Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 16 Dec 2017 21:19:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/16/t1513455574h7ln3cki8ojt68f.htm/, Retrieved Fri, 01 Nov 2024 00:59:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=309942, Retrieved Fri, 01 Nov 2024 00:59:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2017-12-16 20:19:09] [df69f135d5ff041b1c3aa0a11119be0d] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	1	2,75	0,33
2	3	3,25	0,2
3	2	4	0,12
4	1	8	0,11
5	5	50	0
6	8	4	0,33
7	3	140	0
8	8	50	0,5
1	12	10	0,05
2	3	14	0,11
3	8	9	0,3
4	3	9	0,15
5	3	40	0,11
6	3	9	0,14
7	3	6	0,09
8	1	4,5	0,17
9	2	10	0,04
10	20	12	0,16
11	2	7,5	0,14
12	1	16	0,14
1	1	3,25	0,16
2	6	3,25	0,27
3	8	6	0,2
4	5	7,5	0,13
5	1	10	0,16
6	7	7	0,13
7	7	7	0,09
8	5	10	0,17
9	8	25	0,13
1	2	2	0,25
2	5	6	0,37
3	2	8	0,4
4	5	20	0,15
5	1	4,5	0,2
6	2	8	0
7	6	20	0,2
8	3	9	0,18
9	6	50	0,15
10	6	33	0,23
11	1	20	0,21
12	2	25	0,26
13	10	125	0,15
14	1	14	0,18
1	2	3,25	0,15
2	1	6,5	0,23
3	1	3,5	0,26
4	1	9	0,2
5	6	12	0,2
6	4	10	0,2
7	9	25	0,12
8	10	40	0,1
9	6	16	0,13
10	1	25	0,06
11	6	7	0,05
12	18	16	0,25
13	3	12	0,09
1	4	6,5	0,3
2	1	5	0,35
3	3	16	0,08
4	5	16	0,25
5	4	12	0,23
6	4	6,5	0,13
7	1	5,5	0,31
8	17	16	0,18
9	2	10	0,17
10	1	15	0,22
11	6	20	0,12
12	10	66	0,17
13	9	66	0,13
14	5	16	0,11
15	1	33	0,35
16	13	40	0,2
17	11	20	0,18
18	9	33	0,12
19	4	200	0,15
1	4	1,75	0,53
2	5	9	0,1
3	2	4	0,23
4	1	16	0,1
5	2	50	0,16
6	4	66	0,11
7	12	12	0,32
8	14	10	0,2
9	2	5,5	0,21
10	7	16	0,34
11	4	20	0,25
12	1	16	0,25
13	6	400	0,1
1	2	14	0,24
2	1	5	0,46
3	4	4,5	0,14
4	6	7	0,43
5	7	16	0,2
6	9	8	0,14
7	1	14	0,23
8	3	5	0,18
9	6	30	0,19
10	8	7	0,31
11	8	30	0,25
12	4	15	0,17
13	8	25	0,27
14	7	40	0,09




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309942&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Position[t] = + 6.12693 + 0.282372Last[t] + 0.029505Odds[t] -5.12435Ratio[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Position[t] =  +  6.12693 +  0.282372Last[t] +  0.029505Odds[t] -5.12435Ratio[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Position[t] =  +  6.12693 +  0.282372Last[t] +  0.029505Odds[t] -5.12435Ratio[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Position[t] = + 6.12693 + 0.282372Last[t] + 0.029505Odds[t] -5.12435Ratio[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.127 1.016+6.0330e+00 2.857e-08 1.428e-08
Last+0.2824 0.0989+2.8550e+00 0.005253 0.002626
Odds+0.0295 0.008461+3.4870e+00 0.0007324 0.0003662
Ratio-5.124 3.911-1.3100e+00 0.1931 0.09657

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +6.127 &  1.016 & +6.0330e+00 &  2.857e-08 &  1.428e-08 \tabularnewline
Last & +0.2824 &  0.0989 & +2.8550e+00 &  0.005253 &  0.002626 \tabularnewline
Odds & +0.0295 &  0.008461 & +3.4870e+00 &  0.0007324 &  0.0003662 \tabularnewline
Ratio & -5.124 &  3.911 & -1.3100e+00 &  0.1931 &  0.09657 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+6.127[/C][C] 1.016[/C][C]+6.0330e+00[/C][C] 2.857e-08[/C][C] 1.428e-08[/C][/ROW]
[ROW][C]Last[/C][C]+0.2824[/C][C] 0.0989[/C][C]+2.8550e+00[/C][C] 0.005253[/C][C] 0.002626[/C][/ROW]
[ROW][C]Odds[/C][C]+0.0295[/C][C] 0.008461[/C][C]+3.4870e+00[/C][C] 0.0007324[/C][C] 0.0003662[/C][/ROW]
[ROW][C]Ratio[/C][C]-5.124[/C][C] 3.911[/C][C]-1.3100e+00[/C][C] 0.1931[/C][C] 0.09657[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.127 1.016+6.0330e+00 2.857e-08 1.428e-08
Last+0.2824 0.0989+2.8550e+00 0.005253 0.002626
Odds+0.0295 0.008461+3.4870e+00 0.0007324 0.0003662
Ratio-5.124 3.911-1.3100e+00 0.1931 0.09657







Multiple Linear Regression - Regression Statistics
Multiple R 0.4649
R-squared 0.2161
Adjusted R-squared 0.1921
F-TEST (value) 9.007
F-TEST (DF numerator)3
F-TEST (DF denominator)98
p-value 2.517e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.892
Sum Squared Residuals 1485

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.4649 \tabularnewline
R-squared &  0.2161 \tabularnewline
Adjusted R-squared &  0.1921 \tabularnewline
F-TEST (value) &  9.007 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 98 \tabularnewline
p-value &  2.517e-05 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  3.892 \tabularnewline
Sum Squared Residuals &  1485 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.4649[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.2161[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.1921[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 9.007[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]98[/C][/ROW]
