Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 09 Dec 2014 12:17:51 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/09/t1418127889xr1jjr0smijoqjf.htm/, Retrieved Fri, 01 Nov 2024 00:03:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=264521, Retrieved Fri, 01 Nov 2024 00:03:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact127
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2014-12-09 12:17:51] [25032714cc1544fa8afe1ed03205f94e] [Current]
Feedback Forum

Post a new message
Dataseries X:
2011 1 11 8 7 18 12 20 4 0 21 149 7.5
2011 1 15 18 18 23 20 25 9 0 26 152 2.5
2011 1 19 18 20 23 20 19 4 1 22 139 6
2011 1 16 12 9 22 14 18 5 0 22 148 6.5
2011 1 24 24 19 22 25 24 4 1 18 158 1
2011 1 15 16 12 19 15 20 4 1 23 128 1
2011 1 17 19 16 25 20 20 9 1 12 224 5.5
2011 1 19 16 17 28 21 24 8 0 20 159 8.5
2011 1 19 15 9 16 15 21 11 1 22 105 6.5
2011 1 28 28 28 28 28 28 4 1 21 159 4.5
2011 1 26 21 20 21 11 10 4 1 19 167 2
2011 1 15 18 16 22 22 22 6 1 22 165 5
2011 1 26 22 22 24 22 19 4 1 15 159 0.5
2011 1 16 19 17 24 27 27 8 1 20 119 5
2011 1 24 22 12 26 24 23 4 0 19 176 5
2011 1 25 25 18 28 23 24 4 0 18 54 2.5
2011 0 22 20 20 24 24 24 11 0 15 91 5
2011 1 15 16 12 20 21 25 4 1 20 163 5.5
2011 1 21 19 16 26 20 24 4 0 21 124 3.5
2011 0 22 18 16 21 19 21 6 1 21 137 3
2011 1 27 26 21 28 25 28 6 0 15 121 4
2011 1 26 24 15 27 16 28 4 1 16 153 0.5
2011 1 26 20 17 23 24 22 8 1 23 148 6.5
2011 1 22 19 17 24 21 26 5 0 21 221 4.5
2011 1 21 19 17 24 22 26 4 1 18 188 7.5
2011 1 22 23 18 22 25 21 9 1 25 149 5.5
2011 1 20 18 15 21 23 26 4 1 9 244 4
2011 0 21 16 20 25 20 23 7 1 30 148 7.5
2011 0 20 18 13 20 21 20 10 0 20 92 7
2011 1 22 21 21 21 22 24 4 1 23 150 4
2011 1 21 20 12 26 25 25 4 0 16 153 5.5
2011 1 8 15 6 23 23 24 7 0 16 94 2.5
2011 1 22 19 13 21 19 20 12 0 19 156 5.5
2011 1 18 27 6 27 27 23 4 1 25 146 0.5
2011 1 20 19 19 27 21 24 7 1 25 132 3.5
2011 1 24 7 12 25 19 25 5 1 18 161 2.5
2011 1 17 20 14 23 25 23 8 1 23 105 4.5
2011 1 20 20 13 25 16 21 5 1 21 97 4.5
2011 1 23 19 12 23 24 23 4 0 10 151 4.5
2011 0 20 19 17 19 24 21 9 1 14 131 6
2011 1 22 20 19 22 18 18 7 1 22 166 2.5
2011 1 19 18 10 24 28 24 4 0 26 157 5
2011 1 15 14 10 19 15 18 4 1 23 111 0
2011 1 20 17 11 21 17 21 4 1 23 145 5
2011 1 22 17 11 27 18 23 4 1 24 162 6.5
2011 1 17 8 10 25 26 25 4 1 24 163 5
2011 0 14 9 7 25 18 22 7 1 18 59 6
2011 1 24 22 22 23 22 22 4 0 23 187 4.5
