C]27371.4134930317[/C][/ROW]
[ROW][C]128[/C][C]3566008[/C][C]3589344.23801686[/C][C]-23336.2380168556[/C][/ROW]
[ROW][C]129[/C][C]3511412[/C][C]3559317.76495557[/C][C]-47905.7649555734[/C][/ROW]
[ROW][C]130[/C][C]3258665[/C][C]3210913.52412444[/C][C]47751.4758755586[/C][/ROW]
[ROW][C]131[/C][C]3486573[/C][C]3565714.67392156[/C][C]-79141.6739215553[/C][/ROW]
[ROW][C]132[/C][C]3369443[/C][C]3451717.54742773[/C][C]-82274.5474277253[/C][/ROW]
[ROW][C]133[/C][C]3465544[/C][C]3745417.0188655[/C][C]-279873.018865502[/C][/ROW]
[ROW][C]134[/C][C]3905224[/C][C]4407997.63361157[/C][C]-502773.633611571[/C][/ROW]
[ROW][C]135[/C][C]3733881[/C][C]4013367.73765081[/C][C]-279486.737650814[/C][/ROW]
[ROW][C]136[/C][C]3220642[/C][C]3093024.74055425[/C][C]127617.259445751[/C][/ROW]
[ROW][C]137[/C][C]3225812[/C][C]3077471.34229938[/C][C]148340.657700615[/C][/ROW]
[ROW][C]138[/C][C]3354461[/C][C]3240006.35112781[/C][C]114454.648872189[/C][/ROW]
[ROW][C]139[/C][C]3352261[/C][C]3198636.73898286[/C][C]153624.261017137[/C][/ROW]
[ROW][C]140[/C][C]3450652[/C][C]3390319.53305608[/C][C]60332.4669439176[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
145819454665075.31449271-83130.3144927131
238740383904226.34714363-30188.3471436283
340862904065385.1159862220904.8840137823
443643644208432.5757501155931.424249901
537935863796834.73515169-3248.7351516912
645339144487076.0875914646837.9124085353
748230434724223.11668598819.8833149948
839815353956761.0273747824773.9726252237
947463564716139.5019452530216.4980547468
1052845345149779.40208198134754.597918024
1142648304235295.9830533529534.01694665
1239246743875061.6714973549612.3285026532
1337347533692134.9812858442618.0187141613
1437622903662398.4606762799891.5393237261
1536097393545274.0263919764464.9736080337
1638775943732152.99030911145441.009690894
1736364153553027.2608221783387.7391778265
1835781953565066.4638233913128.5361766055
1936043423511518.687199492823.3128006039
2034595133470780.37462426-11267.3746242566
2133665713487546.19191203-120975.191912025
2233712773624326.90217931-253049.90217931
2337248483839774.02518038-114926.025180378
2433508303411327.78623628-60497.7862362772
2533051593343999.36297817-38840.3629781648
2633907363419221.84548148-28485.8454814794
2733497583486950.04666255-137192.046662553
2832536553484026.30399689-230371.303996886
2937342504267834.37363519-533584.373635188
3034554333819741.45338751-364308.453387511
3129667263082578.38952291-115852.389522908
3229937163021446.82450349-27730.824503495
3330093203044522.62917338-35202.6291733753
3431697133214175.03414501-44462.0341450116
3531700613138667.3594952831393.6405047181
3633689343420400.53364915-51466.5336491538
3732926383286901.971541755736.02845824762
3833373443304254.1691068933089.8308931061
3932083063179083.9419981929222.0580018055
4033591303225086.6466032134043.353396804
4132230783139240.493824183837.5061759004
4234371593346864.4816969890294.5183030153
4334001563353406.5265326446749.4734673613
4436575763654496.667393813079.33260618612
4537656133789199.37575526-23586.3757552639
4634819213450195.7331186131725.2668813893
4736048003539619.6375739765180.3624260259
4839813403929020.0124405752319.9875594348
4937340783703541.461062530536.5389374977
5040181733903483.08906082114689.910939181
5138874173856617.6879542630799.3120457421
5239198803979864.83989171-59984.8398917145
5340144664009850.88277554615.11722449912
5441977584232482.60815573-34724.6081557335
5538965313840120.1921034456410.8078965647
5639647423881745.007648582996.9923514963
5742018474088939.18459075112907.815409254
5840505123907257.27310104143254.72689896
5939974023887695.00450895109706.995491046
6043144794205679.08611909108799.913880914
6149257444790032.16643352135711.833566484
6251306314971944.15818932158686.84181068
6344448554361739.4030021883115.5969978229
6439673193954622.8644503112696.1355496913
6539312503799834.78736232131415.212637681
6642359524024770.33366148211181.666338519
6741692193949752.70943307219466.290566932
6837790643677372.24984882101691.750151184
6935588103494042.9397242864767.0602757163
7036994663654959.8989919744506.1010080292
7136506933565935.3107960184757.6892039912
7235256333474578.7521389351054.2478610673
7334702763505045.06890569-34769.0689056876
7438590943905912.42686553-46818.4268655295
7536611553694517.24419543-33362.2441954304
7633563653477247.25877884-120882.258778841
7733444403389885.40033561-45445.400335611
7833386843366401.3586974-27717.3586973993
7934042943499059.083777-94765.0837770002
8032893193471418.51818894-182099.518188943
8134692523864768.58366813-395516.583668127
8235718504019560.1904262-447710.1904262
8336399143847452.61392041-207538.613920413
8430917303175599.08791425-83869.0879142547
8530781493124779.46031022-46630.4603102212
8631881153228516.97649885-40401.9764988522
8732460823220258.6028879225823.3971120833
8834869923513591.93623353-26599.9362335326
8933781873417982.22530733-39795.22530733
9032823063360182.77669385-77876.7766938474
9132883453314311.16413545-25966.1641354518
9233257493316663.426486339085.57351367312
9333522623347210.69601015051.30398990314
9435319543491356.0089678240597.9910321799
9537226223762760.66735351-40138.6673535082
9638093653716442.082157892922.9178422037
9737506173709808.7247701540808.275229846
9836152863612237.674417243048.32558276337
