Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 21 Nov 2011 13:30:47 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/21/t1321900272wrw0hj1d8ww8ov3.htm/, Retrieved Fri, 01 Nov 2024 00:01:13 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=145895, Retrieved Fri, 01 Nov 2024 00:01:13 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact140
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Decreasing Compet...] [2010-11-17 09:04:39] [b98453cac15ba1066b407e146608df68]
-   PD    [Multiple Regression] [WS7 Tutorial Acco...] [2011-11-21 18:30:47] [2a6d487209befbc7c5ce02a41ecac161] [Current]
Feedback Forum

Post a new message
Dataseries X:
9	20	1	14	3	1	1
9	14	1	8	3	0	1
9	18	0	12	6	1	1
9	12	1	7	2	0	1
9	16	0	10	1	1	0
9	13	0	7	2	0	0
9	22	1	16	8	1	1
9	16	1	11	1	1	0
9	20	0	14	4	1	1
9	10	0	6	0	0	0
9	22	0	16	4	1	0
9	17	1	11	2	0	1
9	21	0	16	1	1	1
9	18	1	12	2	1	1
9	13	0	7	3	0	0
9	17	0	13	1	1	0
9	17	1	11	2	1	1
9	19	1	15	6	1	0
9	12	1	7	0	0	1
9	14	1	9	1	0	1
9	13	0	7	3	0	1
9	20	1	14	5	1	1
9	20	1	15	0	1	1
9	13	1	7	1	0	1
9	21	1	15	3	1	1
9	21	1	17	6	1	1
9	19	1	15	5	1	0
9	18	1	14	4	1	0
9	20	0	14	4	0	0
9	14	1	8	4	1	1
9	14	0	8	0	0	1
9	20	1	14	3	1	0
9	21	1	14	5	1	1
9	14	0	8	3	0	0
9	16	1	11	1	1	1
9	21	1	16	5	1	1
9	16	1	10	5	1	1
9	14	1	8	0	0	1
9	19	1	14	3	1	1
9	22	1	16	6	1	0
9	19	0	13	3	1	1
9	11	1	5	1	0	0
9	13	1	8	2	0	1
9	16	1	10	2	0	0
9	14	0	8	2	0	1
9	19	1	13	4	1	1
9	21	1	15	4	1	1
9	12	0	6	0	0	1
9	17	0	12	3	1	1
9	21	1	16	6	0	1
9	11	1	5	3	1	0
9	19	0	15	1	1	1
9	18	0	12	4	1	0
9	14	0	8	3	0	1
9	19	0	13	3	1	1
9	20	1	14	3	1	1
10	18	0	12	2	1	1
10	22	0	16	6	1	1
10	16	1	10	5	1	1
10	20	0	15	5	1	0
10	14	0	8	2	0	1
10	22	1	16	4	1	1
10	25	0	19	2	1	1
10	20	0	14	5	1	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ yule.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Size[t] = -3.84773482013996 -0.166870138679476Month[t] + 1.00089326702236Income[t] + 0.139649962487581Change[t] -0.0629646215714582Complex[t] + 0.253597674207865Big4[t] -0.306206241804777Product[t] -0.00263243014859412t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Size[t] =  -3.84773482013996 -0.166870138679476Month[t] +  1.00089326702236Income[t] +  0.139649962487581Change[t] -0.0629646215714582Complex[t] +  0.253597674207865Big4[t] -0.306206241804777Product[t] -0.00263243014859412t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Size[t] =  -3.84773482013996 -0.166870138679476Month[t] +  1.00089326702236Income[t] +  0.139649962487581Change[t] -0.0629646215714582Complex[t] +  0.253597674207865Big4[t] -0.306206241804777Product[t] -0.00263243014859412t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Size[t] = -3.84773482013996 -0.166870138679476Month[t] + 1.00089326702236Income[t] + 0.139649962487581Change[t] -0.0629646215714582Complex[t] + 0.253597674207865Big4[t] -0.306206241804777Product[t] -0.00263243014859412t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-3.847734820139963.028356-1.27060.2091350.104568
Month-0.1668701386794760.343715-0.48550.6292230.314612
Income1.000893267022360.0399925.028800
Change0.1396499624875810.1956720.71370.4783810.239191
Complex-0.06296462157145820.059605-1.05640.295340.14767
Big40.2535976742078650.262380.96650.3379350.168967
Product-0.3062062418047770.201329-1.52090.1339050.066953
t-0.002632430148594120.005902-0.4460.6573090.328654

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -3.84773482013996 & 3.028356 & -1.2706 & 0.209135 & 0.104568 \tabularnewline
Month & -0.166870138679476 & 0.343715 & -0.4855 & 0.629223 & 0.314612 \tabularnewline
Income & 1.00089326702236 & 0.03999 & 25.0288 & 0 & 0 \tabularnewline
Change & 0.139649962487581 & 0.195672 & 0.7137 & 0.478381 & 0.239191 \tabularnewline
Complex & -0.0629646215714582 & 0.059605 & -1.0564 & 0.29534 & 0.14767 \tabularnewline
Big4 & 0.253597674207865 & 0.26238 & 0.9665 & 0.337935 & 0.168967 \tabularnewline
Product & -0.306206241804777 & 0.201329 & -1.5209 & 0.133905 & 0.066953 \tabularnewline
t & -0.00263243014859412 & 0.005902 & -0.446 & 0.657309 & 0.328654 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-3.84773482013996[/C][C]3.028356[/C][C]-1.2706[/C][C]0.209135[/C][C]0.104568[/C][/ROW]
[ROW][C]Month[/C][C]-0.166870138679476[/C][C]0.343715[/C][C]-0.4855[/C][C]0.629223[/C][C]0.314612[/C][/ROW]