2011 1 17 20 12 17 19 23 7 1 15 109 5.5
2011 0 23 20 18 28 17 24 4 1 19 90 1
2011 1 25 22 20 25 26 25 4 0 16 105 7.5
2011 0 16 22 9 20 21 22 4 1 25 83 6
2011 0 18 22 16 25 26 24 4 1 23 116 5
2011 0 20 16 14 21 21 21 8 1 17 42 1
2011 1 18 14 11 24 12 24 4 1 19 148 5
2011 0 23 24 20 28 20 25 4 1 21 155 6.5
2011 1 24 21 17 20 20 23 4 1 18 125 7
2011 1 23 20 14 19 24 27 4 1 27 116 4.5
2011 0 13 20 8 24 24 27 7 0 21 128 0
2011 1 20 18 16 21 22 23 12 1 13 138 8.5
2011 0 20 14 11 24 21 18 4 0 8 49 3.5
2011 0 19 19 10 23 20 20 4 1 29 96 7.5
2011 1 22 24 15 18 23 23 4 1 28 164 3.5
2011 1 22 19 15 27 19 24 5 0 23 162 6
2011 1 15 16 10 25 24 26 15 0 21 99 1.5
2011 1 17 16 10 20 21 20 5 1 19 202 9
2011 1 19 16 18 21 16 23 10 0 19 186 3.5
2011 0 20 14 10 23 17 22 9 1 20 66 3.5
2011 1 22 22 22 27 23 23 8 0 18 183 4
2011 1 21 21 16 24 20 17 4 1 19 214 6.5
2011 1 21 15 10 27 19 20 5 1 17 188 7.5
2011 0 16 14 7 24 18 22 4 0 19 104 6
2011 1 20 15 16 23 18 18 9 0 25 177 5
2011 1 21 14 16 24 21 19 4 0 19 126 5.5
2011 0 20 20 16 21 20 19 10 0 22 76 3.5
2011 0 23 21 22 23 17 16 4 1 23 99 7.5
2011 1 15 17 13 22 20 24 7 1 26 157 1
2011 1 18 14 5 27 25 26 4 0 14 139 6.5
2011 1 16 16 10 25 17 25 7 0 16 162 6.5
2011 0 17 13 8 19 17 23 5 1 24 108 6.5
2011 1 24 26 16 24 24 18 4 0 20 159 7
2011 0 13 13 8 25 21 22 4 0 12 74 3.5
2011 1 19 18 16 23 22 26 4 1 24 110 1.5
2011 0 20 15 14 23 18 25 4 0 22 96 4
2011 0 22 18 15 25 22 26 4 0 12 116 7.5
2011 0 19 21 9 26 20 26 4 0 22 87 4.5
2011 0 21 17 21 26 21 24 6 1 20 97 0
2011 0 15 18 7 16 21 22 10 0 10 127 3.5
2011 0 21 20 17 23 20 21 7 1 23 106 5.5
2011 0 24 18 18 26 18 22 4 1 17 80 5
2011 0 22 25 16 25 25 28 4 0 22 74 4.5
2011 0 20 20 16 23 23 22 7 0 24 91 2.5
2011 0 21 19 14 26 21 26 4 0 18 133 7.5
2011 0 19 18 15 22 20 20 8 1 21 74 7
2011 0 14 12 8 20 21 24 11 1 20 114 0
2011 0 25 22 22 27 20 21 6 1 20 140 4.5
2011 0 11 16 5 20 22 23 14 0 22 95 3
2011 0 17 18 13 22 15 23 5 1 19 98 1.5
2011 0 22 23 22 24 24 23 4 0 20 121 3.5
2011 0 20 20 18 21 22 22 8 1 26 126 2.5
2011 0 22 20 15 24 21 23 9 1 23 98 5.5
2011 0 15 16 11 26 17 21 4 1 24 95 8
2011 0 23 22 19 24 23 27 4 1 21 110 1
2011 0 20 19 19 24 22 23 5 1 21 70 5
2011 0 22 23 21 27 23 26 4 0 19 102 4.5
2011 0 16 6 4 25 16 27 5 1 8 86 3
2011 0 25 19 17 27 18 27 4 1 17 130 3
2011 0 18 24 10 19 25 23 4 1 20 96 8
2011 0 19 19 13 22 18 23 7 0 11 102 2.5
2011 0 25 15 15 22 14 23 10 0 8 100 7
2011 0 21 18 11 25 20 28 4 0 15 94 0