9936965563612609.1504745983946.8495254064
10041239594036519.8225022387439.1774977732
10141361634146292.10576581-10129.1057658133
10239333924091968.28049998-158576.280499982
10340355764033506.467531382069.53246861631
10445512024498645.2363552152556.7636447935
10540321954033756.29753809-1561.29753809357
10639708934142029.23590495-171136.235904948
10744890164613845.64798121-124829.647981209
10854261275397077.7188853629049.2811146397
10945782244506402.5074768471821.4925231553
11041263904115610.0992577210779.9007422778
11148921004848027.8183843644072.1816156442
11241286974200060.88494318-71363.8849431778
11344087214416026.96928813-7305.96928812949
11441994654208302.45189543-8837.45189543002
11540747674018750.977319256016.0226807987
11641617584126823.1829835934934.8170164101
11738913193896073.97586983-4754.97586983007
11844703024400059.3700731770242.6299268338
11942831114155475.63840388127635.361596119
12038459623754111.7514065891850.2485934196
12139114713706642.12493412204828.875065876
12237984783646299.06074522152178.939254785
12336443133451133.24241333193179.757586668
12437840293619646.09998736164382.900012636
12536471343638854.504623548279.49537645976
12639946623936070.9529353758591.0470646286
12736078363580464.5865069727371.4134930317
12835660083589344.23801686-23336.2380168556
12935114123559317.76495557-47905.7649555734
13032586653210913.5241244447751.4758755586
13134865733565714.67392156-79141.6739215553
13233694433451717.54742773-82274.5474277253
13334655443745417.0188655-279873.018865502
13439052244407997.63361157-502773.633611571
13537338814013367.73765081-279486.737650814
13632206423093024.74055425127617.259445751
13732258123077471.34229938148340.657700615
13833544613240006.35112781114454.648872189
13933522613198636.73898286153624.261017137
14034506523390319.5330560860332.4669439176







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.08486771561816410.1697354312363280.915132284381836
120.02894447242356890.05788894484713780.971055527576431
130.0294252354617410.05885047092348210.970574764538259
140.0136506914857830.0273013829715660.986349308514217
150.006512961555178940.01302592311035790.993487038444821
160.002561857232602990.005123714465205980.997438142767397
170.000936097949832980.001872195899665960.999063902050167
180.0003400563728757560.0006801127457515120.999659943627124
190.0002294878098735130.0004589756197470260.999770512190126
209.16060664340443e-050.0001832121328680890.999908393933566
213.7659146294653e-057.5318292589306e-050.999962340853705
222.20702457098368e-054.41404914196736e-050.99997792975429
239.08819528657381e-061.81763905731476e-050.999990911804713
245.13140987721295e-061.02628197544259e-050.999994868590123
253.39683166196792e-066.79366332393584e-060.999996603168338
264.45918762911585e-068.9183752582317e-060.999995540812371
271.14226735810351e-052.28453471620702e-050.999988577326419
280.001428077179962830.002856154359925670.998571922820037
290.25809489916150.5161897983230.7419051008385
300.3506279745519150.7012559491038290.649372025448085
310.3176353466435540.6352706932871070.682364653356446
320.3349534013014740.6699068026029490.665046598698526
330.3043958360286390.6087916720572770.695604163971361
340.2887310288313520.5774620576627040.711268971168648
350.3049281747806560.6098563495613120.695071825219344
360.2926621299052020.5853242598104030.707337870094798
370.2582610221660270.5165220443320550.741738977833973
380.2314242742692060.4628485485384120.768575725730794
390.1983066543878910.3966133087757810.801693345612109
400.2365846671953090.4731693343906170.763415332804691
410.1994767256988420.3989534513976850.800523274301158
420.170081665437950.34016333087590.82991833456205
430.1622301449765720.3244602899531430.837769855023428
440.2274006992827990.4548013985655980.772599300717201
450.2350573177392480.4701146354784960.764942682260752
460.1959490120579650.391898024115930.804050987942035
470.1662224760004510.3324449520009010.833777523999549
480.1774561098474360.3549122196948730.822543890152564
490.1472949984028820.2945899968057640.852705001597118
500.131243928028160.2624878560563210.86875607197184
510.1062247169457630.2124494338915270.893775283054237
520.09805483569501680.1961096713900340.901945164304983
530.08916397102836060.1783279420567210.910836028971639
540.07658540580134040.1531708116026810.92341459419866
550.06441217901225210.1288243580245040.935587820987748
560.05424292117832830.1084858423566570.945757078821672
570.05300427334649130.1060085466929830.946995726653509
580.05424425125444040.1084885025088810.94575574874556
590.05493286918421390.1098657383684280.945067130815786
600.05397470615519740.1079494123103950.946025293844803
610.05567008339357870.1113401667871570.944329916606421
620.06447637183927860.1289527436785570.935523628160721
630.0653175109431870.1306350218863740.934682489056813
640.0680046080085870.1360092160171740.931995391991413
650.08784207797857040.1756841559571410.91215792202143
660.2149429580751690.4298859161503380.785057041924831
670.4610107397679010.9220214795358020.538989260232099
680.4704046395260030.9408092790520060.529595360473997
690.4554762287332960.9109524574665930.544523771266704
700.4229773236851010.8459546473702030.577022676314899
710.4246406234198370.8492812468396740.575359376580163
720.396413712614360.792827425228720.60358628738564
