Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 19 Dec 2008 15:27:01 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/19/t1229725970bzj6agxxlv15jyp.htm/, Retrieved Fri, 01 Nov 2024 00:16:09 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=35269, Retrieved Fri, 01 Nov 2024 00:16:09 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact296
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Werkloosheid- Azië] [2008-12-17 14:33:28] [5e74953d94072114d25d7276793b561e]
-    D    [Multiple Regression] [werkloosheid - Eu...] [2008-12-19 22:27:01] [5925747fb2a6bb4cfcd8015825ee5e92] [Current]
Feedback Forum

Post a new message
Dataseries X:
180144	8955,5
173666	10423,9
165688	11617,2
161570	9391,1
156145	10872
153730	10230,4
182698	9221
200765	9428,6
176512	10934,5
166618	10986
158644	11724,6
159585	11180,9
163095	11163,2
159044	11240,9
155511	12107,1
153745	10762,3
150569	11340,4
150605	11266,8
179612	9542,7
194690	9227,7
189917	10571,9
184128	10774,4
175335	10392,8
179566	9920,2
181140	9884,9
177876	10174,5
175041	11395,4
169292	10760,2
166070	10570,1
166972	10536
206348	9902,6
215706	8889
202108	10837,3
195411	11624,1
193111	10509
195198	10984,9
198770	10649,1
194163	10855,7
190420	11677,4
189733	10760,2
186029	10046,2
191531	10772,8
232571	9987,7
243477	8638,7
227247	11063,7
217859	11855,7
208679	10684,5
213188	11337,4
216234	10478
213586	11123,9
209465	12909,3
204045	11339,9
200237	10462,2
203666	12733,5
241476	10519,2
260307	10414,9
243324	12476,8
244460	12384,6
233575	12266,7
237217	12919,9
235243	11497,3
230354	12142
227184	13919,4
221678	12656,8
217142	12034,1
219452	13199,7
256446	10881,3
265845	11301,2
248624	13643,9
241114	12517
229245	13981,1
231805	14275,7
219277	13435
219313	13565,7
212610	16216,3
214771	12970
211142	14079,9
211457	14235
240048	12213,4
240636	12581
230580	14130,4
208795	14210,8
197922	14378,5
194596	13142,8




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Multiple Linear Regression - Estimated Regression Equation
werkloosheid[t] = + 217808.739352694 -6.19368899531241Europa[t] + 3991.80149233433M1[t] + 2150.08058275451M2[t] + 5487.86504845769M3[t] -8641.81126884436M4[t] -13100.2472264452M5[t] -9708.44343219584M6[t] + 14153.1279875561M7[t] + 23112.6435492637M8[t] + 18835.3878057790M9[t] + 9682.32094298233M10[t] -730.588482714191M11[t] + 1206.21536731755t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
werkloosheid[t] =  +  217808.739352694 -6.19368899531241Europa[t] +  3991.80149233433M1[t] +  2150.08058275451M2[t] +  5487.86504845769M3[t] -8641.81126884436M4[t] -13100.2472264452M5[t] -9708.44343219584M6[t] +  14153.1279875561M7[t] +  23112.6435492637M8[t] +  18835.3878057790M9[t] +  9682.32094298233M10[t] -730.588482714191M11[t] +  1206.21536731755t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]werkloosheid[t] =  +  217808.739352694 -6.19368899531241Europa[t] +  3991.80149233433M1[t] +  2150.08058275451M2[t] +  5487.86504845769M3[t] -8641.81126884436M4[t] -13100.2472264452M5[t] -9708.44343219584M6[t] +  14153.1279875561M7[t] +  23112.6435492637M8[t] +  18835.3878057790M9[t] +  9682.32094298233M10[t] -730.588482714191M11[t] +  1206.21536731755t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
werkloosheid[t] = + 217808.739352694 -6.19368899531241Europa[t] + 3991.80149233433M1[t] + 2150.08058275451M2[t] + 5487.86504845769M3[t] -8641.81126884436M4[t] -13100.2472264452M5[t] -9708.44343219584M6[t] + 14153.1279875561M7[t] + 23112.6435492637M8[t] + 18835.3878057790M9[t] + 9682.32094298233M10[t] -730.588482714191M11[t] + 1206.21536731755t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)217808.73935269420018.01556510.880600
Europa-6.193688995312411.960306-3.15960.0023340.001167
M13991.801492334337028.9345750.56790.5719130.285957
M22150.080582754516930.0680880.31030.757290.378645
M35487.865048457697356.3443560.7460.4581630.229081
M4-8641.811268844366952.600968-1.2430.218030.109015
M5-13100.24722644526936.887136-1.88850.0631040.031552
M6-9708.443432195846914.565218-1.40410.1647230.082362
M714153.12798755617442.1059961.90180.0613180.030659
M823112.64354926377679.2289083.00980.0036330.001817
M918835.38780577906904.9161672.72780.0080530.004027
M109682.320942982336908.1082941.40160.1654570.082728
M11-730.5884827141916900.239494-0.10590.9159810.457991
t1206.21536731755106.17906211.360200

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 217808.739352694 & 20018.015565 & 10.8806 & 0 & 0 \tabularnewline
Europa & -6.19368899531241 & 1.960306 & -3.1596 & 0.002334 & 0.001167 \tabularnewline
M1 & 3991.80149233433 & 7028.934575 & 0.5679 & 0.571913 & 0.285957 \tabularnewline
M2 & 2150.08058275451 & 6930.068088 & 0.3103 & 0.75729 & 0.378645 \tabularnewline
M3 & 5487.86504845769 & 7356.344356 & 0.746 & 0.458163 & 0.229081 \tabularnewline
M4 & -8641.81126884436 & 6952.600968 & -1.243 & 0.21803 & 0.109015 \tabularnewline
M5 & -13100.2472264452 & 6936.887136 & -1.8885 & 0.063104 & 0.031552 \tabularnewline
M6 & -9708.44343219584 & 6914.565218 & -1.4041 & 0.164723 & 0.082362 \tabularnewline
M7 & 14153.1279875561 & 7442.105996 & 1.9018 & 0.061318 & 0.030659 \tabularnewline
M8 & 23112.6435492637 & 7679.228908 & 3.0098 & 0.003633 & 0.001817 \tabularnewline
M9 & 18835.3878057790 & 6904.916167 & 2.7278 & 0.008053 & 0.004027 \tabularnewline
M10 & 9682.32094298233 & 6908.108294 & 1.4016 & 0.165457 & 0.082728 \tabularnewline
M11 & -730.588482714191 & 6900.239494 & -0.1059 & 0.915981 & 0.457991 \tabularnewline