[ROW][C]p-value[/C][C] 2.517e-05[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 3.892[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1485[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.4649
R-squared 0.2161
Adjusted R-squared 0.1921
F-TEST (value) 9.007
F-TEST (DF numerator)3
F-TEST (DF denominator)98
p-value 2.517e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.892
Sum Squared Residuals 1485







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1 4.799-3.799
2 2 6.045-4.045
3 3 6.195-3.195
4 4 6.082-2.082
5 5 9.014-4.014
6 6 6.813-0.8129
7 7 11.1-4.105
8 8 7.299 0.701
9 1 9.554-8.554
10 2 6.823-4.823
11 3 7.114-4.114
12 4 6.471-2.471
13 5 7.591-2.591
14 6 6.522-0.5222
15 7 6.69 0.3101
16 8 5.671 2.329
17 9 6.782 2.218
18 10 11.31-1.309
19 11 6.196 4.804
20 12 6.164 5.836
21 1 5.685-4.685
22 2 6.533-4.533
23 3 7.538-4.538
24 4 7.094-3.094
25 5 5.884-0.8845
26 6 7.644-1.644
27 7 7.849-0.8489
28 8 6.963 1.037
29 9 8.457 0.5426
30 1 5.47-4.47
31 2 5.82-3.82
32 3 4.878-1.878
33 4 7.36-3.36
34 5 5.517-0.5172
35 6 6.928-0.9277
36 7 7.386-0.3864
37 8 6.317 1.683
38 9 8.528 0.4722
39 10 7.616 2.384
40 11 5.923 5.077
41 12 6.097 5.903
42 13 11.87 1.13
43 14 5.9 8.1
44 1 6.019-5.019
45 2 5.422-3.422
46 3 5.18-2.18
47 4 5.65-1.65
48 5 7.15-2.15
49 6 6.527-0.5266
50 7 8.791-1.791
51 8 9.618-1.618
52 9 7.627 1.373
53 10 6.839 3.161
54 11 7.771 3.229
55 12 10.4 1.599
56 13 6.867 6.133
57 1 5.911-4.911
58 2 4.763-2.763
59 3 7.036-4.036
60 4 6.73-2.73
61 5 6.432-1.432
62 6 6.782-0.782
63 7 4.983 2.017
64 8 10.48-2.477
65 9 6.116 2.884
66 10 5.725 4.275
67 11 7.796 3.204
68 12 10.03 1.973
69 13 9.949 3.051
70 14 7.447 6.553
71 15 5.589 9.411
72 16 9.953 6.047
73 17 8.901 8.099
74 18 9.027 8.973
75 19 12.39 6.611
76 1 4.592-3.592
77 2 7.292-5.292
78 3 5.631-2.631
79 4 6.369-2.369
80 5 7.347-2.347
81 6 8.64-2.64
82 7 8.23-1.23
83 8 9.35-1.35
84 9 5.778 3.222
85 10 6.833 3.167
86 11 6.565 4.435
87 12 5.6 6.4
88 13 19.11-6.111
89 1 5.875-4.875
90 2 4.2-2.2
91 3 6.672-3.672
92 4 5.824-1.824
93 5 7.551-2.551
94 6 8.187-2.187
95 7 5.644 1.356
96 8 6.199 1.801
97 9 7.733 1.267
98 10 7.004 2.996
99 11 7.99 3.01
100 12 6.828 5.172
101 13 7.74 5.26
102 14 8.823 5.177

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  1 &  4.799 & -3.799 \tabularnewline
2 &  2 &  6.045 & -4.045 \tabularnewline
3 &  3 &  6.195 & -3.195 \tabularnewline
4 &  4 &  6.082 & -2.082 \tabularnewline
5 &  5 &  9.014 & -4.014 \tabularnewline
6 &  6 &  6.813 & -0.8129 \tabularnewline
7 &  7 &  11.1 & -4.105 \tabularnewline
8 &  8 &  7.299 &  0.701 \tabularnewline
9 &  1 &  9.554 & -8.554 \tabularnewline
10 &  2 &  6.823 & -4.823 \tabularnewline
11 &  3 &  7.114 & -4.114 \tabularnewline
12 &  4 &  6.471 & -2.471 \tabularnewline
13 &  5 &  7.591 & -2.591 \tabularnewline
14 &  6 &  6.522 & -0.5222 \tabularnewline
15 &  7 &  6.69 &  0.3101 \tabularnewline
16 &  8 &  5.671 &  2.329 \tabularnewline
17 &  9 &  6.782 &  2.218 \tabularnewline
18 &  10 &  11.31 & -1.309 \tabularnewline
19 &  11 &  6.196 &  4.804 \tabularnewline
20 &  12 &  6.164 &  5.836 \tabularnewline
21 &  1 &  5.685 & -4.685 \tabularnewline
22 &  2 &  6.533 & -4.533 \tabularnewline
23 &  3 &  7.538 & -4.538 \tabularnewline
24 &  4 &  7.094 & -3.094 \tabularnewline
25 &  5 &  5.884 & -0.8845 \tabularnewline
26 &  6 &  7.644 & -1.644 \tabularnewline
27 &  7 &  7.849 & -0.8489 \tabularnewline
28 &  8 &  6.963 &  1.037 \tabularnewline
29 &  9 &  8.457 &  0.5426 \tabularnewline
30 &  1 &  5.47 & -4.47 \tabularnewline
31 &  2 &  5.82 & -3.82 \tabularnewline
32 &  3 &  4.878 & -1.878 \tabularnewline
33 &  4 &  7.36 & -3.36 \tabularnewline
34 &  5 &  5.517 & -0.5172 \tabularnewline
35 &  6 &  6.928 & -0.9277 \tabularnewline
36 &  7 &  7.386 & -0.3864 \tabularnewline
37 &  8 &  6.317 &  1.683 \tabularnewline
38 &  9 &  8.528 &  0.4722 \tabularnewline
39 &  10 &  7.616 &  2.384 \tabularnewline
40 &  11 &  5.923 &  5.077 \tabularnewline
41 &  12 &  6.097 &  5.903 \tabularnewline
42 &  13 &  11.87 &  1.13 \tabularnewline
43 &  14 &  5.9 &  8.1 \tabularnewline
44 &  1 &  6.019 & -5.019 \tabularnewline
45 &  2 &  5.422 & -3.422 \tabularnewline
46 &  3 &  5.18 & -2.18 \tabularnewline
47 &  4 &  5.65 & -1.65 \tabularnewline
48 &  5 &  7.15 & -2.15 \tabularnewline
49 &  6 &  6.527 & -0.5266 \tabularnewline
50 &  7 &  8.791 & -1.791 \tabularnewline
51 &  8 &  9.618 & -1.618 \tabularnewline
52 &  9 &  7.627 &  1.373 \tabularnewline
53 &  10 &  6.839 &  3.161 \tabularnewline
54 &  11 &  7.771 &  3.229 \tabularnewline