730.3575050574040170.7150101148080340.642494942595983
740.3153536216994410.6307072433988830.684646378300559
750.2795342128374520.5590684256749050.720465787162548
760.3415035718975880.6830071437951770.658496428102412
770.3716396700111540.7432793400223070.628360329988846
780.3981669053382390.7963338106764780.601833094661761
790.4201147940781320.8402295881562630.579885205921868
800.4850763460384660.9701526920769320.514923653961534
810.8455860701776040.3088278596447930.154413929822396
820.9689010258991290.06219794820174180.0310989741008709
830.9687280137909620.06254397241807630.0312719862090381
840.959906868074350.08018626385129960.0400931319256498
850.947110284601770.105779430796460.0528897153982302
860.9316931250920070.1366137498159860.0683068749079929
870.9259039512406540.1481920975186930.0740960487593463
880.9051092268916470.1897815462167070.0948907731083534
890.8810708961478320.2378582077043360.118929103852168
900.8743468367726680.2513063264546650.125653163227332
910.8483492064237510.3033015871524970.151650793576249
920.8218688386201290.3562623227597420.178131161379871
930.7940621894795320.4118756210409360.205937810520468
940.7651222397528280.4697555204943440.234877760247172
950.7323105380442860.5353789239114280.267689461955714
960.7230057136852720.5539885726294570.276994286314728
970.6831604199096570.6336791601806850.316839580090343
980.6503090822483740.6993818355032530.349690917751626
990.6090113272722080.7819773454555850.390988672727792
1000.5698383740023550.8603232519952910.430161625997645
1010.5493822065926380.9012355868147240.450617793407362
1020.6569889140690060.6860221718619880.343011085930994
1030.7376790891368440.5246418217263120.262320910863156
1040.6958839114275270.6082321771449460.304116088572473
1050.6630070875397450.6739858249205110.336992912460255
1060.8032828074715070.3934343850569860.196717192528493
1070.9181671378553290.1636657242893420.0818328621446712
1080.9187764342367470.1624471315265070.0812235657632534
1090.9089125734644040.1821748530711930.0910874265355963
1100.8973006257733990.2053987484532010.102699374226601
1110.9597532176159990.08049356476800140.0402467823840007
1120.9591980704063020.08160385918739620.0408019295936981
1130.9410908743306660.1178182513386680.0589091256693339
1140.9150178516308320.1699642967383350.0849821483691676
1150.8873233529799720.2253532940400560.112676647020028
1160.8484798309081170.3030403381837660.151520169091883
1170.8953028991870420.2093942016259170.104697100812958
1180.9043986233782380.1912027532435230.0956013766217617
1190.9821713964918910.03565720701621810.0178286035081091
1200.9807363329629430.03852733407411330.0192636670370566
1210.9797022277523640.04059554449527260.0202977722476363
1220.9634752503742430.07304949925151360.0365247496257568
1230.9393347693796990.1213304612406020.0606652306203012
1240.9829636585926670.03407268281466550.0170363414073328
1250.9677980669029370.06440386619412610.032201933097063
1260.9779733134633230.0440533730733550.0220266865366775
1270.9746473129422980.05070537411540360.0253526870577018
1280.9401240693082730.1197518613834540.059875930691727
1290.9206107586138130.1587784827723730.0793892413861865

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 & 0.0848677156181641 & 0.169735431236328 & 0.915132284381836 \tabularnewline
12 & 0.0289444724235689 & 0.0578889448471378 & 0.971055527576431 \tabularnewline
13 & 0.029425235461741 & 0.0588504709234821 & 0.970574764538259 \tabularnewline
14 & 0.013650691485783 & 0.027301382971566 & 0.986349308514217 \tabularnewline
15 & 0.00651296155517894 & 0.0130259231103579 & 0.993487038444821 \tabularnewline
16 & 0.00256185723260299 & 0.00512371446520598 & 0.997438142767397 \tabularnewline
17 & 0.00093609794983298 & 0.00187219589966596 & 0.999063902050167 \tabularnewline
18 & 0.000340056372875756 & 0.000680112745751512 & 0.999659943627124 \tabularnewline
19 & 0.000229487809873513 & 0.000458975619747026 & 0.999770512190126 \tabularnewline
20 & 9.16060664340443e-05 & 0.000183212132868089 & 0.999908393933566 \tabularnewline
21 & 3.7659146294653e-05 & 7.5318292589306e-05 & 0.999962340853705 \tabularnewline
22 & 2.20702457098368e-05 & 4.41404914196736e-05 & 0.99997792975429 \tabularnewline
23 & 9.08819528657381e-06 & 1.81763905731476e-05 & 0.999990911804713 \tabularnewline
24 & 5.13140987721295e-06 & 1.02628197544259e-05 & 0.999994868590123 \tabularnewline
25 & 3.39683166196792e-06 & 6.79366332393584e-06 & 0.999996603168338 \tabularnewline
26 & 4.45918762911585e-06 & 8.9183752582317e-06 & 0.999995540812371 \tabularnewline
27 & 1.14226735810351e-05 & 2.28453471620702e-05 & 0.999988577326419 \tabularnewline
28 & 0.00142807717996283 & 0.00285615435992567 & 0.998571922820037 \tabularnewline
29 & 0.2580948991615 & 0.516189798323 & 0.7419051008385 \tabularnewline
30 & 0.350627974551915 & 0.701255949103829 & 0.649372025448085 \tabularnewline
31 & 0.317635346643554 & 0.635270693287107 & 0.682364653356446 \tabularnewline
32 & 0.334953401301474 & 0.669906802602949 & 0.665046598698526 \tabularnewline
33 & 0.304395836028639 & 0.608791672057277 & 0.695604163971361 \tabularnewline
34 & 0.288731028831352 & 0.577462057662704 & 0.711268971168648 \tabularnewline
35 & 0.304928174780656 & 0.609856349561312 & 0.695071825219344 \tabularnewline