t & 1206.21536731755 & 106.179062 & 11.3602 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]217808.739352694[/C][C]20018.015565[/C][C]10.8806[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Europa[/C][C]-6.19368899531241[/C][C]1.960306[/C][C]-3.1596[/C][C]0.002334[/C][C]0.001167[/C][/ROW]
[ROW][C]M1[/C][C]3991.80149233433[/C][C]7028.934575[/C][C]0.5679[/C][C]0.571913[/C][C]0.285957[/C][/ROW]
[ROW][C]M2[/C][C]2150.08058275451[/C][C]6930.068088[/C][C]0.3103[/C][C]0.75729[/C][C]0.378645[/C][/ROW]
[ROW][C]M3[/C][C]5487.86504845769[/C][C]7356.344356[/C][C]0.746[/C][C]0.458163[/C][C]0.229081[/C][/ROW]
[ROW][C]M4[/C][C]-8641.81126884436[/C][C]6952.600968[/C][C]-1.243[/C][C]0.21803[/C][C]0.109015[/C][/ROW]
[ROW][C]M5[/C][C]-13100.2472264452[/C][C]6936.887136[/C][C]-1.8885[/C][C]0.063104[/C][C]0.031552[/C][/ROW]
[ROW][C]M6[/C][C]-9708.44343219584[/C][C]6914.565218[/C][C]-1.4041[/C][C]0.164723[/C][C]0.082362[/C][/ROW]
[ROW][C]M7[/C][C]14153.1279875561[/C][C]7442.105996[/C][C]1.9018[/C][C]0.061318[/C][C]0.030659[/C][/ROW]
[ROW][C]M8[/C][C]23112.6435492637[/C][C]7679.228908[/C][C]3.0098[/C][C]0.003633[/C][C]0.001817[/C][/ROW]
[ROW][C]M9[/C][C]18835.3878057790[/C][C]6904.916167[/C][C]2.7278[/C][C]0.008053[/C][C]0.004027[/C][/ROW]
[ROW][C]M10[/C][C]9682.32094298233[/C][C]6908.108294[/C][C]1.4016[/C][C]0.165457[/C][C]0.082728[/C][/ROW]
[ROW][C]M11[/C][C]-730.588482714191[/C][C]6900.239494[/C][C]-0.1059[/C][C]0.915981[/C][C]0.457991[/C][/ROW]
[ROW][C]t[/C][C]1206.21536731755[/C][C]106.179062[/C][C]11.3602[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)217808.73935269420018.01556510.880600
Europa-6.193688995312411.960306-3.15960.0023340.001167
M13991.801492334337028.9345750.56790.5719130.285957
M22150.080582754516930.0680880.31030.757290.378645
M35487.865048457697356.3443560.7460.4581630.229081
M4-8641.811268844366952.600968-1.2430.218030.109015
M5-13100.24722644526936.887136-1.88850.0631040.031552
M6-9708.443432195846914.565218-1.40410.1647230.082362
M714153.12798755617442.1059961.90180.0613180.030659
M823112.64354926377679.2289083.00980.0036330.001817
M918835.38780577906904.9161672.72780.0080530.004027
M109682.320942982336908.1082941.40160.1654570.082728
M11-730.5884827141916900.239494-0.10590.9159810.457991
t1206.21536731755106.17906211.360200







Multiple Linear Regression - Regression Statistics
Multiple R0.915447709162076
R-squared0.838044508210093
Adjusted R-squared0.807967059734824
F-TEST (value)27.8628856732706
F-TEST (DF numerator)13
F-TEST (DF denominator)70
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation12906.1317316674
Sum Squared Residuals11659776539.2606

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.915447709162076 \tabularnewline
R-squared & 0.838044508210093 \tabularnewline
Adjusted R-squared & 0.807967059734824 \tabularnewline
F-TEST (value) & 27.8628856732706 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 70 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 12906.1317316674 \tabularnewline
Sum Squared Residuals & 11659776539.2606 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.915447709162076[/C][/ROW]
[ROW][C]R-squared[/C][C]0.838044508210093[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.807967059734824[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]27.8628856732706[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]70[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]12906.1317316674[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]11659776539.2606[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.915447709162076
R-squared0.838044508210093
Adjusted R-squared0.807967059734824
F-TEST (value)27.8628856732706
F-TEST (DF numerator)13
F-TEST (DF denominator)70
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation12906.1317316674
Sum Squared Residuals11659776539.2606







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1180144167539.17441482612604.8255851738
2173666157808.85595184715857.1440481530
3165688154961.92670676210726.0732932385
4161570155826.2368292425743.76317075806
5156145143401.78220580012743.2177941995
6153730151973.672226761756.32777324013
7182698183293.368685698-595.368685697753
8200765192173.2897792968591.71022070399
9176512179775.173145088-3263.17314508788
10166618171509.346666350-4891.34666635019
11158644157727.993916033916.006083966527
12159585163032.306472817-3447.30647281658
13163095168339.951627685-5244.95162768549
14159044167223.196450487-8179.19645048744
15155511166402.222875769-10891.2228757686
16153745161808.034886680-8063.0348866802
17150569154975.242688207-4406.2426882068
18150605160029.117359829-9424.11735982873
19179612195775.443343716-16163.4433437164
20194690207892.186306265-13202.1863062649
21189917196495.589182599-6578.58918259878
22184128187294.515665569-3166.51566556893
23175335180451.333327801-5116.33332780119
24179566185315.274597018-5749.27459701758
25181140190731.928678204-9591.92867820398
26177876188302.730802899-10426.7308028992
27175041185284.855741543-10243.8557415431
28169292176295.626041381-7003.626041381
29166070174220.825729107-8150.82572910657
30166972179030.049685414-12058.0496854137
31206348208020.919082114-1672.91908211409
32215706224464.573176788-8758.57317678787
33202108209326.368531054-7218.36853105351
34195411196506.322534063-1095.32253406261
35193111194206.211074357-1095.21107435652
36195198193195.4383315192002.56166848091
37198770200473.295955797-1703.29595579686
38194163198558.174267103-4395.17426710306
39190420198012.819852676-7592.8198526756
40189733190770.210449192-1037.21044919163
41186029191940.283801561-5911.28380156138
42191531192037.968539134-506.968539134335
43232571221968.42055642410602.5794435764
44243477240489.4379401252987.56205987483