[ROW][C]Income[/C][C]1.00089326702236[/C][C]0.03999[/C][C]25.0288[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Change[/C][C]0.139649962487581[/C][C]0.195672[/C][C]0.7137[/C][C]0.478381[/C][C]0.239191[/C][/ROW]
[ROW][C]Complex[/C][C]-0.0629646215714582[/C][C]0.059605[/C][C]-1.0564[/C][C]0.29534[/C][C]0.14767[/C][/ROW]
[ROW][C]Big4[/C][C]0.253597674207865[/C][C]0.26238[/C][C]0.9665[/C][C]0.337935[/C][C]0.168967[/C][/ROW]
[ROW][C]Product[/C][C]-0.306206241804777[/C][C]0.201329[/C][C]-1.5209[/C][C]0.133905[/C][C]0.066953[/C][/ROW]
[ROW][C]t[/C][C]-0.00263243014859412[/C][C]0.005902[/C][C]-0.446[/C][C]0.657309[/C][C]0.328654[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-3.847734820139963.028356-1.27060.2091350.104568
Month-0.1668701386794760.343715-0.48550.6292230.314612
Income1.000893267022360.0399925.028800
Change0.1396499624875810.1956720.71370.4783810.239191
Complex-0.06296462157145820.059605-1.05640.295340.14767
Big40.2535976742078650.262380.96650.3379350.168967
Product-0.3062062418047770.201329-1.52090.1339050.066953
t-0.002632430148594120.005902-0.4460.6573090.328654







Multiple Linear Regression - Regression Statistics
Multiple R0.982073422841079
R-squared0.964468207850792
Adjusted R-squared0.96002673383214
F-TEST (value)217.150478377385
F-TEST (DF numerator)7
F-TEST (DF denominator)56
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.711093443803142
Sum Squared Residuals28.3166176059095

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.982073422841079 \tabularnewline
R-squared & 0.964468207850792 \tabularnewline
Adjusted R-squared & 0.96002673383214 \tabularnewline
F-TEST (value) & 217.150478377385 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 56 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.711093443803142 \tabularnewline
Sum Squared Residuals & 28.3166176059095 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.982073422841079[/C][/ROW]
[ROW][C]R-squared[/C][C]0.964468207850792[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.96002673383214[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]217.150478377385[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]56[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.711093443803142[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]28.3166176059095[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.982073422841079
R-squared0.964468207850792
Adjusted R-squared0.96002673383214
F-TEST (value)217.150478377385
F-TEST (DF numerator)7
F-TEST (DF denominator)56
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.711093443803142
Sum Squared Residuals28.3166176059095







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11414.5638143722197-0.563814372219716
288.30222466572907-0.302224665729074
31212.2282191506758-0.228219150675849
476.358137892958620.641862107041381
51010.842197105996-0.842197105995997
677.52032257900099-0.520322579000991
71616.2349832175156-0.234983217515583
81110.97394977803780.0260502219622051
91414.3401403469719-0.340140346971921
1064.633042300482441.36695769951756
111616.6428682625242-0.642868262524237
121111.3415447868817-0.341544786881682
131615.51939775811430.480602241885717
141212.5907708678147-0.590770867814721
1577.43366608609219-0.433666086092185
161311.81413364138381.18586635861618
171111.5819803103466-0.581980310346576
181513.63548216976171.36451783023835
1976.444580683872620.555419316127377
2098.38077016619730.619229833802703
2177.11166526339584-0.111665263395843
221414.3826040959563-0.38260409595632
231514.6947947736650.305205226334983
2477.36934717858056-0.369347178580558
251515.5015293156758-0.501529315675817
261715.31000302081281.68999697918715
271513.67475491999581.32524508000424
281412.73419384439631.26580615560374
291414.340100311597-0.340100311596951
3088.41914967420485-0.419149674204846
3188.27512809364664-0.275128093646639
321414.7884152794181-0.788415279418072
331415.3545406313441-1.35454063134415
3488.38454318029126-0.38454318029126
351110.5966679222210.403332077779024
361615.34664334089840.653356659101634
371010.339544575638-0.339544575637955
3888.39635104509406-0.396351045094061
391413.46288875955080.537111240449227