55 &  12 &  10.4 &  1.599 \tabularnewline
56 &  13 &  6.867 &  6.133 \tabularnewline
57 &  1 &  5.911 & -4.911 \tabularnewline
58 &  2 &  4.763 & -2.763 \tabularnewline
59 &  3 &  7.036 & -4.036 \tabularnewline
60 &  4 &  6.73 & -2.73 \tabularnewline
61 &  5 &  6.432 & -1.432 \tabularnewline
62 &  6 &  6.782 & -0.782 \tabularnewline
63 &  7 &  4.983 &  2.017 \tabularnewline
64 &  8 &  10.48 & -2.477 \tabularnewline
65 &  9 &  6.116 &  2.884 \tabularnewline
66 &  10 &  5.725 &  4.275 \tabularnewline
67 &  11 &  7.796 &  3.204 \tabularnewline
68 &  12 &  10.03 &  1.973 \tabularnewline
69 &  13 &  9.949 &  3.051 \tabularnewline
70 &  14 &  7.447 &  6.553 \tabularnewline
71 &  15 &  5.589 &  9.411 \tabularnewline
72 &  16 &  9.953 &  6.047 \tabularnewline
73 &  17 &  8.901 &  8.099 \tabularnewline
74 &  18 &  9.027 &  8.973 \tabularnewline
75 &  19 &  12.39 &  6.611 \tabularnewline
76 &  1 &  4.592 & -3.592 \tabularnewline
77 &  2 &  7.292 & -5.292 \tabularnewline
78 &  3 &  5.631 & -2.631 \tabularnewline
79 &  4 &  6.369 & -2.369 \tabularnewline
80 &  5 &  7.347 & -2.347 \tabularnewline
81 &  6 &  8.64 & -2.64 \tabularnewline
82 &  7 &  8.23 & -1.23 \tabularnewline
83 &  8 &  9.35 & -1.35 \tabularnewline
84 &  9 &  5.778 &  3.222 \tabularnewline
85 &  10 &  6.833 &  3.167 \tabularnewline
86 &  11 &  6.565 &  4.435 \tabularnewline
87 &  12 &  5.6 &  6.4 \tabularnewline
88 &  13 &  19.11 & -6.111 \tabularnewline
89 &  1 &  5.875 & -4.875 \tabularnewline
90 &  2 &  4.2 & -2.2 \tabularnewline
91 &  3 &  6.672 & -3.672 \tabularnewline
92 &  4 &  5.824 & -1.824 \tabularnewline
93 &  5 &  7.551 & -2.551 \tabularnewline
94 &  6 &  8.187 & -2.187 \tabularnewline
95 &  7 &  5.644 &  1.356 \tabularnewline
96 &  8 &  6.199 &  1.801 \tabularnewline
97 &  9 &  7.733 &  1.267 \tabularnewline
98 &  10 &  7.004 &  2.996 \tabularnewline
99 &  11 &  7.99 &  3.01 \tabularnewline
100 &  12 &  6.828 &  5.172 \tabularnewline
101 &  13 &  7.74 &  5.26 \tabularnewline
102 &  14 &  8.823 &  5.177 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 1[/C][C] 4.799[/C][C]-3.799[/C][/ROW]
[ROW][C]2[/C][C] 2[/C][C] 6.045[/C][C]-4.045[/C][/ROW]
[ROW][C]3[/C][C] 3[/C][C] 6.195[/C][C]-3.195[/C][/ROW]
[ROW][C]4[/C][C] 4[/C][C] 6.082[/C][C]-2.082[/C][/ROW]
[ROW][C]5[/C][C] 5[/C][C] 9.014[/C][C]-4.014[/C][/ROW]
[ROW][C]6[/C][C] 6[/C][C] 6.813[/C][C]-0.8129[/C][/ROW]
[ROW][C]7[/C][C] 7[/C][C] 11.1[/C][C]-4.105[/C][/ROW]
[ROW][C]8[/C][C] 8[/C][C] 7.299[/C][C] 0.701[/C][/ROW]
[ROW][C]9[/C][C] 1[/C][C] 9.554[/C][C]-8.554[/C][/ROW]
[ROW][C]10[/C][C] 2[/C][C] 6.823[/C][C]-4.823[/C][/ROW]
[ROW][C]11[/C][C] 3[/C][C] 7.114[/C][C]-4.114[/C][/ROW]
[ROW][C]12[/C][C] 4[/C][C] 6.471[/C][C]-2.471[/C][/ROW]
[ROW][C]13[/C][C] 5[/C][C] 7.591[/C][C]-2.591[/C][/ROW]
[ROW][C]14[/C][C] 6[/C][C] 6.522[/C][C]-0.5222[/C][/ROW]
[ROW][C]15[/C][C] 7[/C][C] 6.69[/C][C] 0.3101[/C][/ROW]
[ROW][C]16[/C][C] 8[/C][C] 5.671[/C][C] 2.329[/C][/ROW]
[ROW][C]17[/C][C] 9[/C][C] 6.782[/C][C] 2.218[/C][/ROW]
[ROW][C]18[/C][C] 10[/C][C] 11.31[/C][C]-1.309[/C][/ROW]
[ROW][C]19[/C][C] 11[/C][C] 6.196[/C][C] 4.804[/C][/ROW]
[ROW][C]20[/C][C] 12[/C][C] 6.164[/C][C] 5.836[/C][/ROW]
[ROW][C]21[/C][C] 1[/C][C] 5.685[/C][C]-4.685[/C][/ROW]
[ROW][C]22[/C][C] 2[/C][C] 6.533[/C][C]-4.533[/C][/ROW]
[ROW][C]23[/C][C] 3[/C][C] 7.538[/C][C]-4.538[/C][/ROW]
[ROW][C]24[/C][C] 4[/C][C] 7.094[/C][C]-3.094[/C][/ROW]
[ROW][C]25[/C][C] 5[/C][C] 5.884[/C][C]-0.8845[/C][/ROW]
[ROW][C]26[/C][C] 6[/C][C] 7.644[/C][C]-1.644[/C][/ROW]
[ROW][C]27[/C][C] 7[/C][C] 7.849[/C][C]-0.8489[/C][/ROW]
[ROW][C]28[/C][C] 8[/C][C] 6.963[/C][C] 1.037[/C][/ROW]
[ROW][C]29[/C][C] 9[/C][C] 8.457[/C][C] 0.5426[/C][/ROW]
[ROW][C]30[/C][C] 1[/C][C] 5.47[/C][C]-4.47[/C][/ROW]
[ROW][C]31[/C][C] 2[/C][C] 5.82[/C][C]-3.82[/C][/ROW]
[ROW][C]32[/C][C] 3[/C][C] 4.878[/C][C]-1.878[/C][/ROW]
[ROW][C]33[/C][C] 4[/C][C] 7.36[/C][C]-3.36[/C][/ROW]
[ROW][C]34[/C][C] 5[/C][C] 5.517[/C][C]-0.5172[/C][/ROW]
[ROW][C]35[/C][C] 6[/C][C] 6.928[/C][C]-0.9277[/C][/ROW]
[ROW][C]36[/C][C] 7[/C][C] 7.386[/C][C]-0.3864[/C][/ROW]
[ROW][C]37[/C][C] 8[/C][C] 6.317[/C][C] 1.683[/C][/ROW]
[ROW][C]38[/C][C] 9[/C][C] 8.528[/C][C] 0.4722[/C][/ROW]
[ROW][C]39[/C][C] 10[/C][C] 7.616[/C][C] 2.384[/C][/ROW]
[ROW][C]40[/C][C] 11[/C][C] 5.923[/C][C] 5.077[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 6.097[/C][C] 5.903[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 11.87[/C][C] 1.13[/C][/ROW]
[ROW][C]43[/C][C] 14[/C][C] 5.9[/C][C] 8.1[/C][/ROW]
[ROW][C]44[/C][C] 1[/C][C] 6.019[/C][C]-5.019[/C][/ROW]