45227247222398.7017503254848.29824967458
46217859209546.4485705598312.55142944111
47208679207593.803063491085.19693651018
48213188205486.7473684827701.25263151791
49216234216007.620550705226.379449294546
50213586211371.6112863712214.38871362909
51209465204857.3987871614607.60121283913
52204045201654.3133464202390.68665358033
53200237203838.293587322-3601.29358732206
54203666194368.5869338369297.41306616409
55241476233151.0592632268324.94073677428
56260307243962.79195446216344.2080455381
57243324228120.9842388615203.0157611399
58244460220745.19086874923714.8091312512
59233575212268.73274291721306.2672570829
60237217210159.81894121127057.1810587892
61235243224168.97776559411074.0222344059
62230354219540.40092805410813.5990719460
63227184213075.73794080614108.2620591936
64221678207972.42871630313705.5712836966
65217142208577.0182634018564.9817365989
66219452205955.67353203213496.3264679681
67256446245382.90888583411063.0911141663
68265845252947.90980572712897.0901942729
69248624235366.91422024213257.0857797584
70241114234399.730853586714.26914641994
71229245216124.85673716413120.1432628358
72231805216236.99980917715568.0001908231
73219277226642.051007188-7365.0510071879
74219313225197.030313238-5884.03031323832
75212610213324.038095284-714.038095283981
76214771220507.149730782-5736.14973078217
77211142210380.553724602761.446275398394
78211457214017.931722996-2560.93172299559
79240048251606.880182989-11558.8801829887
80240636259495.811037337-18859.8110373369
81230580246828.268931833-16248.2689318327
82208795238383.444841131-29588.4448411305
83197922228138.069138238-30216.0691382377
84194596237728.414479777-43132.414479777

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 180144 & 167539.174414826 & 12604.8255851738 \tabularnewline
2 & 173666 & 157808.855951847 & 15857.1440481530 \tabularnewline
3 & 165688 & 154961.926706762 & 10726.0732932385 \tabularnewline
4 & 161570 & 155826.236829242 & 5743.76317075806 \tabularnewline
5 & 156145 & 143401.782205800 & 12743.2177941995 \tabularnewline
6 & 153730 & 151973.67222676 & 1756.32777324013 \tabularnewline
7 & 182698 & 183293.368685698 & -595.368685697753 \tabularnewline
8 & 200765 & 192173.289779296 & 8591.71022070399 \tabularnewline
9 & 176512 & 179775.173145088 & -3263.17314508788 \tabularnewline
10 & 166618 & 171509.346666350 & -4891.34666635019 \tabularnewline
11 & 158644 & 157727.993916033 & 916.006083966527 \tabularnewline
12 & 159585 & 163032.306472817 & -3447.30647281658 \tabularnewline
13 & 163095 & 168339.951627685 & -5244.95162768549 \tabularnewline
14 & 159044 & 167223.196450487 & -8179.19645048744 \tabularnewline
15 & 155511 & 166402.222875769 & -10891.2228757686 \tabularnewline
16 & 153745 & 161808.034886680 & -8063.0348866802 \tabularnewline
17 & 150569 & 154975.242688207 & -4406.2426882068 \tabularnewline
18 & 150605 & 160029.117359829 & -9424.11735982873 \tabularnewline
19 & 179612 & 195775.443343716 & -16163.4433437164 \tabularnewline
20 & 194690 & 207892.186306265 & -13202.1863062649 \tabularnewline
21 & 189917 & 196495.589182599 & -6578.58918259878 \tabularnewline
22 & 184128 & 187294.515665569 & -3166.51566556893 \tabularnewline
23 & 175335 & 180451.333327801 & -5116.33332780119 \tabularnewline
24 & 179566 & 185315.274597018 & -5749.27459701758 \tabularnewline
25 & 181140 & 190731.928678204 & -9591.92867820398 \tabularnewline
26 & 177876 & 188302.730802899 & -10426.7308028992 \tabularnewline
27 & 175041 & 185284.855741543 & -10243.8557415431 \tabularnewline
28 & 169292 & 176295.626041381 & -7003.626041381 \tabularnewline
29 & 166070 & 174220.825729107 & -8150.82572910657 \tabularnewline
30 & 166972 & 179030.049685414 & -12058.0496854137 \tabularnewline
31 & 206348 & 208020.919082114 & -1672.91908211409 \tabularnewline
32 & 215706 & 224464.573176788 & -8758.57317678787 \tabularnewline
33 & 202108 & 209326.368531054 & -7218.36853105351 \tabularnewline
34 & 195411 & 196506.322534063 & -1095.32253406261 \tabularnewline
35 & 193111 & 194206.211074357 & -1095.21107435652 \tabularnewline
36 & 195198 & 193195.438331519 & 2002.56166848091 \tabularnewline
37 & 198770 & 200473.295955797 & -1703.29595579686 \tabularnewline
38 & 194163 & 198558.174267103 & -4395.17426710306 \tabularnewline
39 & 190420 & 198012.819852676 & -7592.8198526756 \tabularnewline
40 & 189733 & 190770.210449192 & -1037.21044919163 \tabularnewline
41 & 186029 & 191940.283801561 & -5911.28380156138 \tabularnewline
42 & 191531 & 192037.968539134 & -506.968539134335 \tabularnewline
43 & 232571 & 221968.420556424 & 10602.5794435764 \tabularnewline
44 & 243477 & 240489.437940125 & 2987.56205987483 \tabularnewline
45 & 227247 & 222398.701750325 & 4848.29824967458 \tabularnewline
46 & 217859 & 209546.448570559 & 8312.55142944111 \tabularnewline
47 & 208679 & 207593.80306349 & 1085.19693651018 \tabularnewline
48 & 213188 & 205486.747368482 & 7701.25263151791 \tabularnewline
49 & 216234 & 216007.620550705 & 226.379449294546 \tabularnewline
50 & 213586 & 211371.611286371 & 2214.38871362909 \tabularnewline
51 & 209465 & 204857.398787161 & 4607.60121283913 \tabularnewline
52 & 204045 & 201654.313346420 & 2390.68665358033 \tabularnewline
53 & 200237 & 203838.293587322 & -3601.29358732206 \tabularnewline
54 & 203666 & 194368.586933836 & 9297.41306616409 \tabularnewline
55 & 241476 & 233151.059263226 & 8324.94073677428 \tabularnewline
56 & 260307 & 243962.791954462 & 16344.2080455381 \tabularnewline
57 & 243324 & 228120.98423886 & 15203.0157611399 \tabularnewline
58 & 244460 & 220745.190868749 & 23714.8091312512 \tabularnewline
59 & 233575 & 212268.732742917 & 21306.2672570829 \tabularnewline