401616.5802485075597-0.580248507559671
411313.317973936766-0.317973936766004
4255.62638314366591-0.626383143665915
4387.256366384185810.743633615814189
441010.5626199969091-0.562619996909083
4588.1123448284234-0.112344828423405
461313.3814971269392-0.381497126939156
471515.3806512308353-0.380651230835289
4866.22859024707581-0.228590247075813
491211.29512796153250.704872038467475
501614.99322702303871.00677297696128
5155.73035970339352-0.730359703393516
521513.41494644827441.58505355172562
531212.5287331281938-0.528733128193831
5488.0256883355146-0.0256883355146
551313.2811199146857-0.281119914685687
561414.419030714047-0.419030714047036
571212.1710562702581-0.171056270258117
581615.92013842191310.0798615780868567
591010.1147609736894-0.114760973689409
601514.28225789094750.717742109052536
6187.903355807366420.0966441926335774
621616.1751879069493-0.175187906949264
631919.1615145585231-0.161514558523095
641414.2717281703531-0.271728170353087

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 14 & 14.5638143722197 & -0.563814372219716 \tabularnewline
2 & 8 & 8.30222466572907 & -0.302224665729074 \tabularnewline
3 & 12 & 12.2282191506758 & -0.228219150675849 \tabularnewline
4 & 7 & 6.35813789295862 & 0.641862107041381 \tabularnewline
5 & 10 & 10.842197105996 & -0.842197105995997 \tabularnewline
6 & 7 & 7.52032257900099 & -0.520322579000991 \tabularnewline
7 & 16 & 16.2349832175156 & -0.234983217515583 \tabularnewline
8 & 11 & 10.9739497780378 & 0.0260502219622051 \tabularnewline
9 & 14 & 14.3401403469719 & -0.340140346971921 \tabularnewline
10 & 6 & 4.63304230048244 & 1.36695769951756 \tabularnewline
11 & 16 & 16.6428682625242 & -0.642868262524237 \tabularnewline
12 & 11 & 11.3415447868817 & -0.341544786881682 \tabularnewline
13 & 16 & 15.5193977581143 & 0.480602241885717 \tabularnewline
14 & 12 & 12.5907708678147 & -0.590770867814721 \tabularnewline
15 & 7 & 7.43366608609219 & -0.433666086092185 \tabularnewline
16 & 13 & 11.8141336413838 & 1.18586635861618 \tabularnewline
17 & 11 & 11.5819803103466 & -0.581980310346576 \tabularnewline
18 & 15 & 13.6354821697617 & 1.36451783023835 \tabularnewline
19 & 7 & 6.44458068387262 & 0.555419316127377 \tabularnewline
20 & 9 & 8.3807701661973 & 0.619229833802703 \tabularnewline
21 & 7 & 7.11166526339584 & -0.111665263395843 \tabularnewline
22 & 14 & 14.3826040959563 & -0.38260409595632 \tabularnewline
23 & 15 & 14.694794773665 & 0.305205226334983 \tabularnewline
24 & 7 & 7.36934717858056 & -0.369347178580558 \tabularnewline
25 & 15 & 15.5015293156758 & -0.501529315675817 \tabularnewline
26 & 17 & 15.3100030208128 & 1.68999697918715 \tabularnewline
27 & 15 & 13.6747549199958 & 1.32524508000424 \tabularnewline
28 & 14 & 12.7341938443963 & 1.26580615560374 \tabularnewline
29 & 14 & 14.340100311597 & -0.340100311596951 \tabularnewline
30 & 8 & 8.41914967420485 & -0.419149674204846 \tabularnewline
31 & 8 & 8.27512809364664 & -0.275128093646639 \tabularnewline
32 & 14 & 14.7884152794181 & -0.788415279418072 \tabularnewline
33 & 14 & 15.3545406313441 & -1.35454063134415 \tabularnewline
34 & 8 & 8.38454318029126 & -0.38454318029126 \tabularnewline
35 & 11 & 10.596667922221 & 0.403332077779024 \tabularnewline
36 & 16 & 15.3466433408984 & 0.653356659101634 \tabularnewline
37 & 10 & 10.339544575638 & -0.339544575637955 \tabularnewline
38 & 8 & 8.39635104509406 & -0.396351045094061 \tabularnewline
39 & 14 & 13.4628887595508 & 0.537111240449227 \tabularnewline
40 & 16 & 16.5802485075597 & -0.580248507559671 \tabularnewline
41 & 13 & 13.317973936766 & -0.317973936766004 \tabularnewline
42 & 5 & 5.62638314366591 & -0.626383143665915 \tabularnewline
43 & 8 & 7.25636638418581 & 0.743633615814189 \tabularnewline
44 & 10 & 10.5626199969091 & -0.562619996909083 \tabularnewline
45 & 8 & 8.1123448284234 & -0.112344828423405 \tabularnewline
46 & 13 & 13.3814971269392 & -0.381497126939156 \tabularnewline
47 & 15 & 15.3806512308353 & -0.380651230835289 \tabularnewline
48 & 6 & 6.22859024707581 & -0.228590247075813 \tabularnewline
49 & 12 & 11.2951279615325 & 0.704872038467475 \tabularnewline
50 & 16 & 14.9932270230387 & 1.00677297696128 \tabularnewline
51 & 5 & 5.73035970339352 & -0.730359703393516 \tabularnewline