2011 0 22 18 20 23 19 24 5 0 18 52 1
2011 0 21 22 13 24 18 20 4 0 18 98 3.5
2011 0 22 23 18 24 22 23 4 0 19 118 5.5
2011 0 23 18 20 23 21 22 4 1 19 99 5.5
2012 1 20 17 15 22 14 15 6 1 23 48 0.5
2012 1 6 6 4 24 5 27 4 1 22 50 7.5
2012 1 15 22 9 19 25 23 8 1 21 150 9
2012 1 18 20 18 25 21 23 5 1 25 154 9.5
2012 0 24 16 12 26 11 20 4 0 30 109 8.5
2012 0 22 16 17 18 20 18 17 1 17 68 7
2012 1 21 17 12 24 9 22 4 1 27 194 8
2012 1 23 20 16 28 15 20 4 0 23 158 10
2012 1 20 23 17 23 23 21 8 1 23 159 7
2012 1 20 18 14 19 21 25 4 0 18 67 8.5
2012 1 18 13 13 19 9 19 7 0 18 147 9
2012 1 25 22 20 27 24 25 4 1 23 39 9.5
2012 1 16 20 16 24 16 24 4 1 19 100 4
2012 1 20 20 15 26 20 22 5 1 15 111 6
2012 1 14 13 10 21 15 28 7 1 20 138 8
2012 1 22 16 16 25 18 22 4 1 16 101 5.5
2012 0 26 25 21 28 22 21 4 1 24 131 9.5
2012 1 20 16 15 19 21 23 7 1 25 101 7.5
2012 1 17 15 16 20 21 19 11 1 25 114 7
2012 1 22 19 19 26 21 21 7 0 19 165 7.5
2012 1 22 19 9 27 20 25 4 1 19 114 8
2012 1 20 24 19 23 24 23 4 1 16 111 7
2012 1 17 9 7 18 15 28 4 1 19 75 7
2012 1 22 22 23 23 24 14 4 1 19 82 6
2012 1 17 15 14 21 18 23 4 1 23 121 10
2012 1 22 22 10 23 24 24 4 1 21 32 2.5
2012 1 21 22 16 22 24 25 6 0 22 150 9
2012 1 25 24 12 21 15 15 8 1 19 117 8
2012 0 11 12 10 14 19 23 23 1 20 71 6
2012 1 19 21 7 24 20 26 4 1 20 165 8.5
2012 1 24 25 20 26 26 21 8 1 3 154 6
2012 1 17 26 9 24 26 26 6 1 23 126 9
2012 1 22 19 14 26 18 15 4 0 14 138 8
2012 1 22 21 12 22 23 23 4 0 23 149 8
2012 1 17 14 10 20 13 15 7 0 20 145 9
2012 1 26 28 19 20 16 16 4 1 15 120 5.5
2012 1 19 16 16 20 19 20 4 0 13 138 5
2012 1 20 21 11 18 22 20 4 0 16 109 7
2012 1 19 16 15 18 21 20 4 0 7 132 5.5
2012 1 21 16 14 25 11 21 10 1 24 172 9
2012 1 24 25 11 28 23 28 6 0 17 169 2
2012 1 21 21 14 23 18 19 5 1 24 114 8.5
2012 1 19 22 15 20 19 21 5 1 24 156 9
2012 1 13 9 7 22 15 22 4 0 19 172 8.5
2012 0 24 20 22 27 8 27 4 1 25 68 9
2012 0 28 19 19 24 15 20 5 1 20 89 7.5
2012 1 27 24 22 23 21 17 5 1 28 167 10
2012 1 22 22 11 20 25 26 5 0 23 113 9
2012 0 23 22 19 22 14 21 5 0 27 115 7.5
2012 0 19 12 9 21 21 24 4 0 18 78 6
2012 0 18 17 11 24 18 21 6 0 28 118 10.5
2012 0 23 18 17 26 18 25 4 1 21 87 8.5
2012 1 21 10 12 24 12 22 4 0 19 173 8
2012 1 22 22 17 18 24 17 4 1 23 2 10
2012 0 17 24 10 17 17 14 9 0 27 162 10.5
2012 0 15 18 17 23 20 23 18 1 22 49 6.5
2012 0 21 18 13 21 24 28 6 0 28 122 9.5
2012 0 20 23 11 21 22 24 5 1 25 96 8.5