60 & 237217 & 210159.818941211 & 27057.1810587892 \tabularnewline
61 & 235243 & 224168.977765594 & 11074.0222344059 \tabularnewline
62 & 230354 & 219540.400928054 & 10813.5990719460 \tabularnewline
63 & 227184 & 213075.737940806 & 14108.2620591936 \tabularnewline
64 & 221678 & 207972.428716303 & 13705.5712836966 \tabularnewline
65 & 217142 & 208577.018263401 & 8564.9817365989 \tabularnewline
66 & 219452 & 205955.673532032 & 13496.3264679681 \tabularnewline
67 & 256446 & 245382.908885834 & 11063.0911141663 \tabularnewline
68 & 265845 & 252947.909805727 & 12897.0901942729 \tabularnewline
69 & 248624 & 235366.914220242 & 13257.0857797584 \tabularnewline
70 & 241114 & 234399.73085358 & 6714.26914641994 \tabularnewline
71 & 229245 & 216124.856737164 & 13120.1432628358 \tabularnewline
72 & 231805 & 216236.999809177 & 15568.0001908231 \tabularnewline
73 & 219277 & 226642.051007188 & -7365.0510071879 \tabularnewline
74 & 219313 & 225197.030313238 & -5884.03031323832 \tabularnewline
75 & 212610 & 213324.038095284 & -714.038095283981 \tabularnewline
76 & 214771 & 220507.149730782 & -5736.14973078217 \tabularnewline
77 & 211142 & 210380.553724602 & 761.446275398394 \tabularnewline
78 & 211457 & 214017.931722996 & -2560.93172299559 \tabularnewline
79 & 240048 & 251606.880182989 & -11558.8801829887 \tabularnewline
80 & 240636 & 259495.811037337 & -18859.8110373369 \tabularnewline
81 & 230580 & 246828.268931833 & -16248.2689318327 \tabularnewline
82 & 208795 & 238383.444841131 & -29588.4448411305 \tabularnewline
83 & 197922 & 228138.069138238 & -30216.0691382377 \tabularnewline
84 & 194596 & 237728.414479777 & -43132.414479777 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]180144[/C][C]167539.174414826[/C][C]12604.8255851738[/C][/ROW]
[ROW][C]2[/C][C]173666[/C][C]157808.855951847[/C][C]15857.1440481530[/C][/ROW]
[ROW][C]3[/C][C]165688[/C][C]154961.926706762[/C][C]10726.0732932385[/C][/ROW]
[ROW][C]4[/C][C]161570[/C][C]155826.236829242[/C][C]5743.76317075806[/C][/ROW]
[ROW][C]5[/C][C]156145[/C][C]143401.782205800[/C][C]12743.2177941995[/C][/ROW]
[ROW][C]6[/C][C]153730[/C][C]151973.67222676[/C][C]1756.32777324013[/C][/ROW]
[ROW][C]7[/C][C]182698[/C][C]183293.368685698[/C][C]-595.368685697753[/C][/ROW]
[ROW][C]8[/C][C]200765[/C][C]192173.289779296[/C][C]8591.71022070399[/C][/ROW]
[ROW][C]9[/C][C]176512[/C][C]179775.173145088[/C][C]-3263.17314508788[/C][/ROW]
[ROW][C]10[/C][C]166618[/C][C]171509.346666350[/C][C]-4891.34666635019[/C][/ROW]
[ROW][C]11[/C][C]158644[/C][C]157727.993916033[/C][C]916.006083966527[/C][/ROW]
[ROW][C]12[/C][C]159585[/C][C]163032.306472817[/C][C]-3447.30647281658[/C][/ROW]
[ROW][C]13[/C][C]163095[/C][C]168339.951627685[/C][C]-5244.95162768549[/C][/ROW]
[ROW][C]14[/C][C]159044[/C][C]167223.196450487[/C][C]-8179.19645048744[/C][/ROW]
[ROW][C]15[/C][C]155511[/C][C]166402.222875769[/C][C]-10891.2228757686[/C][/ROW]
[ROW][C]16[/C][C]153745[/C][C]161808.034886680[/C][C]-8063.0348866802[/C][/ROW]
[ROW][C]17[/C][C]150569[/C][C]154975.242688207[/C][C]-4406.2426882068[/C][/ROW]
[ROW][C]18[/C][C]150605[/C][C]160029.117359829[/C][C]-9424.11735982873[/C][/ROW]
[ROW][C]19[/C][C]179612[/C][C]195775.443343716[/C][C]-16163.4433437164[/C][/ROW]
[ROW][C]20[/C][C]194690[/C][C]207892.186306265[/C][C]-13202.1863062649[/C][/ROW]
[ROW][C]21[/C][C]189917[/C][C]196495.589182599[/C][C]-6578.58918259878[/C][/ROW]
[ROW][C]22[/C][C]184128[/C][C]187294.515665569[/C][C]-3166.51566556893[/C][/ROW]
[ROW][C]23[/C][C]175335[/C][C]180451.333327801[/C][C]-5116.33332780119[/C][/ROW]
[ROW][C]24[/C][C]179566[/C][C]185315.274597018[/C][C]-5749.27459701758[/C][/ROW]
[ROW][C]25[/C][C]181140[/C][C]190731.928678204[/C][C]-9591.92867820398[/C][/ROW]
[ROW][C]26[/C][C]177876[/C][C]188302.730802899[/C][C]-10426.7308028992[/C][/ROW]
[ROW][C]27[/C][C]175041[/C][C]185284.855741543[/C][C]-10243.8557415431[/C][/ROW]
[ROW][C]28[/C][C]169292[/C][C]176295.626041381[/C][C]-7003.626041381[/C][/ROW]
[ROW][C]29[/C][C]166070[/C][C]174220.825729107[/C][C]-8150.82572910657[/C][/ROW]
[ROW][C]30[/C][C]166972[/C][C]179030.049685414[/C][C]-12058.0496854137[/C][/ROW]
[ROW][C]31[/C][C]206348[/C][C]208020.919082114[/C][C]-1672.91908211409[/C][/ROW]
[ROW][C]32[/C][C]215706[/C][C]224464.573176788[/C][C]-8758.57317678787[/C][/ROW]
[ROW][C]33[/C][C]202108[/C][C]209326.368531054[/C][C]-7218.36853105351[/C][/ROW]
[ROW][C]34[/C][C]195411[/C][C]196506.322534063[/C][C]-1095.32253406261[/C][/ROW]
[ROW][C]35[/C][C]193111[/C][C]194206.211074357[/C][C]-1095.21107435652[/C][/ROW]
[ROW][C]36[/C][C]195198[/C][C]193195.438331519[/C][C]2002.56166848091[/C][/ROW]
[ROW][C]37[/C][C]198770[/C][C]200473.295955797[/C][C]-1703.29595579686[/C][/ROW]
[ROW][C]38[/C][C]194163[/C][C]198558.174267103[/C][C]-4395.17426710306[/C][/ROW]
[ROW][C]39[/C][C]190420[/C][C]198012.819852676[/C][C]-7592.8198526756[/C][/ROW]
[ROW][C]40[/C][C]189733[/C][C]190770.210449192[/C][C]-1037.21044919163[/C][/ROW]
[ROW][C]41[/C][C]186029[/C][C]191940.283801561[/C][C]-5911.28380156138[/C][/ROW]
[ROW][C]42[/C][C]191531[/C][C]192037.968539134[/C][C]-506.968539134335[/C][/ROW]
[ROW][C]43[/C][C]232571[/C][C]221968.420556424[/C][C]10602.5794435764[/C][/ROW]
[ROW][C]44[/C][C]243477[/C][C]240489.437940125[/C][C]2987.56205987483[/C][/ROW]
[ROW][C]45[/C][C]227247[/C][C]222398.701750325[/C][C]4848.29824967458[/C][/ROW]
[ROW][C]46[/C][C]217859[/C][C]209546.448570559[/C][C]8312.55142944111[/C][/ROW]
[ROW][C]47[/C][C]208679[/C][C]207593.80306349[/C][C]1085.19693651018[/C][/ROW]
[ROW][C]48[/C][C]213188[/C][C]205486.747368482[/C][C]7701.25263151791[/C][/ROW]