52 & 15 & 13.4149464482744 & 1.58505355172562 \tabularnewline
53 & 12 & 12.5287331281938 & -0.528733128193831 \tabularnewline
54 & 8 & 8.0256883355146 & -0.0256883355146 \tabularnewline
55 & 13 & 13.2811199146857 & -0.281119914685687 \tabularnewline
56 & 14 & 14.419030714047 & -0.419030714047036 \tabularnewline
57 & 12 & 12.1710562702581 & -0.171056270258117 \tabularnewline
58 & 16 & 15.9201384219131 & 0.0798615780868567 \tabularnewline
59 & 10 & 10.1147609736894 & -0.114760973689409 \tabularnewline
60 & 15 & 14.2822578909475 & 0.717742109052536 \tabularnewline
61 & 8 & 7.90335580736642 & 0.0966441926335774 \tabularnewline
62 & 16 & 16.1751879069493 & -0.175187906949264 \tabularnewline
63 & 19 & 19.1615145585231 & -0.161514558523095 \tabularnewline
64 & 14 & 14.2717281703531 & -0.271728170353087 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]14[/C][C]14.5638143722197[/C][C]-0.563814372219716[/C][/ROW]
[ROW][C]2[/C][C]8[/C][C]8.30222466572907[/C][C]-0.302224665729074[/C][/ROW]
[ROW][C]3[/C][C]12[/C][C]12.2282191506758[/C][C]-0.228219150675849[/C][/ROW]
[ROW][C]4[/C][C]7[/C][C]6.35813789295862[/C][C]0.641862107041381[/C][/ROW]
[ROW][C]5[/C][C]10[/C][C]10.842197105996[/C][C]-0.842197105995997[/C][/ROW]
[ROW][C]6[/C][C]7[/C][C]7.52032257900099[/C][C]-0.520322579000991[/C][/ROW]
[ROW][C]7[/C][C]16[/C][C]16.2349832175156[/C][C]-0.234983217515583[/C][/ROW]
[ROW][C]8[/C][C]11[/C][C]10.9739497780378[/C][C]0.0260502219622051[/C][/ROW]
[ROW][C]9[/C][C]14[/C][C]14.3401403469719[/C][C]-0.340140346971921[/C][/ROW]
[ROW][C]10[/C][C]6[/C][C]4.63304230048244[/C][C]1.36695769951756[/C][/ROW]
[ROW][C]11[/C][C]16[/C][C]16.6428682625242[/C][C]-0.642868262524237[/C][/ROW]
[ROW][C]12[/C][C]11[/C][C]11.3415447868817[/C][C]-0.341544786881682[/C][/ROW]
[ROW][C]13[/C][C]16[/C][C]15.5193977581143[/C][C]0.480602241885717[/C][/ROW]
[ROW][C]14[/C][C]12[/C][C]12.5907708678147[/C][C]-0.590770867814721[/C][/ROW]
[ROW][C]15[/C][C]7[/C][C]7.43366608609219[/C][C]-0.433666086092185[/C][/ROW]
[ROW][C]16[/C][C]13[/C][C]11.8141336413838[/C][C]1.18586635861618[/C][/ROW]
[ROW][C]17[/C][C]11[/C][C]11.5819803103466[/C][C]-0.581980310346576[/C][/ROW]
[ROW][C]18[/C][C]15[/C][C]13.6354821697617[/C][C]1.36451783023835[/C][/ROW]
[ROW][C]19[/C][C]7[/C][C]6.44458068387262[/C][C]0.555419316127377[/C][/ROW]
[ROW][C]20[/C][C]9[/C][C]8.3807701661973[/C][C]0.619229833802703[/C][/ROW]
[ROW][C]21[/C][C]7[/C][C]7.11166526339584[/C][C]-0.111665263395843[/C][/ROW]
[ROW][C]22[/C][C]14[/C][C]14.3826040959563[/C][C]-0.38260409595632[/C][/ROW]
[ROW][C]23[/C][C]15[/C][C]14.694794773665[/C][C]0.305205226334983[/C][/ROW]
[ROW][C]24[/C][C]7[/C][C]7.36934717858056[/C][C]-0.369347178580558[/C][/ROW]
[ROW][C]25[/C][C]15[/C][C]15.5015293156758[/C][C]-0.501529315675817[/C][/ROW]
[ROW][C]26[/C][C]17[/C][C]15.3100030208128[/C][C]1.68999697918715[/C][/ROW]
[ROW][C]27[/C][C]15[/C][C]13.6747549199958[/C][C]1.32524508000424[/C][/ROW]
[ROW][C]28[/C][C]14[/C][C]12.7341938443963[/C][C]1.26580615560374[/C][/ROW]
[ROW][C]29[/C][C]14[/C][C]14.340100311597[/C][C]-0.340100311596951[/C][/ROW]
[ROW][C]30[/C][C]8[/C][C]8.41914967420485[/C][C]-0.419149674204846[/C][/ROW]
[ROW][C]31[/C][C]8[/C][C]8.27512809364664[/C][C]-0.275128093646639[/C][/ROW]
[ROW][C]32[/C][C]14[/C][C]14.7884152794181[/C][C]-0.788415279418072[/C][/ROW]
[ROW][C]33[/C][C]14[/C][C]15.3545406313441[/C][C]-1.35454063134415[/C][/ROW]
[ROW][C]34[/C][C]8[/C][C]8.38454318029126[/C][C]-0.38454318029126[/C][/ROW]
[ROW][C]35[/C][C]11[/C][C]10.596667922221[/C][C]0.403332077779024[/C][/ROW]
[ROW][C]36[/C][C]16[/C][C]15.3466433408984[/C][C]0.653356659101634[/C][/ROW]
[ROW][C]37[/C][C]10[/C][C]10.339544575638[/C][C]-0.339544575637955[/C][/ROW]
[ROW][C]38[/C][C]8[/C][C]8.39635104509406[/C][C]-0.396351045094061[/C][/ROW]
[ROW][C]39[/C][C]14[/C][C]13.4628887595508[/C][C]0.537111240449227[/C][/ROW]
[ROW][C]40[/C][C]16[/C][C]16.5802485075597[/C][C]-0.580248507559671[/C][/ROW]
[ROW][C]41[/C][C]13[/C][C]13.317973936766[/C][C]-0.317973936766004[/C][/ROW]
[ROW][C]42[/C][C]5[/C][C]5.62638314366591[/C][C]-0.626383143665915[/C][/ROW]
[ROW][C]43[/C][C]8[/C][C]7.25636638418581[/C][C]0.743633615814189[/C][/ROW]
[ROW][C]44[/C][C]10[/C][C]10.5626199969091[/C][C]-0.562619996909083[/C][/ROW]