[ROW][C]45[/C][C] 2[/C][C] 5.422[/C][C]-3.422[/C][/ROW]
[ROW][C]46[/C][C] 3[/C][C] 5.18[/C][C]-2.18[/C][/ROW]
[ROW][C]47[/C][C] 4[/C][C] 5.65[/C][C]-1.65[/C][/ROW]
[ROW][C]48[/C][C] 5[/C][C] 7.15[/C][C]-2.15[/C][/ROW]
[ROW][C]49[/C][C] 6[/C][C] 6.527[/C][C]-0.5266[/C][/ROW]
[ROW][C]50[/C][C] 7[/C][C] 8.791[/C][C]-1.791[/C][/ROW]
[ROW][C]51[/C][C] 8[/C][C] 9.618[/C][C]-1.618[/C][/ROW]
[ROW][C]52[/C][C] 9[/C][C] 7.627[/C][C] 1.373[/C][/ROW]
[ROW][C]53[/C][C] 10[/C][C] 6.839[/C][C] 3.161[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 7.771[/C][C] 3.229[/C][/ROW]
[ROW][C]55[/C][C] 12[/C][C] 10.4[/C][C] 1.599[/C][/ROW]
[ROW][C]56[/C][C] 13[/C][C] 6.867[/C][C] 6.133[/C][/ROW]
[ROW][C]57[/C][C] 1[/C][C] 5.911[/C][C]-4.911[/C][/ROW]
[ROW][C]58[/C][C] 2[/C][C] 4.763[/C][C]-2.763[/C][/ROW]
[ROW][C]59[/C][C] 3[/C][C] 7.036[/C][C]-4.036[/C][/ROW]
[ROW][C]60[/C][C] 4[/C][C] 6.73[/C][C]-2.73[/C][/ROW]
[ROW][C]61[/C][C] 5[/C][C] 6.432[/C][C]-1.432[/C][/ROW]
[ROW][C]62[/C][C] 6[/C][C] 6.782[/C][C]-0.782[/C][/ROW]
[ROW][C]63[/C][C] 7[/C][C] 4.983[/C][C] 2.017[/C][/ROW]
[ROW][C]64[/C][C] 8[/C][C] 10.48[/C][C]-2.477[/C][/ROW]
[ROW][C]65[/C][C] 9[/C][C] 6.116[/C][C] 2.884[/C][/ROW]
[ROW][C]66[/C][C] 10[/C][C] 5.725[/C][C] 4.275[/C][/ROW]
[ROW][C]67[/C][C] 11[/C][C] 7.796[/C][C] 3.204[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 10.03[/C][C] 1.973[/C][/ROW]
[ROW][C]69[/C][C] 13[/C][C] 9.949[/C][C] 3.051[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 7.447[/C][C] 6.553[/C][/ROW]
[ROW][C]71[/C][C] 15[/C][C] 5.589[/C][C] 9.411[/C][/ROW]
[ROW][C]72[/C][C] 16[/C][C] 9.953[/C][C] 6.047[/C][/ROW]
[ROW][C]73[/C][C] 17[/C][C] 8.901[/C][C] 8.099[/C][/ROW]
[ROW][C]74[/C][C] 18[/C][C] 9.027[/C][C] 8.973[/C][/ROW]
[ROW][C]75[/C][C] 19[/C][C] 12.39[/C][C] 6.611[/C][/ROW]
[ROW][C]76[/C][C] 1[/C][C] 4.592[/C][C]-3.592[/C][/ROW]
[ROW][C]77[/C][C] 2[/C][C] 7.292[/C][C]-5.292[/C][/ROW]
[ROW][C]78[/C][C] 3[/C][C] 5.631[/C][C]-2.631[/C][/ROW]
[ROW][C]79[/C][C] 4[/C][C] 6.369[/C][C]-2.369[/C][/ROW]
[ROW][C]80[/C][C] 5[/C][C] 7.347[/C][C]-2.347[/C][/ROW]
[ROW][C]81[/C][C] 6[/C][C] 8.64[/C][C]-2.64[/C][/ROW]
[ROW][C]82[/C][C] 7[/C][C] 8.23[/C][C]-1.23[/C][/ROW]
[ROW][C]83[/C][C] 8[/C][C] 9.35[/C][C]-1.35[/C][/ROW]
[ROW][C]84[/C][C] 9[/C][C] 5.778[/C][C] 3.222[/C][/ROW]
[ROW][C]85[/C][C] 10[/C][C] 6.833[/C][C] 3.167[/C][/ROW]
[ROW][C]86[/C][C] 11[/C][C] 6.565[/C][C] 4.435[/C][/ROW]
[ROW][C]87[/C][C] 12[/C][C] 5.6[/C][C] 6.4[/C][/ROW]
[ROW][C]88[/C][C] 13[/C][C] 19.11[/C][C]-6.111[/C][/ROW]
[ROW][C]89[/C][C] 1[/C][C] 5.875[/C][C]-4.875[/C][/ROW]
[ROW][C]90[/C][C] 2[/C][C] 4.2[/C][C]-2.2[/C][/ROW]
[ROW][C]91[/C][C] 3[/C][C] 6.672[/C][C]-3.672[/C][/ROW]
[ROW][C]92[/C][C] 4[/C][C] 5.824[/C][C]-1.824[/C][/ROW]
[ROW][C]93[/C][C] 5[/C][C] 7.551[/C][C]-2.551[/C][/ROW]
[ROW][C]94[/C][C] 6[/C][C] 8.187[/C][C]-2.187[/C][/ROW]
[ROW][C]95[/C][C] 7[/C][C] 5.644[/C][C] 1.356[/C][/ROW]
[ROW][C]96[/C][C] 8[/C][C] 6.199[/C][C] 1.801[/C][/ROW]
[ROW][C]97[/C][C] 9[/C][C] 7.733[/C][C] 1.267[/C][/ROW]
[ROW][C]98[/C][C] 10[/C][C] 7.004[/C][C] 2.996[/C][/ROW]
[ROW][C]99[/C][C] 11[/C][C] 7.99[/C][C] 3.01[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 6.828[/C][C] 5.172[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 7.74[/C][C] 5.26[/C][/ROW]
[ROW][C]102[/C][C] 14[/C][C] 8.823[/C][C] 5.177[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1 4.799-3.799
2 2 6.045-4.045
3 3 6.195-3.195
4 4 6.082-2.082
5 5 9.014-4.014
6 6 6.813-0.8129
7 7 11.1-4.105
8 8 7.299 0.701
9 1 9.554-8.554
10 2 6.823-4.823
11 3 7.114-4.114
12 4 6.471-2.471
13 5 7.591-2.591
14 6 6.522-0.5222
15 7 6.69 0.3101
16 8 5.671 2.329
17 9 6.782 2.218
18 10 11.31-1.309
19 11 6.196 4.804
20 12 6.164 5.836
21 1 5.685-4.685
22 2 6.533-4.533
23 3 7.538-4.538
24 4 7.094-3.094
25 5 5.884-0.8845
26 6 7.644-1.644
27 7 7.849-0.8489
28 8 6.963 1.037
29 9 8.457 0.5426
30 1 5.47-4.47
31 2 5.82-3.82
32 3 4.878-1.878
33 4 7.36-3.36
34 5 5.517-0.5172
35 6 6.928-0.9277
36 7 7.386-0.3864
37 8 6.317 1.683
38 9 8.528 0.4722
39 10 7.616 2.384
40 11 5.923 5.077
41 12 6.097 5.903
42 13 11.87 1.13
43 14 5.9 8.1
44 1 6.019-5.019
45 2 5.422-3.422
46 3 5.18-2.18
47 4 5.65-1.65
48 5 7.15-2.15
49 6 6.527-0.5266
50 7 8.791-1.791
51 8 9.618-1.618
52 9 7.627 1.373
53 10 6.839 3.161
54 11 7.771 3.229
55 12 10.4 1.599
56 13 6.867 6.133
57 1 5.911-4.911
58 2 4.763-2.763
59 3 7.036-4.036
60 4 6.73-2.73
61 5 6.432-1.432
62 6 6.782-0.782
63 7 4.983 2.017
64 8 10.48-2.477
65 9 6.116 2.884
66 10 5.725 4.275
67 11 7.796 3.204
68 12 10.03 1.973