[ROW][C]49[/C][C]216234[/C][C]216007.620550705[/C][C]226.379449294546[/C][/ROW]
[ROW][C]50[/C][C]213586[/C][C]211371.611286371[/C][C]2214.38871362909[/C][/ROW]
[ROW][C]51[/C][C]209465[/C][C]204857.398787161[/C][C]4607.60121283913[/C][/ROW]
[ROW][C]52[/C][C]204045[/C][C]201654.313346420[/C][C]2390.68665358033[/C][/ROW]
[ROW][C]53[/C][C]200237[/C][C]203838.293587322[/C][C]-3601.29358732206[/C][/ROW]
[ROW][C]54[/C][C]203666[/C][C]194368.586933836[/C][C]9297.41306616409[/C][/ROW]
[ROW][C]55[/C][C]241476[/C][C]233151.059263226[/C][C]8324.94073677428[/C][/ROW]
[ROW][C]56[/C][C]260307[/C][C]243962.791954462[/C][C]16344.2080455381[/C][/ROW]
[ROW][C]57[/C][C]243324[/C][C]228120.98423886[/C][C]15203.0157611399[/C][/ROW]
[ROW][C]58[/C][C]244460[/C][C]220745.190868749[/C][C]23714.8091312512[/C][/ROW]
[ROW][C]59[/C][C]233575[/C][C]212268.732742917[/C][C]21306.2672570829[/C][/ROW]
[ROW][C]60[/C][C]237217[/C][C]210159.818941211[/C][C]27057.1810587892[/C][/ROW]
[ROW][C]61[/C][C]235243[/C][C]224168.977765594[/C][C]11074.0222344059[/C][/ROW]
[ROW][C]62[/C][C]230354[/C][C]219540.400928054[/C][C]10813.5990719460[/C][/ROW]
[ROW][C]63[/C][C]227184[/C][C]213075.737940806[/C][C]14108.2620591936[/C][/ROW]
[ROW][C]64[/C][C]221678[/C][C]207972.428716303[/C][C]13705.5712836966[/C][/ROW]
[ROW][C]65[/C][C]217142[/C][C]208577.018263401[/C][C]8564.9817365989[/C][/ROW]
[ROW][C]66[/C][C]219452[/C][C]205955.673532032[/C][C]13496.3264679681[/C][/ROW]
[ROW][C]67[/C][C]256446[/C][C]245382.908885834[/C][C]11063.0911141663[/C][/ROW]
[ROW][C]68[/C][C]265845[/C][C]252947.909805727[/C][C]12897.0901942729[/C][/ROW]
[ROW][C]69[/C][C]248624[/C][C]235366.914220242[/C][C]13257.0857797584[/C][/ROW]
[ROW][C]70[/C][C]241114[/C][C]234399.73085358[/C][C]6714.26914641994[/C][/ROW]
[ROW][C]71[/C][C]229245[/C][C]216124.856737164[/C][C]13120.1432628358[/C][/ROW]
[ROW][C]72[/C][C]231805[/C][C]216236.999809177[/C][C]15568.0001908231[/C][/ROW]
[ROW][C]73[/C][C]219277[/C][C]226642.051007188[/C][C]-7365.0510071879[/C][/ROW]
[ROW][C]74[/C][C]219313[/C][C]225197.030313238[/C][C]-5884.03031323832[/C][/ROW]
[ROW][C]75[/C][C]212610[/C][C]213324.038095284[/C][C]-714.038095283981[/C][/ROW]
[ROW][C]76[/C][C]214771[/C][C]220507.149730782[/C][C]-5736.14973078217[/C][/ROW]
[ROW][C]77[/C][C]211142[/C][C]210380.553724602[/C][C]761.446275398394[/C][/ROW]
[ROW][C]78[/C][C]211457[/C][C]214017.931722996[/C][C]-2560.93172299559[/C][/ROW]
[ROW][C]79[/C][C]240048[/C][C]251606.880182989[/C][C]-11558.8801829887[/C][/ROW]
[ROW][C]80[/C][C]240636[/C][C]259495.811037337[/C][C]-18859.8110373369[/C][/ROW]
[ROW][C]81[/C][C]230580[/C][C]246828.268931833[/C][C]-16248.2689318327[/C][/ROW]
[ROW][C]82[/C][C]208795[/C][C]238383.444841131[/C][C]-29588.4448411305[/C][/ROW]
[ROW][C]83[/C][C]197922[/C][C]228138.069138238[/C][C]-30216.0691382377[/C][/ROW]
[ROW][C]84[/C][C]194596[/C][C]237728.414479777[/C][C]-43132.414479777[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1180144167539.17441482612604.8255851738
2173666157808.85595184715857.1440481530
3165688154961.92670676210726.0732932385
4161570155826.2368292425743.76317075806
5156145143401.78220580012743.2177941995
6153730151973.672226761756.32777324013
7182698183293.368685698-595.368685697753
8200765192173.2897792968591.71022070399
9176512179775.173145088-3263.17314508788
10166618171509.346666350-4891.34666635019
11158644157727.993916033916.006083966527
12159585163032.306472817-3447.30647281658
13163095168339.951627685-5244.95162768549
14159044167223.196450487-8179.19645048744
15155511166402.222875769-10891.2228757686
16153745161808.034886680-8063.0348866802
17150569154975.242688207-4406.2426882068
18150605160029.117359829-9424.11735982873
19179612195775.443343716-16163.4433437164
20194690207892.186306265-13202.1863062649
21189917196495.589182599-6578.58918259878
22184128187294.515665569-3166.51566556893
23175335180451.333327801-5116.33332780119
24179566185315.274597018-5749.27459701758
25181140190731.928678204-9591.92867820398
26177876188302.730802899-10426.7308028992
27175041185284.855741543-10243.8557415431
28169292176295.626041381-7003.626041381
29166070174220.825729107-8150.82572910657
30166972179030.049685414-12058.0496854137
31206348208020.919082114-1672.91908211409
32215706224464.573176788-8758.57317678787
33202108209326.368531054-7218.36853105351
34195411196506.322534063-1095.32253406261
35193111194206.211074357-1095.21107435652
36195198193195.4383315192002.56166848091
37198770200473.295955797-1703.29595579686
38194163198558.174267103-4395.17426710306
39190420198012.819852676-7592.8198526756
40189733190770.210449192-1037.21044919163
41186029191940.283801561-5911.28380156138
42191531192037.968539134-506.968539134335
43232571221968.42055642410602.5794435764
44243477240489.4379401252987.56205987483
45227247222398.7017503254848.29824967458
46217859209546.4485705598312.55142944111
47208679207593.803063491085.19693651018
48213188205486.7473684827701.25263151791
49216234216007.620550705226.379449294546
50213586211371.6112863712214.38871362909
51209465204857.3987871614607.60121283913
52204045201654.3133464202390.68665358033
53200237203838.293587322-3601.29358732206
54203666194368.5869338369297.41306616409
55241476233151.0592632268324.94073677428
56260307243962.79195446216344.2080455381
57243324228120.9842388615203.0157611399
58244460220745.19086874923714.8091312512
59233575212268.73274291721306.2672570829
60237217210159.81894121127057.1810587892
61235243224168.97776559411074.0222344059
62230354219540.40092805410813.5990719460
63227184213075.73794080614108.2620591936
64221678207972.42871630313705.5712836966
65217142208577.0182634018564.9817365989