[ROW][C]45[/C][C]8[/C][C]8.1123448284234[/C][C]-0.112344828423405[/C][/ROW]
[ROW][C]46[/C][C]13[/C][C]13.3814971269392[/C][C]-0.381497126939156[/C][/ROW]
[ROW][C]47[/C][C]15[/C][C]15.3806512308353[/C][C]-0.380651230835289[/C][/ROW]
[ROW][C]48[/C][C]6[/C][C]6.22859024707581[/C][C]-0.228590247075813[/C][/ROW]
[ROW][C]49[/C][C]12[/C][C]11.2951279615325[/C][C]0.704872038467475[/C][/ROW]
[ROW][C]50[/C][C]16[/C][C]14.9932270230387[/C][C]1.00677297696128[/C][/ROW]
[ROW][C]51[/C][C]5[/C][C]5.73035970339352[/C][C]-0.730359703393516[/C][/ROW]
[ROW][C]52[/C][C]15[/C][C]13.4149464482744[/C][C]1.58505355172562[/C][/ROW]
[ROW][C]53[/C][C]12[/C][C]12.5287331281938[/C][C]-0.528733128193831[/C][/ROW]
[ROW][C]54[/C][C]8[/C][C]8.0256883355146[/C][C]-0.0256883355146[/C][/ROW]
[ROW][C]55[/C][C]13[/C][C]13.2811199146857[/C][C]-0.281119914685687[/C][/ROW]
[ROW][C]56[/C][C]14[/C][C]14.419030714047[/C][C]-0.419030714047036[/C][/ROW]
[ROW][C]57[/C][C]12[/C][C]12.1710562702581[/C][C]-0.171056270258117[/C][/ROW]
[ROW][C]58[/C][C]16[/C][C]15.9201384219131[/C][C]0.0798615780868567[/C][/ROW]
[ROW][C]59[/C][C]10[/C][C]10.1147609736894[/C][C]-0.114760973689409[/C][/ROW]
[ROW][C]60[/C][C]15[/C][C]14.2822578909475[/C][C]0.717742109052536[/C][/ROW]
[ROW][C]61[/C][C]8[/C][C]7.90335580736642[/C][C]0.0966441926335774[/C][/ROW]
[ROW][C]62[/C][C]16[/C][C]16.1751879069493[/C][C]-0.175187906949264[/C][/ROW]
[ROW][C]63[/C][C]19[/C][C]19.1615145585231[/C][C]-0.161514558523095[/C][/ROW]
[ROW][C]64[/C][C]14[/C][C]14.2717281703531[/C][C]-0.271728170353087[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11414.5638143722197-0.563814372219716
288.30222466572907-0.302224665729074
31212.2282191506758-0.228219150675849
476.358137892958620.641862107041381
51010.842197105996-0.842197105995997
677.52032257900099-0.520322579000991
71616.2349832175156-0.234983217515583
81110.97394977803780.0260502219622051
91414.3401403469719-0.340140346971921
1064.633042300482441.36695769951756
111616.6428682625242-0.642868262524237
121111.3415447868817-0.341544786881682
131615.51939775811430.480602241885717
141212.5907708678147-0.590770867814721
1577.43366608609219-0.433666086092185
161311.81413364138381.18586635861618
171111.5819803103466-0.581980310346576
181513.63548216976171.36451783023835
1976.444580683872620.555419316127377
2098.38077016619730.619229833802703
2177.11166526339584-0.111665263395843
221414.3826040959563-0.38260409595632
231514.6947947736650.305205226334983
2477.36934717858056-0.369347178580558
251515.5015293156758-0.501529315675817
261715.31000302081281.68999697918715
271513.67475491999581.32524508000424
281412.73419384439631.26580615560374
291414.340100311597-0.340100311596951
3088.41914967420485-0.419149674204846
3188.27512809364664-0.275128093646639
321414.7884152794181-0.788415279418072
331415.3545406313441-1.35454063134415
3488.38454318029126-0.38454318029126
351110.5966679222210.403332077779024
361615.34664334089840.653356659101634
371010.339544575638-0.339544575637955
3888.39635104509406-0.396351045094061
391413.46288875955080.537111240449227
401616.5802485075597-0.580248507559671
411313.317973936766-0.317973936766004
4255.62638314366591-0.626383143665915
4387.256366384185810.743633615814189
441010.5626199969091-0.562619996909083
4588.1123448284234-0.112344828423405
461313.3814971269392-0.381497126939156
471515.3806512308353-0.380651230835289
4866.22859024707581-0.228590247075813
491211.29512796153250.704872038467475
501614.99322702303871.00677297696128
5155.73035970339352-0.730359703393516
521513.41494644827441.58505355172562
531212.5287331281938-0.528733128193831
5488.0256883355146-0.0256883355146
551313.2811199146857-0.281119914685687
561414.419030714047-0.419030714047036
571212.1710562702581-0.171056270258117
581615.92013842191310.0798615780868567
591010.1147609736894-0.114760973689409
601514.28225789094750.717742109052536
6187.903355807366420.0966441926335774
621616.1751879069493-0.175187906949264
631919.1615145585231-0.161514558523095
641414.2717281703531-0.271728170353087







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.3208544577321270.6417089154642540.679145542267873
120.3117561007419580.6235122014839160.688243899258042