36 & 0.292662129905202 & 0.585324259810403 & 0.707337870094798 \tabularnewline
37 & 0.258261022166027 & 0.516522044332055 & 0.741738977833973 \tabularnewline
38 & 0.231424274269206 & 0.462848548538412 & 0.768575725730794 \tabularnewline
39 & 0.198306654387891 & 0.396613308775781 & 0.801693345612109 \tabularnewline
40 & 0.236584667195309 & 0.473169334390617 & 0.763415332804691 \tabularnewline
41 & 0.199476725698842 & 0.398953451397685 & 0.800523274301158 \tabularnewline
42 & 0.17008166543795 & 0.3401633308759 & 0.82991833456205 \tabularnewline
43 & 0.162230144976572 & 0.324460289953143 & 0.837769855023428 \tabularnewline
44 & 0.227400699282799 & 0.454801398565598 & 0.772599300717201 \tabularnewline
45 & 0.235057317739248 & 0.470114635478496 & 0.764942682260752 \tabularnewline
46 & 0.195949012057965 & 0.39189802411593 & 0.804050987942035 \tabularnewline
47 & 0.166222476000451 & 0.332444952000901 & 0.833777523999549 \tabularnewline
48 & 0.177456109847436 & 0.354912219694873 & 0.822543890152564 \tabularnewline
49 & 0.147294998402882 & 0.294589996805764 & 0.852705001597118 \tabularnewline
50 & 0.13124392802816 & 0.262487856056321 & 0.86875607197184 \tabularnewline
51 & 0.106224716945763 & 0.212449433891527 & 0.893775283054237 \tabularnewline
52 & 0.0980548356950168 & 0.196109671390034 & 0.901945164304983 \tabularnewline
53 & 0.0891639710283606 & 0.178327942056721 & 0.910836028971639 \tabularnewline
54 & 0.0765854058013404 & 0.153170811602681 & 0.92341459419866 \tabularnewline
55 & 0.0644121790122521 & 0.128824358024504 & 0.935587820987748 \tabularnewline
56 & 0.0542429211783283 & 0.108485842356657 & 0.945757078821672 \tabularnewline
57 & 0.0530042733464913 & 0.106008546692983 & 0.946995726653509 \tabularnewline
58 & 0.0542442512544404 & 0.108488502508881 & 0.94575574874556 \tabularnewline
59 & 0.0549328691842139 & 0.109865738368428 & 0.945067130815786 \tabularnewline
60 & 0.0539747061551974 & 0.107949412310395 & 0.946025293844803 \tabularnewline
61 & 0.0556700833935787 & 0.111340166787157 & 0.944329916606421 \tabularnewline
62 & 0.0644763718392786 & 0.128952743678557 & 0.935523628160721 \tabularnewline
63 & 0.065317510943187 & 0.130635021886374 & 0.934682489056813 \tabularnewline
64 & 0.068004608008587 & 0.136009216017174 & 0.931995391991413 \tabularnewline
65 & 0.0878420779785704 & 0.175684155957141 & 0.91215792202143 \tabularnewline
66 & 0.214942958075169 & 0.429885916150338 & 0.785057041924831 \tabularnewline
67 & 0.461010739767901 & 0.922021479535802 & 0.538989260232099 \tabularnewline
68 & 0.470404639526003 & 0.940809279052006 & 0.529595360473997 \tabularnewline
69 & 0.455476228733296 & 0.910952457466593 & 0.544523771266704 \tabularnewline
70 & 0.422977323685101 & 0.845954647370203 & 0.577022676314899 \tabularnewline
71 & 0.424640623419837 & 0.849281246839674 & 0.575359376580163 \tabularnewline
72 & 0.39641371261436 & 0.79282742522872 & 0.60358628738564 \tabularnewline
73 & 0.357505057404017 & 0.715010114808034 & 0.642494942595983 \tabularnewline
74 & 0.315353621699441 & 0.630707243398883 & 0.684646378300559 \tabularnewline
75 & 0.279534212837452 & 0.559068425674905 & 0.720465787162548 \tabularnewline
76 & 0.341503571897588 & 0.683007143795177 & 0.658496428102412 \tabularnewline
77 & 0.371639670011154 & 0.743279340022307 & 0.628360329988846 \tabularnewline
78 & 0.398166905338239 & 0.796333810676478 & 0.601833094661761 \tabularnewline
79 & 0.420114794078132 & 0.840229588156263 & 0.579885205921868 \tabularnewline
80 & 0.485076346038466 & 0.970152692076932 & 0.514923653961534 \tabularnewline
81 & 0.845586070177604 & 0.308827859644793 & 0.154413929822396 \tabularnewline
82 & 0.968901025899129 & 0.0621979482017418 & 0.0310989741008709 \tabularnewline
83 & 0.968728013790962 & 0.0625439724180763 & 0.0312719862090381 \tabularnewline
84 & 0.95990686807435 & 0.0801862638512996 & 0.0400931319256498 \tabularnewline
85 & 0.94711028460177 & 0.10577943079646 & 0.0528897153982302 \tabularnewline
86 & 0.931693125092007 & 0.136613749815986 & 0.0683068749079929 \tabularnewline
87 & 0.925903951240654 & 0.148192097518693 & 0.0740960487593463 \tabularnewline
88 & 0.905109226891647 & 0.189781546216707 & 0.0948907731083534 \tabularnewline
89 & 0.881070896147832 & 0.237858207704336 & 0.118929103852168 \tabularnewline
90 & 0.874346836772668 & 0.251306326454665 & 0.125653163227332 \tabularnewline
91 & 0.848349206423751 & 0.303301587152497 & 0.151650793576249 \tabularnewline
92 & 0.821868838620129 & 0.356262322759742 & 0.178131161379871 \tabularnewline
93 & 0.794062189479532 & 0.411875621040936 & 0.205937810520468 \tabularnewline
94 & 0.765122239752828 & 0.469755520494344 & 0.234877760247172 \tabularnewline
95 & 0.732310538044286 & 0.535378923911428 & 0.267689461955714 \tabularnewline
96 & 0.723005713685272 & 0.553988572629457 & 0.276994286314728 \tabularnewline
97 & 0.683160419909657 & 0.633679160180685 & 0.316839580090343 \tabularnewline
98 & 0.650309082248374 & 0.699381835503253 & 0.349690917751626 \tabularnewline
99 & 0.609011327272208 & 0.781977345455585 & 0.390988672727792 \tabularnewline
100 & 0.569838374002355 & 0.860323251995291 & 0.430161625997645 \tabularnewline
101 & 0.549382206592638 & 0.901235586814724 & 0.450617793407362 \tabularnewline
102 & 0.656988914069006 & 0.686022171861988 & 0.343011085930994 \tabularnewline