66219452205955.67353203213496.3264679681
67256446245382.90888583411063.0911141663
68265845252947.90980572712897.0901942729
69248624235366.91422024213257.0857797584
70241114234399.730853586714.26914641994
71229245216124.85673716413120.1432628358
72231805216236.99980917715568.0001908231
73219277226642.051007188-7365.0510071879
74219313225197.030313238-5884.03031323832
75212610213324.038095284-714.038095283981
76214771220507.149730782-5736.14973078217
77211142210380.553724602761.446275398394
78211457214017.931722996-2560.93172299559
79240048251606.880182989-11558.8801829887
80240636259495.811037337-18859.8110373369
81230580246828.268931833-16248.2689318327
82208795238383.444841131-29588.4448411305
83197922228138.069138238-30216.0691382377
84194596237728.414479777-43132.414479777







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.01338670861082780.02677341722165560.986613291389172
180.00827368827554990.01654737655109980.99172631172445
190.002283840098101790.004567680196203580.997716159901898
200.0005713794297872210.001142758859574440.999428620570213
210.002671136791041450.00534227358208290.997328863208959
220.005212029081473880.01042405816294780.994787970918526
230.001911604996099470.003823209992198940.9980883950039
240.000754931816914440.001509863633828880.999245068183086
250.0002862731208283720.0005725462416567430.999713726879172
269.91767784550026e-050.0001983535569100050.999900823221545
274.16207633223468e-058.32415266446935e-050.999958379236678
289.26057176410641e-050.0001852114352821280.999907394282359
293.55971231213934e-057.11942462427869e-050.999964402876879
302.11154329517782e-054.22308659035563e-050.999978884567048
310.0004352951484673720.0008705902969347440.999564704851533
320.0002738750563054730.0005477501126109450.999726124943695
330.0002781643677905170.0005563287355810340.99972183563221
340.0006740741677803530.001348148335560710.99932592583222
350.0005386489518407460.001077297903681490.99946135104816
360.001063908659397700.002127817318795390.998936091340602
370.001282678994091660.002565357988183320.998717321005908
380.001314140178466450.002628280356932900.998685859821534
390.001023437636584250.00204687527316850.998976562363416
400.001545762970249740.003091525940499480.99845423702975
410.001350519528966340.002701039057932680.998649480471034
420.002020497706420830.004040995412841660.99797950229358
430.009503169558415360.01900633911683070.990496830441585
440.00871173510050590.01742347020101180.991288264899494
450.01151806549983840.02303613099967680.988481934500162
460.02315877371140280.04631754742280570.976841226288597
470.01869741345373370.03739482690746740.981302586546266
480.02212697838387670.04425395676775350.977873021616123
490.01913821788410630.03827643576821260.980861782115894
500.02019622496948180.04039244993896370.979803775030518
510.02316709891996170.04633419783992340.976832901080038
520.04170161921544140.08340323843088270.958298380784559
530.06932658618768770.1386531723753750.930673413812312
540.2235917761867160.4471835523734310.776408223813284
550.5281849803596480.9436300392807040.471815019640352
560.625518534432420.7489629311351610.374481465567581
570.8367498610273960.3265002779452080.163250138972604
580.8571205156306420.2857589687387160.142879484369358
590.8298728189366870.3402543621266250.170127181063313
600.8151056056355420.3697887887289160.184894394364458
610.7365478737759270.5269042524481470.263452126224073
620.6603495163949760.6793009672100490.339650483605024
630.5509328025995280.8981343948009450.449067197400472
640.6698012664632350.660397467073530.330198733536765
650.6232879170458110.7534241659083780.376712082954189
660.7649515946761940.4700968106476130.235048405323806
670.7287244477044770.5425511045910460.271275552295523

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.0133867086108278 & 0.0267734172216556 & 0.986613291389172 \tabularnewline
18 & 0.0082736882755499 & 0.0165473765510998 & 0.99172631172445 \tabularnewline
19 & 0.00228384009810179 & 0.00456768019620358 & 0.997716159901898 \tabularnewline
20 & 0.000571379429787221 & 0.00114275885957444 & 0.999428620570213 \tabularnewline
21 & 0.00267113679104145 & 0.0053422735820829 & 0.997328863208959 \tabularnewline
22 & 0.00521202908147388 & 0.0104240581629478 & 0.994787970918526 \tabularnewline
23 & 0.00191160499609947 & 0.00382320999219894 & 0.9980883950039 \tabularnewline
24 & 0.00075493181691444 & 0.00150986363382888 & 0.999245068183086 \tabularnewline
25 & 0.000286273120828372 & 0.000572546241656743 & 0.999713726879172 \tabularnewline
26 & 9.91767784550026e-05 & 0.000198353556910005 & 0.999900823221545 \tabularnewline
27 & 4.16207633223468e-05 & 8.32415266446935e-05 & 0.999958379236678 \tabularnewline
28 & 9.26057176410641e-05 & 0.000185211435282128 & 0.999907394282359 \tabularnewline
29 & 3.55971231213934e-05 & 7.11942462427869e-05 & 0.999964402876879 \tabularnewline
30 & 2.11154329517782e-05 & 4.22308659035563e-05 & 0.999978884567048 \tabularnewline
31 & 0.000435295148467372 & 0.000870590296934744 & 0.999564704851533 \tabularnewline
32 & 0.000273875056305473 & 0.000547750112610945 & 0.999726124943695 \tabularnewline
33 & 0.000278164367790517 & 0.000556328735581034 & 0.99972183563221 \tabularnewline
34 & 0.000674074167780353 & 0.00134814833556071 & 0.99932592583222 \tabularnewline
35 & 0.000538648951840746 & 0.00107729790368149 & 0.99946135104816 \tabularnewline
36 & 0.00106390865939770 & 0.00212781731879539 & 0.998936091340602 \tabularnewline
37 & 0.00128267899409166 & 0.00256535798818332 & 0.998717321005908 \tabularnewline
38 & 0.00131414017846645 & 0.00262828035693290 & 0.998685859821534 \tabularnewline