130.272362390584250.54472478116850.72763760941575
140.4953013127291350.990602625458270.504698687270865
150.478907214090630.957814428181260.52109278590937
160.5836770544316040.8326458911367930.416322945568396
170.620983172618710.758033654762580.37901682738129
180.7765791168885420.4468417662229160.223420883111458
190.7075366879131020.5849266241737970.292463312086898
200.6404250379972290.7191499240055430.359574962002771
210.59791264978890.8041747004221990.4020873502111
220.5693768987570350.861246202485930.430623101242965
230.4862991923296290.9725983846592580.513700807670371
240.4741343551101770.9482687102203550.525865644889823
250.4460285835365320.8920571670730650.553971416463468
260.6815105687727970.6369788624544060.318489431227203
270.7545086881216670.4909826237566670.245491311878333
280.8843291523015260.2313416953969480.115670847698474
290.8540137588199210.2919724823601580.145986241180079
300.8852804154525520.2294391690948960.114719584547448
310.8460688816605340.3078622366789330.153931118339466
320.8788854121757670.2422291756484650.121114587824233
330.9639149085481060.0721701829037880.036085091451894
340.9510939516381970.09781209672360550.0489060483618028
350.9378017459058230.1243965081883530.0621982540941766
360.9317138881870950.136572223625810.068286111812905
370.909428206170920.181143587658160.0905717938290799
380.8796768901803120.2406462196393760.120323109819688
390.8706687547701760.2586624904596480.129331245229824
400.8415479901463260.3169040197073490.158452009853674
410.8133728256219350.3732543487561290.186627174378065
420.777290317784210.4454193644315790.22270968221579
430.805038789598370.3899224208032610.19496121040163
440.7445645377079370.5108709245841260.255435462292063
450.6869392140283310.6261215719433390.313060785971669
460.6297178817482140.7405642365035730.370282118251786
470.6535658741921780.6928682516156430.346434125807822
480.6783607558224880.6432784883550240.321639244177512
490.5893262423437430.8213475153125150.410673757656257
500.5111700755501970.9776598488996060.488829924449803
510.4585617158316590.9171234316633180.541438284168341
520.9217012819403750.156597436119250.078298718059625
530.942279990897550.1154400182049010.0577200091024506

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 & 0.320854457732127 & 0.641708915464254 & 0.679145542267873 \tabularnewline
12 & 0.311756100741958 & 0.623512201483916 & 0.688243899258042 \tabularnewline
13 & 0.27236239058425 & 0.5447247811685 & 0.72763760941575 \tabularnewline
14 & 0.495301312729135 & 0.99060262545827 & 0.504698687270865 \tabularnewline
15 & 0.47890721409063 & 0.95781442818126 & 0.52109278590937 \tabularnewline
16 & 0.583677054431604 & 0.832645891136793 & 0.416322945568396 \tabularnewline
17 & 0.62098317261871 & 0.75803365476258 & 0.37901682738129 \tabularnewline
18 & 0.776579116888542 & 0.446841766222916 & 0.223420883111458 \tabularnewline
19 & 0.707536687913102 & 0.584926624173797 & 0.292463312086898 \tabularnewline
20 & 0.640425037997229 & 0.719149924005543 & 0.359574962002771 \tabularnewline
21 & 0.5979126497889 & 0.804174700422199 & 0.4020873502111 \tabularnewline
22 & 0.569376898757035 & 0.86124620248593 & 0.430623101242965 \tabularnewline
23 & 0.486299192329629 & 0.972598384659258 & 0.513700807670371 \tabularnewline
24 & 0.474134355110177 & 0.948268710220355 & 0.525865644889823 \tabularnewline
25 & 0.446028583536532 & 0.892057167073065 & 0.553971416463468 \tabularnewline
26 & 0.681510568772797 & 0.636978862454406 & 0.318489431227203 \tabularnewline
27 & 0.754508688121667 & 0.490982623756667 & 0.245491311878333 \tabularnewline
28 & 0.884329152301526 & 0.231341695396948 & 0.115670847698474 \tabularnewline
29 & 0.854013758819921 & 0.291972482360158 & 0.145986241180079 \tabularnewline
30 & 0.885280415452552 & 0.229439169094896 & 0.114719584547448 \tabularnewline
31 & 0.846068881660534 & 0.307862236678933 & 0.153931118339466 \tabularnewline
32 & 0.878885412175767 & 0.242229175648465 & 0.121114587824233 \tabularnewline
33 & 0.963914908548106 & 0.072170182903788 & 0.036085091451894 \tabularnewline
34 & 0.951093951638197 & 0.0978120967236055 & 0.0489060483618028 \tabularnewline
35 & 0.937801745905823 & 0.124396508188353 & 0.0621982540941766 \tabularnewline