69 13 9.949 3.051
70 14 7.447 6.553
71 15 5.589 9.411
72 16 9.953 6.047
73 17 8.901 8.099
74 18 9.027 8.973
75 19 12.39 6.611
76 1 4.592-3.592
77 2 7.292-5.292
78 3 5.631-2.631
79 4 6.369-2.369
80 5 7.347-2.347
81 6 8.64-2.64
82 7 8.23-1.23
83 8 9.35-1.35
84 9 5.778 3.222
85 10 6.833 3.167
86 11 6.565 4.435
87 12 5.6 6.4
88 13 19.11-6.111
89 1 5.875-4.875
90 2 4.2-2.2
91 3 6.672-3.672
92 4 5.824-1.824
93 5 7.551-2.551
94 6 8.187-2.187
95 7 5.644 1.356
96 8 6.199 1.801
97 9 7.733 1.267
98 10 7.004 2.996
99 11 7.99 3.01
100 12 6.828 5.172
101 13 7.74 5.26
102 14 8.823 5.177







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.04798 0.09597 0.952
8 0.02082 0.04164 0.9792
9 0.07073 0.1415 0.9293
10 0.03488 0.06977 0.9651
11 0.01763 0.03526 0.9824
12 0.009307 0.01861 0.9907
13 0.004489 0.008977 0.9955
14 0.006398 0.0128 0.9936
15 0.01453 0.02905 0.9855
16 0.02468 0.04935 0.9753
17 0.05102 0.102 0.949
18 0.08172 0.1634 0.9183
19 0.1843 0.3686 0.8157
20 0.3364 0.6728 0.6636
21 0.3563 0.7126 0.6437
22 0.3445 0.689 0.6555
23 0.3185 0.637 0.6815
24 0.2712 0.5424 0.7288
25 0.2155 0.4309 0.7845
26 0.1729 0.3459 0.8271
27 0.1407 0.2813 0.8593
28 0.1225 0.245 0.8775
29 0.1093 0.2186 0.8907
30 0.1145 0.229 0.8855
31 0.1012 0.2023 0.8988
32 0.07662 0.1532 0.9234
33 0.06442 0.1288 0.9356
34 0.04714 0.09427 0.9529
35 0.03463 0.06925 0.9654
36 0.02608 0.05215 0.9739
37 0.02284 0.04567 0.9772
38 0.01853 0.03706 0.9815
39 0.01989 0.03978 0.9801
40 0.03378 0.06757 0.9662
41 0.06375 0.1275 0.9362
42 0.05203 0.1041 0.948
43 0.148 0.296 0.852
44 0.174 0.3481 0.826
45 0.1685 0.337 0.8315
46 0.1451 0.2901 0.8549
47 0.1204 0.2409 0.8796
48 0.101 0.202 0.899
49 0.07916 0.1583 0.9208
50 0.06561 0.1312 0.9344
51 0.0543 0.1086 0.9457
52 0.04524 0.09049 0.9548
53 0.0405 0.081 0.9595
54 0.04103 0.08207 0.959
55 0.03969 0.07938 0.9603
56 0.06244 0.1249 0.9376
57 0.07357 0.1471 0.9264
58 0.06382 0.1276 0.9362
59 0.07205 0.1441 0.928
60 0.06488 0.1298 0.9351
61 0.05249 0.105 0.9475
62 0.04162 0.08323 0.9584
63 0.03314 0.06628 0.9669
64 0.03284 0.06568 0.9672
65 0.0276 0.05521 0.9724
66 0.02882 0.05765 0.9712
67 0.0249 0.0498 0.9751
68 0.01892 0.03785 0.9811
69 0.01505 0.0301 0.9849
70 0.02475 0.04951 0.9752
71 0.1146 0.2292 0.8854
72 0.1313 0.2627 0.8687
73 0.2211 0.4422 0.7789
74 0.4133 0.8267 0.5867
75 0.5756 0.8488 0.4244
76 0.5851 0.8298 0.4149
77 0.6566 0.6869 0.3434
78 0.6377 0.7246 0.3623
79 0.6176 0.7649 0.3824
80 0.5942 0.8117 0.4058
81 0.5851 0.8297 0.4149
82 0.5175 0.965 0.4825
83 0.4786 0.9571 0.5214
84 0.4257 0.8514 0.5743
85 0.3755 0.7511 0.6245
86 0.368 0.7361 0.632
87 0.5446 0.9108 0.4554
88 0.7515 0.497 0.2485
89 0.8382 0.3237 0.1618
90 0.7993 0.4015 0.2007
91 0.7944 0.4112 0.2056
92 0.7848 0.4305 0.2152
93 0.8438 0.3125 0.1562
94 0.9238 0.1524 0.07619
95 0.8295 0.341 0.1705

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.04798 &  0.09597 &  0.952 \tabularnewline
8 &  0.02082 &  0.04164 &  0.9792 \tabularnewline
9 &  0.07073 &  0.1415 &  0.9293 \tabularnewline
10 &  0.03488 &  0.06977 &  0.9651 \tabularnewline
11 &  0.01763 &  0.03526 &  0.9824 \tabularnewline
12 &  0.009307 &  0.01861 &  0.9907 \tabularnewline
13 &  0.004489 &  0.008977 &  0.9955 \tabularnewline
14 &  0.006398 &  0.0128 &  0.9936 \tabularnewline
15 &  0.01453 &  0.02905 &  0.9855 \tabularnewline
16 &  0.02468 &  0.04935 &  0.9753 \tabularnewline
17 &  0.05102 &  0.102 &  0.949 \tabularnewline
18 &  0.08172 &  0.1634 &  0.9183 \tabularnewline
19 &  0.1843 &  0.3686 &  0.8157 \tabularnewline
20 &  0.3364 &  0.6728 &  0.6636 \tabularnewline
21 &  0.3563 &  0.7126 &  0.6437 \tabularnewline
22 &  0.3445 &  0.689 &  0.6555 \tabularnewline
23 &  0.3185 &  0.637 &  0.6815 \tabularnewline
24 &  0.2712 &  0.5424 &  0.7288 \tabularnewline
25 &  0.2155 &  0.4309 &  0.7845 \tabularnewline
26 &  0.1729 &  0.3459 &  0.8271 \tabularnewline
27 &  0.1407 &  0.2813 &  0.8593 \tabularnewline
28 &  0.1225 &  0.245 &  0.8775 \tabularnewline
29 &  0.1093 &  0.2186 &  0.8907 \tabularnewline
30 &  0.1145 &  0.229 &  0.8855 \tabularnewline
31 &  0.1012 &  0.2023 &  0.8988 \tabularnewline
32 &  0.07662 &  0.1532 &  0.9234 \tabularnewline
33 &  0.06442 &  0.1288 &  0.9356 \tabularnewline
34 &  0.04714 &  0.09427 &  0.9529 \tabularnewline
35 &  0.03463 &  0.06925 &  0.9654 \tabularnewline
36 &  0.02608 &  0.05215 &  0.9739 \tabularnewline
37 &  0.02284 &  0.04567 &  0.9772 \tabularnewline
38 &  0.01853 &  0.03706 &  0.9815 \tabularnewline
39 &  0.01989 &  0.03978 &  0.9801 \tabularnewline