103 & 0.737679089136844 & 0.524641821726312 & 0.262320910863156 \tabularnewline
104 & 0.695883911427527 & 0.608232177144946 & 0.304116088572473 \tabularnewline
105 & 0.663007087539745 & 0.673985824920511 & 0.336992912460255 \tabularnewline
106 & 0.803282807471507 & 0.393434385056986 & 0.196717192528493 \tabularnewline
107 & 0.918167137855329 & 0.163665724289342 & 0.0818328621446712 \tabularnewline
108 & 0.918776434236747 & 0.162447131526507 & 0.0812235657632534 \tabularnewline
109 & 0.908912573464404 & 0.182174853071193 & 0.0910874265355963 \tabularnewline
110 & 0.897300625773399 & 0.205398748453201 & 0.102699374226601 \tabularnewline
111 & 0.959753217615999 & 0.0804935647680014 & 0.0402467823840007 \tabularnewline
112 & 0.959198070406302 & 0.0816038591873962 & 0.0408019295936981 \tabularnewline
113 & 0.941090874330666 & 0.117818251338668 & 0.0589091256693339 \tabularnewline
114 & 0.915017851630832 & 0.169964296738335 & 0.0849821483691676 \tabularnewline
115 & 0.887323352979972 & 0.225353294040056 & 0.112676647020028 \tabularnewline
116 & 0.848479830908117 & 0.303040338183766 & 0.151520169091883 \tabularnewline
117 & 0.895302899187042 & 0.209394201625917 & 0.104697100812958 \tabularnewline
118 & 0.904398623378238 & 0.191202753243523 & 0.0956013766217617 \tabularnewline
119 & 0.982171396491891 & 0.0356572070162181 & 0.0178286035081091 \tabularnewline
120 & 0.980736332962943 & 0.0385273340741133 & 0.0192636670370566 \tabularnewline
121 & 0.979702227752364 & 0.0405955444952726 & 0.0202977722476363 \tabularnewline
122 & 0.963475250374243 & 0.0730494992515136 & 0.0365247496257568 \tabularnewline
123 & 0.939334769379699 & 0.121330461240602 & 0.0606652306203012 \tabularnewline
124 & 0.982963658592667 & 0.0340726828146655 & 0.0170363414073328 \tabularnewline
125 & 0.967798066902937 & 0.0644038661941261 & 0.032201933097063 \tabularnewline
126 & 0.977973313463323 & 0.044053373073355 & 0.0220266865366775 \tabularnewline
127 & 0.974647312942298 & 0.0507053741154036 & 0.0253526870577018 \tabularnewline
128 & 0.940124069308273 & 0.119751861383454 & 0.059875930691727 \tabularnewline
129 & 0.920610758613813 & 0.158778482772373 & 0.0793892413861865 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C]0.0848677156181641[/C][C]0.169735431236328[/C][C]0.915132284381836[/C][/ROW]
[ROW][C]12[/C][C]0.0289444724235689[/C][C]0.0578889448471378[/C][C]0.971055527576431[/C][/ROW]
[ROW][C]13[/C][C]0.029425235461741[/C][C]0.0588504709234821[/C][C]0.970574764538259[/C][/ROW]
[ROW][C]14[/C][C]0.013650691485783[/C][C]0.027301382971566[/C][C]0.986349308514217[/C][/ROW]
[ROW][C]15[/C][C]0.00651296155517894[/C][C]0.0130259231103579[/C][C]0.993487038444821[/C][/ROW]
[ROW][C]16[/C][C]0.00256185723260299[/C][C]0.00512371446520598[/C][C]0.997438142767397[/C][/ROW]
[ROW][C]17[/C][C]0.00093609794983298[/C][C]0.00187219589966596[/C][C]0.999063902050167[/C][/ROW]
[ROW][C]18[/C][C]0.000340056372875756[/C][C]0.000680112745751512[/C][C]0.999659943627124[/C][/ROW]
[ROW][C]19[/C][C]0.000229487809873513[/C][C]0.000458975619747026[/C][C]0.999770512190126[/C][/ROW]
[ROW][C]20[/C][C]9.16060664340443e-05[/C][C]0.000183212132868089[/C][C]0.999908393933566[/C][/ROW]
[ROW][C]21[/C][C]3.7659146294653e-05[/C][C]7.5318292589306e-05[/C][C]0.999962340853705[/C][/ROW]
[ROW][C]22[/C][C]2.20702457098368e-05[/C][C]4.41404914196736e-05[/C][C]0.99997792975429[/C][/ROW]
[ROW][C]23[/C][C]9.08819528657381e-06[/C][C]1.81763905731476e-05[/C][C]0.999990911804713[/C][/ROW]
[ROW][C]24[/C][C]5.13140987721295e-06[/C][C]1.02628197544259e-05[/C][C]0.999994868590123[/C][/ROW]
[ROW][C]25[/C][C]3.39683166196792e-06[/C][C]6.79366332393584e-06[/C][C]0.999996603168338[/C][/ROW]
[ROW][C]26[/C][C]4.45918762911585e-06[/C][C]8.9183752582317e-06[/C][C]0.999995540812371[/C][/ROW]
[ROW][C]27[/C][C]1.14226735810351e-05[/C][C]2.28453471620702e-05[/C][C]0.999988577326419[/C][/ROW]
[ROW][C]28[/C][C]0.00142807717996283[/C][C]0.00285615435992567[/C][C]0.998571922820037[/C][/ROW]
[ROW][C]29[/C][C]0.2580948991615[/C][C]0.516189798323[/C][C]0.7419051008385[/C][/ROW]
[ROW][C]30[/C][C]0.350627974551915[/C][C]0.701255949103829[/C][C]0.649372025448085[/C][/ROW]
[ROW][C]31[/C][C]0.317635346643554[/C][C]0.635270693287107[/C][C]0.682364653356446[/C][/ROW]
[ROW][C]32[/C][C]0.334953401301474[/C][C]0.669906802602949[/C][C]0.665046598698526[/C][/ROW]
[ROW][C]33[/C][C]0.304395836028639[/C][C]0.608791672057277[/C][C]0.695604163971361[/C][/ROW]
[ROW][C]34[/C][C]0.288731028831352[/C][C]0.577462057662704[/C][C]0.711268971168648[/C][/ROW]
[ROW][C]35[/C][C]0.304928174780656[/C][C]0.609856349561312[/C][C]0.695071825219344[/C][/ROW]
[ROW][C]36[/C][C]0.292662129905202[/C][C]0.585324259810403[/C][C]0.707337870094798[/C][/ROW]
[ROW][C]37[/C][C]0.258261022166027[/C][C]0.516522044332055[/C][C]0.741738977833973[/C][/ROW]
[ROW][C]38[/C][C]0.231424274269206[/C][C]0.462848548538412[/C][C]0.768575725730794[/C][/ROW]
[ROW][C]39[/C][C]0.198306654387891[/C][C]0.396613308775781[/C][C]0.801693345612109[/C][/ROW]
[ROW][C]40[/C][C]0.236584667195309[/C][C]0.473169334390617[/C][C]0.763415332804691[/C][/ROW]
[ROW][C]41[/C][C]0.199476725698842[/C][C]0.398953451397685[/C][C]0.800523274301158[/C][/ROW]
[ROW][C]42[/C][C]0.17008166543795[/C][C]0.3401633308759[/C][C]0.82991833456205[/C][/ROW]