36 & 0.931713888187095 & 0.13657222362581 & 0.068286111812905 \tabularnewline
37 & 0.90942820617092 & 0.18114358765816 & 0.0905717938290799 \tabularnewline
38 & 0.879676890180312 & 0.240646219639376 & 0.120323109819688 \tabularnewline
39 & 0.870668754770176 & 0.258662490459648 & 0.129331245229824 \tabularnewline
40 & 0.841547990146326 & 0.316904019707349 & 0.158452009853674 \tabularnewline
41 & 0.813372825621935 & 0.373254348756129 & 0.186627174378065 \tabularnewline
42 & 0.77729031778421 & 0.445419364431579 & 0.22270968221579 \tabularnewline
43 & 0.80503878959837 & 0.389922420803261 & 0.19496121040163 \tabularnewline
44 & 0.744564537707937 & 0.510870924584126 & 0.255435462292063 \tabularnewline
45 & 0.686939214028331 & 0.626121571943339 & 0.313060785971669 \tabularnewline
46 & 0.629717881748214 & 0.740564236503573 & 0.370282118251786 \tabularnewline
47 & 0.653565874192178 & 0.692868251615643 & 0.346434125807822 \tabularnewline
48 & 0.678360755822488 & 0.643278488355024 & 0.321639244177512 \tabularnewline
49 & 0.589326242343743 & 0.821347515312515 & 0.410673757656257 \tabularnewline
50 & 0.511170075550197 & 0.977659848899606 & 0.488829924449803 \tabularnewline
51 & 0.458561715831659 & 0.917123431663318 & 0.541438284168341 \tabularnewline
52 & 0.921701281940375 & 0.15659743611925 & 0.078298718059625 \tabularnewline
53 & 0.94227999089755 & 0.115440018204901 & 0.0577200091024506 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C]0.320854457732127[/C][C]0.641708915464254[/C][C]0.679145542267873[/C][/ROW]
[ROW][C]12[/C][C]0.311756100741958[/C][C]0.623512201483916[/C][C]0.688243899258042[/C][/ROW]
[ROW][C]13[/C][C]0.27236239058425[/C][C]0.5447247811685[/C][C]0.72763760941575[/C][/ROW]
[ROW][C]14[/C][C]0.495301312729135[/C][C]0.99060262545827[/C][C]0.504698687270865[/C][/ROW]
[ROW][C]15[/C][C]0.47890721409063[/C][C]0.95781442818126[/C][C]0.52109278590937[/C][/ROW]
[ROW][C]16[/C][C]0.583677054431604[/C][C]0.832645891136793[/C][C]0.416322945568396[/C][/ROW]
[ROW][C]17[/C][C]0.62098317261871[/C][C]0.75803365476258[/C][C]0.37901682738129[/C][/ROW]
[ROW][C]18[/C][C]0.776579116888542[/C][C]0.446841766222916[/C][C]0.223420883111458[/C][/ROW]
[ROW][C]19[/C][C]0.707536687913102[/C][C]0.584926624173797[/C][C]0.292463312086898[/C][/ROW]
[ROW][C]20[/C][C]0.640425037997229[/C][C]0.719149924005543[/C][C]0.359574962002771[/C][/ROW]
[ROW][C]21[/C][C]0.5979126497889[/C][C]0.804174700422199[/C][C]0.4020873502111[/C][/ROW]
[ROW][C]22[/C][C]0.569376898757035[/C][C]0.86124620248593[/C][C]0.430623101242965[/C][/ROW]
[ROW][C]23[/C][C]0.486299192329629[/C][C]0.972598384659258[/C][C]0.513700807670371[/C][/ROW]
[ROW][C]24[/C][C]0.474134355110177[/C][C]0.948268710220355[/C][C]0.525865644889823[/C][/ROW]
[ROW][C]25[/C][C]0.446028583536532[/C][C]0.892057167073065[/C][C]0.553971416463468[/C][/ROW]
[ROW][C]26[/C][C]0.681510568772797[/C][C]0.636978862454406[/C][C]0.318489431227203[/C][/ROW]
[ROW][C]27[/C][C]0.754508688121667[/C][C]0.490982623756667[/C][C]0.245491311878333[/C][/ROW]
[ROW][C]28[/C][C]0.884329152301526[/C][C]0.231341695396948[/C][C]0.115670847698474[/C][/ROW]
[ROW][C]29[/C][C]0.854013758819921[/C][C]0.291972482360158[/C][C]0.145986241180079[/C][/ROW]
[ROW][C]30[/C][C]0.885280415452552[/C][C]0.229439169094896[/C][C]0.114719584547448[/C][/ROW]
[ROW][C]31[/C][C]0.846068881660534[/C][C]0.307862236678933[/C][C]0.153931118339466[/C][/ROW]
[ROW][C]32[/C][C]0.878885412175767[/C][C]0.242229175648465[/C][C]0.121114587824233[/C][/ROW]
[ROW][C]33[/C][C]0.963914908548106[/C][C]0.072170182903788[/C][C]0.036085091451894[/C][/ROW]
[ROW][C]34[/C][C]0.951093951638197[/C][C]0.0978120967236055[/C][C]0.0489060483618028[/C][/ROW]
[ROW][C]35[/C][C]0.937801745905823[/C][C]0.124396508188353[/C][C]0.0621982540941766[/C][/ROW]
[ROW][C]36[/C][C]0.931713888187095[/C][C]0.13657222362581[/C][C]0.068286111812905[/C][/ROW]
[ROW][C]37[/C][C]0.90942820617092[/C][C]0.18114358765816[/C][C]0.0905717938290799[/C][/ROW]
[ROW][C]38[/C][C]0.879676890180312[/C][C]0.240646219639376[/C][C]0.120323109819688[/C][/ROW]
[ROW][C]39[/C][C]0.870668754770176[/C][C]0.258662490459648[/C][C]0.129331245229824[/C][/ROW]
[ROW][C]40[/C][C]0.841547990146326[/C][C]0.316904019707349[/C][C]0.158452009853674[/C][/ROW]