39 & 0.00102343763658425 & 0.0020468752731685 & 0.998976562363416 \tabularnewline
40 & 0.00154576297024974 & 0.00309152594049948 & 0.99845423702975 \tabularnewline
41 & 0.00135051952896634 & 0.00270103905793268 & 0.998649480471034 \tabularnewline
42 & 0.00202049770642083 & 0.00404099541284166 & 0.99797950229358 \tabularnewline
43 & 0.00950316955841536 & 0.0190063391168307 & 0.990496830441585 \tabularnewline
44 & 0.0087117351005059 & 0.0174234702010118 & 0.991288264899494 \tabularnewline
45 & 0.0115180654998384 & 0.0230361309996768 & 0.988481934500162 \tabularnewline
46 & 0.0231587737114028 & 0.0463175474228057 & 0.976841226288597 \tabularnewline
47 & 0.0186974134537337 & 0.0373948269074674 & 0.981302586546266 \tabularnewline
48 & 0.0221269783838767 & 0.0442539567677535 & 0.977873021616123 \tabularnewline
49 & 0.0191382178841063 & 0.0382764357682126 & 0.980861782115894 \tabularnewline
50 & 0.0201962249694818 & 0.0403924499389637 & 0.979803775030518 \tabularnewline
51 & 0.0231670989199617 & 0.0463341978399234 & 0.976832901080038 \tabularnewline
52 & 0.0417016192154414 & 0.0834032384308827 & 0.958298380784559 \tabularnewline
53 & 0.0693265861876877 & 0.138653172375375 & 0.930673413812312 \tabularnewline
54 & 0.223591776186716 & 0.447183552373431 & 0.776408223813284 \tabularnewline
55 & 0.528184980359648 & 0.943630039280704 & 0.471815019640352 \tabularnewline
56 & 0.62551853443242 & 0.748962931135161 & 0.374481465567581 \tabularnewline
57 & 0.836749861027396 & 0.326500277945208 & 0.163250138972604 \tabularnewline
58 & 0.857120515630642 & 0.285758968738716 & 0.142879484369358 \tabularnewline
59 & 0.829872818936687 & 0.340254362126625 & 0.170127181063313 \tabularnewline
60 & 0.815105605635542 & 0.369788788728916 & 0.184894394364458 \tabularnewline
61 & 0.736547873775927 & 0.526904252448147 & 0.263452126224073 \tabularnewline
62 & 0.660349516394976 & 0.679300967210049 & 0.339650483605024 \tabularnewline
63 & 0.550932802599528 & 0.898134394800945 & 0.449067197400472 \tabularnewline
64 & 0.669801266463235 & 0.66039746707353 & 0.330198733536765 \tabularnewline
65 & 0.623287917045811 & 0.753424165908378 & 0.376712082954189 \tabularnewline
66 & 0.764951594676194 & 0.470096810647613 & 0.235048405323806 \tabularnewline
67 & 0.728724447704477 & 0.542551104591046 & 0.271275552295523 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.0133867086108278[/C][C]0.0267734172216556[/C][C]0.986613291389172[/C][/ROW]
[ROW][C]18[/C][C]0.0082736882755499[/C][C]0.0165473765510998[/C][C]0.99172631172445[/C][/ROW]
[ROW][C]19[/C][C]0.00228384009810179[/C][C]0.00456768019620358[/C][C]0.997716159901898[/C][/ROW]
[ROW][C]20[/C][C]0.000571379429787221[/C][C]0.00114275885957444[/C][C]0.999428620570213[/C][/ROW]
[ROW][C]21[/C][C]0.00267113679104145[/C][C]0.0053422735820829[/C][C]0.997328863208959[/C][/ROW]
[ROW][C]22[/C][C]0.00521202908147388[/C][C]0.0104240581629478[/C][C]0.994787970918526[/C][/ROW]
[ROW][C]23[/C][C]0.00191160499609947[/C][C]0.00382320999219894[/C][C]0.9980883950039[/C][/ROW]
[ROW][C]24[/C][C]0.00075493181691444[/C][C]0.00150986363382888[/C][C]0.999245068183086[/C][/ROW]
[ROW][C]25[/C][C]0.000286273120828372[/C][C]0.000572546241656743[/C][C]0.999713726879172[/C][/ROW]
[ROW][C]26[/C][C]9.91767784550026e-05[/C][C]0.000198353556910005[/C][C]0.999900823221545[/C][/ROW]
[ROW][C]27[/C][C]4.16207633223468e-05[/C][C]8.32415266446935e-05[/C][C]0.999958379236678[/C][/ROW]
[ROW][C]28[/C][C]9.26057176410641e-05[/C][C]0.000185211435282128[/C][C]0.999907394282359[/C][/ROW]
[ROW][C]29[/C][C]3.55971231213934e-05[/C][C]7.11942462427869e-05[/C][C]0.999964402876879[/C][/ROW]
[ROW][C]30[/C][C]2.11154329517782e-05[/C][C]4.22308659035563e-05[/C][C]0.999978884567048[/C][/ROW]
[ROW][C]31[/C][C]0.000435295148467372[/C][C]0.000870590296934744[/C][C]0.999564704851533[/C][/ROW]
[ROW][C]32[/C][C]0.000273875056305473[/C][C]0.000547750112610945[/C][C]0.999726124943695[/C][/ROW]
[ROW][C]33[/C][C]0.000278164367790517[/C][C]0.000556328735581034[/C][C]0.99972183563221[/C][/ROW]
[ROW][C]34[/C][C]0.000674074167780353[/C][C]0.00134814833556071[/C][C]0.99932592583222[/C][/ROW]
[ROW][C]35[/C][C]0.000538648951840746[/C][C]0.00107729790368149[/C][C]0.99946135104816[/C][/ROW]
[ROW][C]36[/C][C]0.00106390865939770[/C][C]0.00212781731879539[/C][C]0.998936091340602[/C][/ROW]
[ROW][C]37[/C][C]0.00128267899409166[/C][C]0.00256535798818332[/C][C]0.998717321005908[/C][/ROW]
[ROW][C]38[/C][C]0.00131414017846645[/C][C]0.00262828035693290[/C][C]0.998685859821534[/C][/ROW]
[ROW][C]39[/C][C]0.00102343763658425[/C][C]0.0020468752731685[/C][C]0.998976562363416[/C][/ROW]
[ROW][C]40[/C][C]0.00154576297024974[/C][C]0.00309152594049948[/C][C]0.99845423702975[/C][/ROW]
[ROW][C]41[/C][C]0.00135051952896634[/C][C]0.00270103905793268[/C][C]0.998649480471034[/C][/ROW]
[ROW][C]42[/C][C]0.00202049770642083[/C][C]0.00404099541284166[/C][C]0.99797950229358[/C][/ROW]
[ROW][C]43[/C][C]0.00950316955841536[/C][C]0.0190063391168307[/C][C]0.990496830441585[/C][/ROW]
[ROW][C]44[/C][C]0.0087117351005059[/C][C]0.0174234702010118[/C][C]0.991288264899494[/C][/ROW]
[ROW][C]45[/C][C]0.0115180654998384[/C][C]0.0230361309996768[/C][C]0.988481934500162[/C][/ROW]
[ROW][C]46[/C][C]0.0231587737114028[/C][C]0.0463175474228057[/C][C]0.976841226288597[/C][/ROW]
[ROW][C]47[/C][C]0.0186974134537337[/C][C]0.0373948269074674[/C][C]0.981302586546266[/C][/ROW]
[ROW][C]48[/C][C]0.0221269783838767[/C][C]0.0442539567677535[/C][C]0.977873021616123[/C][/ROW]
[ROW][C]49[/C][C]0.0191382178841063[/C][C]0.0382764357682126[/C][C]0.980861782115894[/C][/ROW]