40 &  0.03378 &  0.06757 &  0.9662 \tabularnewline
41 &  0.06375 &  0.1275 &  0.9362 \tabularnewline
42 &  0.05203 &  0.1041 &  0.948 \tabularnewline
43 &  0.148 &  0.296 &  0.852 \tabularnewline
44 &  0.174 &  0.3481 &  0.826 \tabularnewline
45 &  0.1685 &  0.337 &  0.8315 \tabularnewline
46 &  0.1451 &  0.2901 &  0.8549 \tabularnewline
47 &  0.1204 &  0.2409 &  0.8796 \tabularnewline
48 &  0.101 &  0.202 &  0.899 \tabularnewline
49 &  0.07916 &  0.1583 &  0.9208 \tabularnewline
50 &  0.06561 &  0.1312 &  0.9344 \tabularnewline
51 &  0.0543 &  0.1086 &  0.9457 \tabularnewline
52 &  0.04524 &  0.09049 &  0.9548 \tabularnewline
53 &  0.0405 &  0.081 &  0.9595 \tabularnewline
54 &  0.04103 &  0.08207 &  0.959 \tabularnewline
55 &  0.03969 &  0.07938 &  0.9603 \tabularnewline
56 &  0.06244 &  0.1249 &  0.9376 \tabularnewline
57 &  0.07357 &  0.1471 &  0.9264 \tabularnewline
58 &  0.06382 &  0.1276 &  0.9362 \tabularnewline
59 &  0.07205 &  0.1441 &  0.928 \tabularnewline
60 &  0.06488 &  0.1298 &  0.9351 \tabularnewline
61 &  0.05249 &  0.105 &  0.9475 \tabularnewline
62 &  0.04162 &  0.08323 &  0.9584 \tabularnewline
63 &  0.03314 &  0.06628 &  0.9669 \tabularnewline
64 &  0.03284 &  0.06568 &  0.9672 \tabularnewline
65 &  0.0276 &  0.05521 &  0.9724 \tabularnewline
66 &  0.02882 &  0.05765 &  0.9712 \tabularnewline
67 &  0.0249 &  0.0498 &  0.9751 \tabularnewline
68 &  0.01892 &  0.03785 &  0.9811 \tabularnewline
69 &  0.01505 &  0.0301 &  0.9849 \tabularnewline
70 &  0.02475 &  0.04951 &  0.9752 \tabularnewline
71 &  0.1146 &  0.2292 &  0.8854 \tabularnewline
72 &  0.1313 &  0.2627 &  0.8687 \tabularnewline
73 &  0.2211 &  0.4422 &  0.7789 \tabularnewline
74 &  0.4133 &  0.8267 &  0.5867 \tabularnewline
75 &  0.5756 &  0.8488 &  0.4244 \tabularnewline
76 &  0.5851 &  0.8298 &  0.4149 \tabularnewline
77 &  0.6566 &  0.6869 &  0.3434 \tabularnewline
78 &  0.6377 &  0.7246 &  0.3623 \tabularnewline
79 &  0.6176 &  0.7649 &  0.3824 \tabularnewline
80 &  0.5942 &  0.8117 &  0.4058 \tabularnewline
81 &  0.5851 &  0.8297 &  0.4149 \tabularnewline
82 &  0.5175 &  0.965 &  0.4825 \tabularnewline
83 &  0.4786 &  0.9571 &  0.5214 \tabularnewline
84 &  0.4257 &  0.8514 &  0.5743 \tabularnewline
85 &  0.3755 &  0.7511 &  0.6245 \tabularnewline
86 &  0.368 &  0.7361 &  0.632 \tabularnewline
87 &  0.5446 &  0.9108 &  0.4554 \tabularnewline
88 &  0.7515 &  0.497 &  0.2485 \tabularnewline
89 &  0.8382 &  0.3237 &  0.1618 \tabularnewline
90 &  0.7993 &  0.4015 &  0.2007 \tabularnewline
91 &  0.7944 &  0.4112 &  0.2056 \tabularnewline
92 &  0.7848 &  0.4305 &  0.2152 \tabularnewline
93 &  0.8438 &  0.3125 &  0.1562 \tabularnewline
94 &  0.9238 &  0.1524 &  0.07619 \tabularnewline
95 &  0.8295 &  0.341 &  0.1705 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.04798[/C][C] 0.09597[/C][C] 0.952[/C][/ROW]
[ROW][C]8[/C][C] 0.02082[/C][C] 0.04164[/C][C] 0.9792[/C][/ROW]
[ROW][C]9[/C][C] 0.07073[/C][C] 0.1415[/C][C] 0.9293[/C][/ROW]
[ROW][C]10[/C][C] 0.03488[/C][C] 0.06977[/C][C] 0.9651[/C][/ROW]
[ROW][C]11[/C][C] 0.01763[/C][C] 0.03526[/C][C] 0.9824[/C][/ROW]
[ROW][C]12[/C][C] 0.009307[/C][C] 0.01861[/C][C] 0.9907[/C][/ROW]
[ROW][C]13[/C][C] 0.004489[/C][C] 0.008977[/C][C] 0.9955[/C][/ROW]
[ROW][C]14[/C][C] 0.006398[/C][C] 0.0128[/C][C] 0.9936[/C][/ROW]
[ROW][C]15[/C][C] 0.01453[/C][C] 0.02905[/C][C] 0.9855[/C][/ROW]
[ROW][C]16[/C][C] 0.02468[/C][C] 0.04935[/C][C] 0.9753[/C][/ROW]
[ROW][C]17[/C][C] 0.05102[/C][C] 0.102[/C][C] 0.949[/C][/ROW]
[ROW][C]18[/C][C] 0.08172[/C][C] 0.1634[/C][C] 0.9183[/C][/ROW]
[ROW][C]19[/C][C] 0.1843[/C][C] 0.3686[/C][C] 0.8157[/C][/ROW]
[ROW][C]20[/C][C] 0.3364[/C][C] 0.6728[/C][C] 0.6636[/C][/ROW]
[ROW][C]21[/C][C] 0.3563[/C][C] 0.7126[/C][C] 0.6437[/C][/ROW]
[ROW][C]22[/C][C] 0.3445[/C][C] 0.689[/C][C] 0.6555[/C][/ROW]
[ROW][C]23[/C][C] 0.3185[/C][C] 0.637[/C][C] 0.6815[/C][/ROW]
[ROW][C]24[/C][C] 0.2712[/C][C] 0.5424[/C][C] 0.7288[/C][/ROW]
[ROW][C]25[/C][C] 0.2155[/C][C] 0.4309[/C][C] 0.7845[/C][/ROW]
[ROW][C]26[/C][C] 0.1729[/C][C] 0.3459[/C][C] 0.8271[/C][/ROW]
[ROW][C]27[/C][C] 0.1407[/C][C] 0.2813[/C][C] 0.8593[/C][/ROW]
[ROW][C]28[/C][C] 0.1225[/C][C] 0.245[/C][C] 0.8775[/C][/ROW]
[ROW][C]29[/C][C] 0.1093[/C][C] 0.2186[/C][C] 0.8907[/C][/ROW]
[ROW][C]30[/C][C] 0.1145[/C][C] 0.229[/C][C] 0.8855[/C][/ROW]
[ROW][C]31[/C][C] 0.1012[/C][C] 0.2023[/C][C] 0.8988[/C][/ROW]
[ROW][C]32[/C][C] 0.07662[/C][C] 0.1532[/C][C] 0.9234[/C][/ROW]
[ROW][C]33[/C][C] 0.06442[/C][C] 0.1288[/C][C] 0.9356[/C][/ROW]
[ROW][C]34[/C][C] 0.04714[/C][C] 0.09427[/C][C] 0.9529[/C][/ROW]