[ROW][C]43[/C][C]0.162230144976572[/C][C]0.324460289953143[/C][C]0.837769855023428[/C][/ROW]
[ROW][C]44[/C][C]0.227400699282799[/C][C]0.454801398565598[/C][C]0.772599300717201[/C][/ROW]
[ROW][C]45[/C][C]0.235057317739248[/C][C]0.470114635478496[/C][C]0.764942682260752[/C][/ROW]
[ROW][C]46[/C][C]0.195949012057965[/C][C]0.39189802411593[/C][C]0.804050987942035[/C][/ROW]
[ROW][C]47[/C][C]0.166222476000451[/C][C]0.332444952000901[/C][C]0.833777523999549[/C][/ROW]
[ROW][C]48[/C][C]0.177456109847436[/C][C]0.354912219694873[/C][C]0.822543890152564[/C][/ROW]
[ROW][C]49[/C][C]0.147294998402882[/C][C]0.294589996805764[/C][C]0.852705001597118[/C][/ROW]
[ROW][C]50[/C][C]0.13124392802816[/C][C]0.262487856056321[/C][C]0.86875607197184[/C][/ROW]
[ROW][C]51[/C][C]0.106224716945763[/C][C]0.212449433891527[/C][C]0.893775283054237[/C][/ROW]
[ROW][C]52[/C][C]0.0980548356950168[/C][C]0.196109671390034[/C][C]0.901945164304983[/C][/ROW]
[ROW][C]53[/C][C]0.0891639710283606[/C][C]0.178327942056721[/C][C]0.910836028971639[/C][/ROW]
[ROW][C]54[/C][C]0.0765854058013404[/C][C]0.153170811602681[/C][C]0.92341459419866[/C][/ROW]
[ROW][C]55[/C][C]0.0644121790122521[/C][C]0.128824358024504[/C][C]0.935587820987748[/C][/ROW]
[ROW][C]56[/C][C]0.0542429211783283[/C][C]0.108485842356657[/C][C]0.945757078821672[/C][/ROW]
[ROW][C]57[/C][C]0.0530042733464913[/C][C]0.106008546692983[/C][C]0.946995726653509[/C][/ROW]
[ROW][C]58[/C][C]0.0542442512544404[/C][C]0.108488502508881[/C][C]0.94575574874556[/C][/ROW]
[ROW][C]59[/C][C]0.0549328691842139[/C][C]0.109865738368428[/C][C]0.945067130815786[/C][/ROW]
[ROW][C]60[/C][C]0.0539747061551974[/C][C]0.107949412310395[/C][C]0.946025293844803[/C][/ROW]
[ROW][C]61[/C][C]0.0556700833935787[/C][C]0.111340166787157[/C][C]0.944329916606421[/C][/ROW]
[ROW][C]62[/C][C]0.0644763718392786[/C][C]0.128952743678557[/C][C]0.935523628160721[/C][/ROW]
[ROW][C]63[/C][C]0.065317510943187[/C][C]0.130635021886374[/C][C]0.934682489056813[/C][/ROW]
[ROW][C]64[/C][C]0.068004608008587[/C][C]0.136009216017174[/C][C]0.931995391991413[/C][/ROW]
[ROW][C]65[/C][C]0.0878420779785704[/C][C]0.175684155957141[/C][C]0.91215792202143[/C][/ROW]
[ROW][C]66[/C][C]0.214942958075169[/C][C]0.429885916150338[/C][C]0.785057041924831[/C][/ROW]
[ROW][C]67[/C][C]0.461010739767901[/C][C]0.922021479535802[/C][C]0.538989260232099[/C][/ROW]
[ROW][C]68[/C][C]0.470404639526003[/C][C]0.940809279052006[/C][C]0.529595360473997[/C][/ROW]
[ROW][C]69[/C][C]0.455476228733296[/C][C]0.910952457466593[/C][C]0.544523771266704[/C][/ROW]
[ROW][C]70[/C][C]0.422977323685101[/C][C]0.845954647370203[/C][C]0.577022676314899[/C][/ROW]
[ROW][C]71[/C][C]0.424640623419837[/C][C]0.849281246839674[/C][C]0.575359376580163[/C][/ROW]
[ROW][C]72[/C][C]0.39641371261436[/C][C]0.79282742522872[/C][C]0.60358628738564[/C][/ROW]
[ROW][C]73[/C][C]0.357505057404017[/C][C]0.715010114808034[/C][C]0.642494942595983[/C][/ROW]
[ROW][C]74[/C][C]0.315353621699441[/C][C]0.630707243398883[/C][C]0.684646378300559[/C][/ROW]
[ROW][C]75[/C][C]0.279534212837452[/C][C]0.559068425674905[/C][C]0.720465787162548[/C][/ROW]
[ROW][C]76[/C][C]0.341503571897588[/C][C]0.683007143795177[/C][C]0.658496428102412[/C][/ROW]
[ROW][C]77[/C][C]0.371639670011154[/C][C]0.743279340022307[/C][C]0.628360329988846[/C][/ROW]
[ROW][C]78[/C][C]0.398166905338239[/C][C]0.796333810676478[/C][C]0.601833094661761[/C][/ROW]
[ROW][C]79[/C][C]0.420114794078132[/C][C]0.840229588156263[/C][C]0.579885205921868[/C][/ROW]
[ROW][C]80[/C][C]0.485076346038466[/C][C]0.970152692076932[/C][C]0.514923653961534[/C][/ROW]
[ROW][C]81[/C][C]0.845586070177604[/C][C]0.308827859644793[/C][C]0.154413929822396[/C][/ROW]
[ROW][C]82[/C][C]0.968901025899129[/C][C]0.0621979482017418[/C][C]0.0310989741008709[/C][/ROW]
[ROW][C]83[/C][C]0.968728013790962[/C][C]0.0625439724180763[/C][C]0.0312719862090381[/C][/ROW]
[ROW][C]84[/C][C]0.95990686807435[/C][C]0.0801862638512996[/C][C]0.0400931319256498[/C][/ROW]
[ROW][C]85[/C][C]0.94711028460177[/C][C]0.10577943079646[/C][C]0.0528897153982302[/C][/ROW]
[ROW][C]86[/C][C]0.931693125092007[/C][C]0.136613749815986[/C][C]0.0683068749079929[/C][/ROW]
[ROW][C]87[/C][C]0.925903951240654[/C][C]0.148192097518693[/C][C]0.0740960487593463[/C][/ROW]
[ROW][C]88[/C][C]0.905109226891647[/C][C]0.189781546216707[/C][C]0.0948907731083534[/C][/ROW]
[ROW][C]89[/C][C]0.881070896147832[/C][C]0.237858207704336[/C][C]0.118929103852168[/C][/ROW]
[ROW][C]90[/C][C]0.874346836772668[/C][C]0.251306326454665[/C][C]0.125653163227332[/C][/ROW]
[ROW][C]91[/C][C]0.848349206423751[/C][C]0.303301587152497[/C][C]0.151650793576249[/C][/ROW]
[ROW][C]92[/C][C]0.821868838620129[/C][C]0.356262322759742[/C][C]0.178131161379871[/C][/ROW]
[ROW][C]93[/C][C]0.794062189479532[/C][C]0.411875621040936[/C][C]0.205937810520468[/C][/ROW]
[ROW][C]94[/C][C]0.765122239752828[/C][C]0.469755520494344[/C][C]0.234877760247172[/C][/ROW]
[ROW][C]95[/C][C]0.732310538044286[/C][C]0.535378923911428[/C][C]0.267689461955714[/C][/ROW]
[ROW][C]96[/C][C]0.723005713685272[/C][C]0.553988572629457[/C][C]0.276994286314728[/C][/ROW]
[ROW][C]97[/C][C]0.683160419909657[/C][C]0.633679160180685[/C][C]0.316839580090343[/C][/ROW]
[ROW][C]98[/C][C]0.650309082248374[/C][C]0.699381835503253[/C][C]0.349690917751626[/C][/ROW]