[ROW][C]50[/C][C]0.0201962249694818[/C][C]0.0403924499389637[/C][C]0.979803775030518[/C][/ROW]
[ROW][C]51[/C][C]0.0231670989199617[/C][C]0.0463341978399234[/C][C]0.976832901080038[/C][/ROW]
[ROW][C]52[/C][C]0.0417016192154414[/C][C]0.0834032384308827[/C][C]0.958298380784559[/C][/ROW]
[ROW][C]53[/C][C]0.0693265861876877[/C][C]0.138653172375375[/C][C]0.930673413812312[/C][/ROW]
[ROW][C]54[/C][C]0.223591776186716[/C][C]0.447183552373431[/C][C]0.776408223813284[/C][/ROW]
[ROW][C]55[/C][C]0.528184980359648[/C][C]0.943630039280704[/C][C]0.471815019640352[/C][/ROW]
[ROW][C]56[/C][C]0.62551853443242[/C][C]0.748962931135161[/C][C]0.374481465567581[/C][/ROW]
[ROW][C]57[/C][C]0.836749861027396[/C][C]0.326500277945208[/C][C]0.163250138972604[/C][/ROW]
[ROW][C]58[/C][C]0.857120515630642[/C][C]0.285758968738716[/C][C]0.142879484369358[/C][/ROW]
[ROW][C]59[/C][C]0.829872818936687[/C][C]0.340254362126625[/C][C]0.170127181063313[/C][/ROW]
[ROW][C]60[/C][C]0.815105605635542[/C][C]0.369788788728916[/C][C]0.184894394364458[/C][/ROW]
[ROW][C]61[/C][C]0.736547873775927[/C][C]0.526904252448147[/C][C]0.263452126224073[/C][/ROW]
[ROW][C]62[/C][C]0.660349516394976[/C][C]0.679300967210049[/C][C]0.339650483605024[/C][/ROW]
[ROW][C]63[/C][C]0.550932802599528[/C][C]0.898134394800945[/C][C]0.449067197400472[/C][/ROW]
[ROW][C]64[/C][C]0.669801266463235[/C][C]0.66039746707353[/C][C]0.330198733536765[/C][/ROW]
[ROW][C]65[/C][C]0.623287917045811[/C][C]0.753424165908378[/C][C]0.376712082954189[/C][/ROW]
[ROW][C]66[/C][C]0.764951594676194[/C][C]0.470096810647613[/C][C]0.235048405323806[/C][/ROW]
[ROW][C]67[/C][C]0.728724447704477[/C][C]0.542551104591046[/C][C]0.271275552295523[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.01338670861082780.02677341722165560.986613291389172
180.00827368827554990.01654737655109980.99172631172445
190.002283840098101790.004567680196203580.997716159901898
200.0005713794297872210.001142758859574440.999428620570213
210.002671136791041450.00534227358208290.997328863208959
220.005212029081473880.01042405816294780.994787970918526
230.001911604996099470.003823209992198940.9980883950039
240.000754931816914440.001509863633828880.999245068183086
250.0002862731208283720.0005725462416567430.999713726879172
269.91767784550026e-050.0001983535569100050.999900823221545
274.16207633223468e-058.32415266446935e-050.999958379236678
289.26057176410641e-050.0001852114352821280.999907394282359
293.55971231213934e-057.11942462427869e-050.999964402876879
302.11154329517782e-054.22308659035563e-050.999978884567048
310.0004352951484673720.0008705902969347440.999564704851533
320.0002738750563054730.0005477501126109450.999726124943695
330.0002781643677905170.0005563287355810340.99972183563221
340.0006740741677803530.001348148335560710.99932592583222
350.0005386489518407460.001077297903681490.99946135104816
360.001063908659397700.002127817318795390.998936091340602
370.001282678994091660.002565357988183320.998717321005908
380.001314140178466450.002628280356932900.998685859821534
390.001023437636584250.00204687527316850.998976562363416
400.001545762970249740.003091525940499480.99845423702975
410.001350519528966340.002701039057932680.998649480471034
420.002020497706420830.004040995412841660.99797950229358
430.009503169558415360.01900633911683070.990496830441585
440.00871173510050590.01742347020101180.991288264899494
450.01151806549983840.02303613099967680.988481934500162
460.02315877371140280.04631754742280570.976841226288597
470.01869741345373370.03739482690746740.981302586546266
480.02212697838387670.04425395676775350.977873021616123
490.01913821788410630.03827643576821260.980861782115894
500.02019622496948180.04039244993896370.979803775030518
510.02316709891996170.04633419783992340.976832901080038
520.04170161921544140.08340323843088270.958298380784559
530.06932658618768770.1386531723753750.930673413812312
540.2235917761867160.4471835523734310.776408223813284
550.5281849803596480.9436300392807040.471815019640352
560.625518534432420.7489629311351610.374481465567581
570.8367498610273960.3265002779452080.163250138972604
580.8571205156306420.2857589687387160.142879484369358
590.8298728189366870.3402543621266250.170127181063313
600.8151056056355420.3697887887289160.184894394364458
610.7365478737759270.5269042524481470.263452126224073
620.6603495163949760.6793009672100490.339650483605024
630.5509328025995280.8981343948009450.449067197400472
640.6698012664632350.660397467073530.330198733536765
650.6232879170458110.7534241659083780.376712082954189
660.7649515946761940.4700968106476130.235048405323806
670.7287244477044770.5425511045910460.271275552295523







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.450980392156863NOK
5% type I error level350.686274509803922NOK
10% type I error level360.705882352941177NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 23 & 0.450980392156863 & NOK \tabularnewline
5% type I error level & 35 & 0.686274509803922 & NOK \tabularnewline
10% type I error level & 36 & 0.705882352941177 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=35269&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]23[/C][C]0.450980392156863[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]35[/C][C]0.686274509803922[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]36[/C][C]0.705882352941177[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=35269&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=35269&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.450980392156863NOK
5% type I error level350.686274509803922NOK
10% type I error level360.705882352941177NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}