[ROW][C]41[/C][C]0.813372825621935[/C][C]0.373254348756129[/C][C]0.186627174378065[/C][/ROW]
[ROW][C]42[/C][C]0.77729031778421[/C][C]0.445419364431579[/C][C]0.22270968221579[/C][/ROW]
[ROW][C]43[/C][C]0.80503878959837[/C][C]0.389922420803261[/C][C]0.19496121040163[/C][/ROW]
[ROW][C]44[/C][C]0.744564537707937[/C][C]0.510870924584126[/C][C]0.255435462292063[/C][/ROW]
[ROW][C]45[/C][C]0.686939214028331[/C][C]0.626121571943339[/C][C]0.313060785971669[/C][/ROW]
[ROW][C]46[/C][C]0.629717881748214[/C][C]0.740564236503573[/C][C]0.370282118251786[/C][/ROW]
[ROW][C]47[/C][C]0.653565874192178[/C][C]0.692868251615643[/C][C]0.346434125807822[/C][/ROW]
[ROW][C]48[/C][C]0.678360755822488[/C][C]0.643278488355024[/C][C]0.321639244177512[/C][/ROW]
[ROW][C]49[/C][C]0.589326242343743[/C][C]0.821347515312515[/C][C]0.410673757656257[/C][/ROW]
[ROW][C]50[/C][C]0.511170075550197[/C][C]0.977659848899606[/C][C]0.488829924449803[/C][/ROW]
[ROW][C]51[/C][C]0.458561715831659[/C][C]0.917123431663318[/C][C]0.541438284168341[/C][/ROW]
[ROW][C]52[/C][C]0.921701281940375[/C][C]0.15659743611925[/C][C]0.078298718059625[/C][/ROW]
[ROW][C]53[/C][C]0.94227999089755[/C][C]0.115440018204901[/C][C]0.0577200091024506[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.3208544577321270.6417089154642540.679145542267873
120.3117561007419580.6235122014839160.688243899258042
130.272362390584250.54472478116850.72763760941575
140.4953013127291350.990602625458270.504698687270865
150.478907214090630.957814428181260.52109278590937
160.5836770544316040.8326458911367930.416322945568396
170.620983172618710.758033654762580.37901682738129
180.7765791168885420.4468417662229160.223420883111458
190.7075366879131020.5849266241737970.292463312086898
200.6404250379972290.7191499240055430.359574962002771
210.59791264978890.8041747004221990.4020873502111
220.5693768987570350.861246202485930.430623101242965
230.4862991923296290.9725983846592580.513700807670371
240.4741343551101770.9482687102203550.525865644889823
250.4460285835365320.8920571670730650.553971416463468
260.6815105687727970.6369788624544060.318489431227203
270.7545086881216670.4909826237566670.245491311878333
280.8843291523015260.2313416953969480.115670847698474
290.8540137588199210.2919724823601580.145986241180079
300.8852804154525520.2294391690948960.114719584547448
310.8460688816605340.3078622366789330.153931118339466
320.8788854121757670.2422291756484650.121114587824233
330.9639149085481060.0721701829037880.036085091451894
340.9510939516381970.09781209672360550.0489060483618028
350.9378017459058230.1243965081883530.0621982540941766
360.9317138881870950.136572223625810.068286111812905
370.909428206170920.181143587658160.0905717938290799
380.8796768901803120.2406462196393760.120323109819688
390.8706687547701760.2586624904596480.129331245229824
400.8415479901463260.3169040197073490.158452009853674
410.8133728256219350.3732543487561290.186627174378065
420.777290317784210.4454193644315790.22270968221579
430.805038789598370.3899224208032610.19496121040163
440.7445645377079370.5108709245841260.255435462292063
450.6869392140283310.6261215719433390.313060785971669
460.6297178817482140.7405642365035730.370282118251786
470.6535658741921780.6928682516156430.346434125807822
480.6783607558224880.6432784883550240.321639244177512
490.5893262423437430.8213475153125150.410673757656257
500.5111700755501970.9776598488996060.488829924449803
510.4585617158316590.9171234316633180.541438284168341
520.9217012819403750.156597436119250.078298718059625
530.942279990897550.1154400182049010.0577200091024506







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level20.0465116279069767OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 2 & 0.0465116279069767 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145895&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]2[/C][C]0.0465116279069767[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145895&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145895&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level20.0465116279069767OK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 4 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}