[ROW][C]99[/C][C]0.609011327272208[/C][C]0.781977345455585[/C][C]0.390988672727792[/C][/ROW]
[ROW][C]100[/C][C]0.569838374002355[/C][C]0.860323251995291[/C][C]0.430161625997645[/C][/ROW]
[ROW][C]101[/C][C]0.549382206592638[/C][C]0.901235586814724[/C][C]0.450617793407362[/C][/ROW]
[ROW][C]102[/C][C]0.656988914069006[/C][C]0.686022171861988[/C][C]0.343011085930994[/C][/ROW]
[ROW][C]103[/C][C]0.737679089136844[/C][C]0.524641821726312[/C][C]0.262320910863156[/C][/ROW]
[ROW][C]104[/C][C]0.695883911427527[/C][C]0.608232177144946[/C][C]0.304116088572473[/C][/ROW]
[ROW][C]105[/C][C]0.663007087539745[/C][C]0.673985824920511[/C][C]0.336992912460255[/C][/ROW]
[ROW][C]106[/C][C]0.803282807471507[/C][C]0.393434385056986[/C][C]0.196717192528493[/C][/ROW]
[ROW][C]107[/C][C]0.918167137855329[/C][C]0.163665724289342[/C][C]0.0818328621446712[/C][/ROW]
[ROW][C]108[/C][C]0.918776434236747[/C][C]0.162447131526507[/C][C]0.0812235657632534[/C][/ROW]
[ROW][C]109[/C][C]0.908912573464404[/C][C]0.182174853071193[/C][C]0.0910874265355963[/C][/ROW]
[ROW][C]110[/C][C]0.897300625773399[/C][C]0.205398748453201[/C][C]0.102699374226601[/C][/ROW]
[ROW][C]111[/C][C]0.959753217615999[/C][C]0.0804935647680014[/C][C]0.0402467823840007[/C][/ROW]
[ROW][C]112[/C][C]0.959198070406302[/C][C]0.0816038591873962[/C][C]0.0408019295936981[/C][/ROW]
[ROW][C]113[/C][C]0.941090874330666[/C][C]0.117818251338668[/C][C]0.0589091256693339[/C][/ROW]
[ROW][C]114[/C][C]0.915017851630832[/C][C]0.169964296738335[/C][C]0.0849821483691676[/C][/ROW]
[ROW][C]115[/C][C]0.887323352979972[/C][C]0.225353294040056[/C][C]0.112676647020028[/C][/ROW]
[ROW][C]116[/C][C]0.848479830908117[/C][C]0.303040338183766[/C][C]0.151520169091883[/C][/ROW]
[ROW][C]117[/C][C]0.895302899187042[/C][C]0.209394201625917[/C][C]0.104697100812958[/C][/ROW]
[ROW][C]118[/C][C]0.904398623378238[/C][C]0.191202753243523[/C][C]0.0956013766217617[/C][/ROW]
[ROW][C]119[/C][C]0.982171396491891[/C][C]0.0356572070162181[/C][C]0.0178286035081091[/C][/ROW]
[ROW][C]120[/C][C]0.980736332962943[/C][C]0.0385273340741133[/C][C]0.0192636670370566[/C][/ROW]
[ROW][C]121[/C][C]0.979702227752364[/C][C]0.0405955444952726[/C][C]0.0202977722476363[/C][/ROW]
[ROW][C]122[/C][C]0.963475250374243[/C][C]0.0730494992515136[/C][C]0.0365247496257568[/C][/ROW]
[ROW][C]123[/C][C]0.939334769379699[/C][C]0.121330461240602[/C][C]0.0606652306203012[/C][/ROW]
[ROW][C]124[/C][C]0.982963658592667[/C][C]0.0340726828146655[/C][C]0.0170363414073328[/C][/ROW]
[ROW][C]125[/C][C]0.967798066902937[/C][C]0.0644038661941261[/C][C]0.032201933097063[/C][/ROW]
[ROW][C]126[/C][C]0.977973313463323[/C][C]0.044053373073355[/C][C]0.0220266865366775[/C][/ROW]
[ROW][C]127[/C][C]0.974647312942298[/C][C]0.0507053741154036[/C][C]0.0253526870577018[/C][/ROW]
[ROW][C]128[/C][C]0.940124069308273[/C][C]0.119751861383454[/C][C]0.059875930691727[/C][/ROW]
[ROW][C]129[/C][C]0.920610758613813[/C][C]0.158778482772373[/C][C]0.0793892413861865[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.08486771561816410.1697354312363280.915132284381836
120.02894447242356890.05788894484713780.971055527576431
130.0294252354617410.05885047092348210.970574764538259
140.0136506914857830.0273013829715660.986349308514217
150.006512961555178940.01302592311035790.993487038444821
160.002561857232602990.005123714465205980.997438142767397
170.000936097949832980.001872195899665960.999063902050167
180.0003400563728757560.0006801127457515120.999659943627124
190.0002294878098735130.0004589756197470260.999770512190126
209.16060664340443e-050.0001832121328680890.999908393933566
213.7659146294653e-057.5318292589306e-050.999962340853705
222.20702457098368e-054.41404914196736e-050.99997792975429
239.08819528657381e-061.81763905731476e-050.999990911804713
245.13140987721295e-061.02628197544259e-050.999994868590123
253.39683166196792e-066.79366332393584e-060.999996603168338
264.45918762911585e-068.9183752582317e-060.999995540812371
271.14226735810351e-052.28453471620702e-050.999988577326419
280.001428077179962830.002856154359925670.998571922820037
290.25809489916150.5161897983230.7419051008385
300.3506279745519150.7012559491038290.649372025448085
310.3176353466435540.6352706932871070.682364653356446
320.3349534013014740.6699068026029490.665046598698526
330.3043958360286390.6087916720572770.695604163971361
340.2887310288313520.5774620576627040.711268971168648
350.3049281747806560.6098563495613120.695071825219344
360.2926621299052020.5853242598104030.707337870094798
370.2582610221660270.5165220443320550.741738977833973
380.2314242742692060.4628485485384120.768575725730794
390.1983066543878910.3966133087757810.801693345612109
400.2365846671953090.4731693343906170.763415332804691
410.1994767256988420.3989534513976850.800523274301158
420.170081665437950.34016333087590.82991833456205
430.1622301449765720.3244602899531430.837769855023428
440.2274006992827990.4548013985655980.772599300717201
450.2350573177392480.4701146354784960.764942682260752
460.1959490120579650.391898024115930.804050987942035
470.1662224760004510.3324449520009010.833777523999549
480.1774561098474360.3549122196948730.822543890152564
490.1472949984028820.2945899968057640.852705001597118
500.131243928028160.2624878560563210.86875607197184
510.1062247169457630.2124494338915270.893775283054237
520.09805483569501680.1961096713900340.901945164304983