[ROW][C]35[/C][C] 0.03463[/C][C] 0.06925[/C][C] 0.9654[/C][/ROW]
[ROW][C]36[/C][C] 0.02608[/C][C] 0.05215[/C][C] 0.9739[/C][/ROW]
[ROW][C]37[/C][C] 0.02284[/C][C] 0.04567[/C][C] 0.9772[/C][/ROW]
[ROW][C]38[/C][C] 0.01853[/C][C] 0.03706[/C][C] 0.9815[/C][/ROW]
[ROW][C]39[/C][C] 0.01989[/C][C] 0.03978[/C][C] 0.9801[/C][/ROW]
[ROW][C]40[/C][C] 0.03378[/C][C] 0.06757[/C][C] 0.9662[/C][/ROW]
[ROW][C]41[/C][C] 0.06375[/C][C] 0.1275[/C][C] 0.9362[/C][/ROW]
[ROW][C]42[/C][C] 0.05203[/C][C] 0.1041[/C][C] 0.948[/C][/ROW]
[ROW][C]43[/C][C] 0.148[/C][C] 0.296[/C][C] 0.852[/C][/ROW]
[ROW][C]44[/C][C] 0.174[/C][C] 0.3481[/C][C] 0.826[/C][/ROW]
[ROW][C]45[/C][C] 0.1685[/C][C] 0.337[/C][C] 0.8315[/C][/ROW]
[ROW][C]46[/C][C] 0.1451[/C][C] 0.2901[/C][C] 0.8549[/C][/ROW]
[ROW][C]47[/C][C] 0.1204[/C][C] 0.2409[/C][C] 0.8796[/C][/ROW]
[ROW][C]48[/C][C] 0.101[/C][C] 0.202[/C][C] 0.899[/C][/ROW]
[ROW][C]49[/C][C] 0.07916[/C][C] 0.1583[/C][C] 0.9208[/C][/ROW]
[ROW][C]50[/C][C] 0.06561[/C][C] 0.1312[/C][C] 0.9344[/C][/ROW]
[ROW][C]51[/C][C] 0.0543[/C][C] 0.1086[/C][C] 0.9457[/C][/ROW]
[ROW][C]52[/C][C] 0.04524[/C][C] 0.09049[/C][C] 0.9548[/C][/ROW]
[ROW][C]53[/C][C] 0.0405[/C][C] 0.081[/C][C] 0.9595[/C][/ROW]
[ROW][C]54[/C][C] 0.04103[/C][C] 0.08207[/C][C] 0.959[/C][/ROW]
[ROW][C]55[/C][C] 0.03969[/C][C] 0.07938[/C][C] 0.9603[/C][/ROW]
[ROW][C]56[/C][C] 0.06244[/C][C] 0.1249[/C][C] 0.9376[/C][/ROW]
[ROW][C]57[/C][C] 0.07357[/C][C] 0.1471[/C][C] 0.9264[/C][/ROW]
[ROW][C]58[/C][C] 0.06382[/C][C] 0.1276[/C][C] 0.9362[/C][/ROW]
[ROW][C]59[/C][C] 0.07205[/C][C] 0.1441[/C][C] 0.928[/C][/ROW]
[ROW][C]60[/C][C] 0.06488[/C][C] 0.1298[/C][C] 0.9351[/C][/ROW]
[ROW][C]61[/C][C] 0.05249[/C][C] 0.105[/C][C] 0.9475[/C][/ROW]
[ROW][C]62[/C][C] 0.04162[/C][C] 0.08323[/C][C] 0.9584[/C][/ROW]
[ROW][C]63[/C][C] 0.03314[/C][C] 0.06628[/C][C] 0.9669[/C][/ROW]
[ROW][C]64[/C][C] 0.03284[/C][C] 0.06568[/C][C] 0.9672[/C][/ROW]
[ROW][C]65[/C][C] 0.0276[/C][C] 0.05521[/C][C] 0.9724[/C][/ROW]
[ROW][C]66[/C][C] 0.02882[/C][C] 0.05765[/C][C] 0.9712[/C][/ROW]
[ROW][C]67[/C][C] 0.0249[/C][C] 0.0498[/C][C] 0.9751[/C][/ROW]
[ROW][C]68[/C][C] 0.01892[/C][C] 0.03785[/C][C] 0.9811[/C][/ROW]
[ROW][C]69[/C][C] 0.01505[/C][C] 0.0301[/C][C] 0.9849[/C][/ROW]
[ROW][C]70[/C][C] 0.02475[/C][C] 0.04951[/C][C] 0.9752[/C][/ROW]
[ROW][C]71[/C][C] 0.1146[/C][C] 0.2292[/C][C] 0.8854[/C][/ROW]
[ROW][C]72[/C][C] 0.1313[/C][C] 0.2627[/C][C] 0.8687[/C][/ROW]
[ROW][C]73[/C][C] 0.2211[/C][C] 0.4422[/C][C] 0.7789[/C][/ROW]
[ROW][C]74[/C][C] 0.4133[/C][C] 0.8267[/C][C] 0.5867[/C][/ROW]
[ROW][C]75[/C][C] 0.5756[/C][C] 0.8488[/C][C] 0.4244[/C][/ROW]
[ROW][C]76[/C][C] 0.5851[/C][C] 0.8298[/C][C] 0.4149[/C][/ROW]
[ROW][C]77[/C][C] 0.6566[/C][C] 0.6869[/C][C] 0.3434[/C][/ROW]
[ROW][C]78[/C][C] 0.6377[/C][C] 0.7246[/C][C] 0.3623[/C][/ROW]
[ROW][C]79[/C][C] 0.6176[/C][C] 0.7649[/C][C] 0.3824[/C][/ROW]
[ROW][C]80[/C][C] 0.5942[/C][C] 0.8117[/C][C] 0.4058[/C][/ROW]
[ROW][C]81[/C][C] 0.5851[/C][C] 0.8297[/C][C] 0.4149[/C][/ROW]
[ROW][C]82[/C][C] 0.5175[/C][C] 0.965[/C][C] 0.4825[/C][/ROW]
[ROW][C]83[/C][C] 0.4786[/C][C] 0.9571[/C][C] 0.5214[/C][/ROW]
[ROW][C]84[/C][C] 0.4257[/C][C] 0.8514[/C][C] 0.5743[/C][/ROW]
[ROW][C]85[/C][C] 0.3755[/C][C] 0.7511[/C][C] 0.6245[/C][/ROW]
[ROW][C]86[/C][C] 0.368[/C][C] 0.7361[/C][C] 0.632[/C][/ROW]
[ROW][C]87[/C][C] 0.5446[/C][C] 0.9108[/C][C] 0.4554[/C][/ROW]
[ROW][C]88[/C][C] 0.7515[/C][C] 0.497[/C][C] 0.2485[/C][/ROW]
[ROW][C]89[/C][C] 0.8382[/C][C] 0.3237[/C][C] 0.1618[/C][/ROW]
[ROW][C]90[/C][C] 0.7993[/C][C] 0.4015[/C][C] 0.2007[/C][/ROW]
[ROW][C]91[/C][C] 0.7944[/C][C] 0.4112[/C][C] 0.2056[/C][/ROW]
[ROW][C]92[/C][C] 0.7848[/C][C] 0.4305[/C][C] 0.2152[/C][/ROW]
[ROW][C]93[/C][C] 0.8438[/C][C] 0.3125[/C][C] 0.1562[/C][/ROW]
[ROW][C]94[/C][C] 0.9238[/C][C] 0.1524[/C][C] 0.07619[/C][/ROW]
[ROW][C]95[/C][C] 0.8295[/C][C] 0.341[/C][C] 0.1705[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.04798 0.09597 0.952
8 0.02082 0.04164 0.9792
9 0.07073 0.1415 0.9293
10 0.03488 0.06977 0.9651
11 0.01763 0.03526 0.9824
12 0.009307 0.01861 0.9907
13 0.004489 0.008977 0.9955
14 0.006398 0.0128 0.9936
15 0.01453 0.02905 0.9855
16 0.02468 0.04935 0.9753
17 0.05102 0.102 0.949
18 0.08172 0.1634 0.9183
19 0.1843 0.3686 0.8157
20 0.3364 0.6728 0.6636
21 0.3563 0.7126 0.6437
22 0.3445 0.689 0.6555
23 0.3185 0.637 0.6815
24 0.2712 0.5424 0.7288
25 0.2155 0.4309 0.7845
26 0.1729 0.3459 0.8271
27 0.1407 0.2813 0.8593
28 0.1225 0.245 0.8775
29 0.1093 0.2186 0.8907
30 0.1145 0.229 0.8855
31 0.1012 0.2023 0.8988
32 0.07662 0.1532 0.9234
33 0.06442 0.1288 0.9356
34 0.04714 0.09427 0.9529
35 0.03463 0.06925 0.9654
36 0.02608 0.05215 0.9739
37 0.02284 0.04567 0.9772
38 0.01853 0.03706 0.9815
39 0.01989 0.03978 0.9801
40 0.03378 0.06757 0.9662
41 0.06375 0.1275 0.9362
42 0.05203 0.1041 0.948
43 0.148 0.296 0.852
44 0.174 0.3481 0.826
45 0.1685 0.337 0.8315
46 0.1451 0.2901 0.8549
47 0.1204 0.2409 0.8796
48 0.101 0.202 0.899
49 0.07916 0.1583 0.9208
50 0.06561 0.1312 0.9344
51 0.0543 0.1086 0.9457
52 0.04524 0.09049 0.9548
53 0.0405 0.081 0.9595
54 0.04103 0.08207 0.959
55 0.03969 0.07938 0.9603
56 0.06244 0.1249 0.9376
57 0.07357 0.1471 0.9264
58 0.06382 0.1276 0.9362
59 0.07205 0.1441 0.928
60 0.06488 0.1298 0.9351
61 0.05249 0.105 0.9475
62 0.04162 0.08323 0.9584
63 0.03314 0.06628 0.9669
64 0.03284 0.06568 0.9672
65 0.0276 0.05521 0.9724
66 0.02882 0.05765 0.9712
67 0.0249 0.0498 0.9751
68 0.01892 0.03785 0.9811
69 0.01505 0.0301 0.9849
70 0.02475 0.04951 0.9752
71 0.1146 0.2292 0.8854
72 0.1313 0.2627 0.8687
73 0.2211 0.4422 0.7789
74 0.4133 0.8267 0.5867
75 0.5756 0.8488 0.4244
76 0.5851 0.8298 0.4149
77 0.6566 0.6869 0.3434
78 0.6377 0.7246 0.3623
79 0.6176 0.7649 0.3824
80 0.5942 0.8117 0.4058
81 0.5851 0.8297 0.4149
82 0.5175 0.965 0.4825
83 0.4786 0.9571 0.5214
84 0.4257 0.8514 0.5743
85 0.3755 0.7511 0.6245
86 0.368 0.7361 0.632
87 0.5446 0.9108 0.4554
88 0.7515 0.497 0.2485
89 0.8382 0.3237 0.1618
90 0.7993 0.4015 0.2007
91 0.7944 0.4112 0.2056
92 0.7848 0.4305 0.2152
93 0.8438 0.3125 0.1562
94 0.9238 0.1524 0.07619
95 0.8295 0.341 0.1705







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1 0.01124NOK
5% type I error level140.157303NOK
10% type I error level290.325843NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 1 &  0.01124 & NOK \tabularnewline
5% type I error level & 14 & 0.157303 & NOK \tabularnewline
10% type I error level & 29 & 0.325843 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309942&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]1[/C][C] 0.01124[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]14[/C][C]0.157303[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]29[/C][C]0.325843[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309942&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1 0.01124NOK
5% type I error level140.157303NOK
10% type I error level290.325843NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 5.0276, df1 = 2, df2 = 96, p-value = 0.008385
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.4323, df1 = 6, df2 = 92, p-value = 0.004201
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 6.4193, df1 = 2, df2 = 96, p-value = 0.002418

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 5.0276, df1 = 2, df2 = 96, p-value = 0.008385
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.4323, df1 = 6, df2 = 92, p-value = 0.004201
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 6.4193, df1 = 2, df2 = 96, p-value = 0.002418
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=309942&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 5.0276, df1 = 2, df2 = 96, p-value = 0.008385
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.4323, df1 = 6, df2 = 92, p-value = 0.004201
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 6.4193, df1 = 2, df2 = 96, p-value = 0.002418
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309942&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 5.0276, df1 = 2, df2 = 96, p-value = 0.008385
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.4323, df1 = 6, df2 = 92, p-value = 0.004201
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 6.4193, df1 = 2, df2 = 96, p-value = 0.002418







Variance Inflation Factors (Multicollinearity)
> vif
    Last     Odds    Ratio 
1.011218 1.052634 1.041257 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
    Last     Odds    Ratio 
1.011218 1.052634 1.041257 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=309942&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
    Last     Odds    Ratio 
1.011218 1.052634 1.041257 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309942&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309942&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
    Last     Odds    Ratio 
1.011218 1.052634 1.041257 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par6 = 12 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ; par6 = 12 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')