530.08916397102836060.1783279420567210.910836028971639
540.07658540580134040.1531708116026810.92341459419866
550.06441217901225210.1288243580245040.935587820987748
560.05424292117832830.1084858423566570.945757078821672
570.05300427334649130.1060085466929830.946995726653509
580.05424425125444040.1084885025088810.94575574874556
590.05493286918421390.1098657383684280.945067130815786
600.05397470615519740.1079494123103950.946025293844803
610.05567008339357870.1113401667871570.944329916606421
620.06447637183927860.1289527436785570.935523628160721
630.0653175109431870.1306350218863740.934682489056813
640.0680046080085870.1360092160171740.931995391991413
650.08784207797857040.1756841559571410.91215792202143
660.2149429580751690.4298859161503380.785057041924831
670.4610107397679010.9220214795358020.538989260232099
680.4704046395260030.9408092790520060.529595360473997
690.4554762287332960.9109524574665930.544523771266704
700.4229773236851010.8459546473702030.577022676314899
710.4246406234198370.8492812468396740.575359376580163
720.396413712614360.792827425228720.60358628738564
730.3575050574040170.7150101148080340.642494942595983
740.3153536216994410.6307072433988830.684646378300559
750.2795342128374520.5590684256749050.720465787162548
760.3415035718975880.6830071437951770.658496428102412
770.3716396700111540.7432793400223070.628360329988846
780.3981669053382390.7963338106764780.601833094661761
790.4201147940781320.8402295881562630.579885205921868
800.4850763460384660.9701526920769320.514923653961534
810.8455860701776040.3088278596447930.154413929822396
820.9689010258991290.06219794820174180.0310989741008709
830.9687280137909620.06254397241807630.0312719862090381
840.959906868074350.08018626385129960.0400931319256498
850.947110284601770.105779430796460.0528897153982302
860.9316931250920070.1366137498159860.0683068749079929
870.9259039512406540.1481920975186930.0740960487593463
880.9051092268916470.1897815462167070.0948907731083534
890.8810708961478320.2378582077043360.118929103852168
900.8743468367726680.2513063264546650.125653163227332
910.8483492064237510.3033015871524970.151650793576249
920.8218688386201290.3562623227597420.178131161379871
930.7940621894795320.4118756210409360.205937810520468
940.7651222397528280.4697555204943440.234877760247172
950.7323105380442860.5353789239114280.267689461955714
960.7230057136852720.5539885726294570.276994286314728
970.6831604199096570.6336791601806850.316839580090343
980.6503090822483740.6993818355032530.349690917751626
990.6090113272722080.7819773454555850.390988672727792
1000.5698383740023550.8603232519952910.430161625997645
1010.5493822065926380.9012355868147240.450617793407362
1020.6569889140690060.6860221718619880.343011085930994
1030.7376790891368440.5246418217263120.262320910863156
1040.6958839114275270.6082321771449460.304116088572473
1050.6630070875397450.6739858249205110.336992912460255
1060.8032828074715070.3934343850569860.196717192528493
1070.9181671378553290.1636657242893420.0818328621446712
1080.9187764342367470.1624471315265070.0812235657632534
1090.9089125734644040.1821748530711930.0910874265355963
1100.8973006257733990.2053987484532010.102699374226601
1110.9597532176159990.08049356476800140.0402467823840007
1120.9591980704063020.08160385918739620.0408019295936981
1130.9410908743306660.1178182513386680.0589091256693339
1140.9150178516308320.1699642967383350.0849821483691676
1150.8873233529799720.2253532940400560.112676647020028
1160.8484798309081170.3030403381837660.151520169091883
1170.8953028991870420.2093942016259170.104697100812958
1180.9043986233782380.1912027532435230.0956013766217617
1190.9821713964918910.03565720701621810.0178286035081091
1200.9807363329629430.03852733407411330.0192636670370566
1210.9797022277523640.04059554449527260.0202977722476363
1220.9634752503742430.07304949925151360.0365247496257568
1230.9393347693796990.1213304612406020.0606652306203012
1240.9829636585926670.03407268281466550.0170363414073328
1250.9677980669029370.06440386619412610.032201933097063
1260.9779733134633230.0440533730733550.0220266865366775
1270.9746473129422980.05070537411540360.0253526870577018
1280.9401240693082730.1197518613834540.059875930691727
1290.9206107586138130.1587784827723730.0793892413861865







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level130.109243697478992NOK
5% type I error level200.168067226890756NOK
10% type I error level300.252100840336134NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 13 & 0.109243697478992 & NOK \tabularnewline
5% type I error level & 20 & 0.168067226890756 & NOK \tabularnewline
10% type I error level & 30 & 0.252100840336134 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=160051&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]13[/C][C]0.109243697478992[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]20[/C][C]0.168067226890756[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]30[/C][C]0.252100840336134[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=160051&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=160051&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level130.109243697478992NOK
5% type I error level200.168067226890756NOK
10% type I error level300.252100840336134NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}