2012 0 26 21 19 24 15 22 4 0 21 100 7.5
2012 0 19 21 21 22 22 24 11 0 22 82 5
2012 0 28 28 24 24 26 25 4 1 28 100 8
2012 0 21 17 13 24 17 21 10 0 20 115 10
2012 0 19 21 16 24 23 22 6 1 29 141 7
2012 1 22 21 13 23 19 16 8 1 25 165 7.5
2012 1 21 20 15 21 21 18 8 1 25 165 7.5
2012 0 20 18 15 24 23 27 6 1 20 110 9.5
2012 1 19 17 11 19 19 17 8 1 20 118 6
2012 1 11 7 7 19 18 25 4 0 16 158 10
2012 0 17 17 13 23 16 24 4 1 20 146 7
2012 1 19 14 13 25 23 21 9 0 20 49 3
2012 0 20 18 12 24 13 21 9 0 23 90 6
2012 0 17 14 8 21 18 19 5 0 18 121 7
2012 1 21 23 7 18 23 27 4 1 25 155 10
2012 0 21 20 17 23 21 28 4 0 18 104 7
2012 0 12 14 9 20 23 19 15 1 19 147 3.5
2012 0 23 17 18 23 16 23 10 0 25 110 8
2012 0 22 21 17 23 17 25 9 0 25 108 10
2012 0 22 23 17 23 20 26 7 0 25 113 5.5
2012 0 21 24 18 23 18 25 9 0 24 115 6
2012 0 20 21 12 27 20 25 6 1 19 61 6.5
2012 0 18 14 14 19 19 24 4 1 26 60 6.5
2012 0 21 24 22 25 26 24 7 1 10 109 8.5
2012 0 24 16 19 25 9 24 4 1 17 68 4
2012 0 22 21 21 21 23 22 7 0 13 111 9.5
2012 0 20 8 10 25 9 21 4 0 17 77 8
2012 0 17 17 16 17 13 17 15 1 30 73 8.5
2012 1 19 18 11 22 27 23 4 0 25 151 5.5
2012 0 16 17 15 23 22 17 9 0 4 89 7
2012 0 19 16 12 27 12 25 4 0 16 78 9
2012 0 23 22 21 27 18 19 4 0 21 110 8
2012 1 8 17 22 5 6 8 28 1 23 220 10
2012 0 22 21 20 19 17 14 4 1 22 65 8
2012 1 23 20 15 24 22 22 4 0 17 141 6
2012 0 15 20 9 23 22 25 4 0 20 117 8
2012 1 17 19 15 28 23 28 5 1 20 122 5
2012 0 21 8 14 25 19 25 4 0 22 63 9
2012 1 25 19 11 27 20 24 4 1 16 44 4.5
2012 0 18 11 9 16 17 15 12 1 23 52 8.5
2012 0 23 15 18 23 18 25 5 1 16 62 7
2012 0 20 13 12 25 24 24 4 0 0 131 9.5
2012 0 21 18 11 26 20 28 6 1 18 101 8.5
2012 0 21 19 14 24 18 24 6 1 25 42 7.5
2012 1 24 23 10 23 23 25 5 1 23 152 7.5
2012 1 22 20 18 24 27 23 4 0 12 107 5
2012 0 22 22 11 27 25 26 4 0 18 77 7
2012 1 23 19 14 25 24 26 4 0 24 154 8
2012 1 17 16 16 19 12 22 10 1 11 103 5.5
2012 0 15 11 11 19 16 25 7 1 18 96 8.5
2012 1 24 11 8 14 16 20 4 0 14 154 7.5
2012 1 22 21 16 24 24 22 4 1 23 175 9.5
2012 0 19 14 13 20 23 26 7 1 24 57 7
2012 0 18 21 12 21 24 20 4 0 29 112 8
2012 1 21 20 17 28 24 26 4 0 18 143 8.5
2012 0 20 21 23 26 26 26 12 0 15 49 3.5
2012 1 19 20 14 19 19 21 5 1 29 110 6.5
2012 1 19 19 10 23 28 21 8 1 16 131 6.5
2012 1 16 19 16 23 23 24 6 0 19 167 10.5
2012 0 18 18 11 21 21 21 17 0 22 56 8.5
2012 1 23 20 16 26 19 18 4 0 16 137 8
2012 0 22 21 19 25 23 23 5 1 23 86 10
2012 1 23 22 17 25 23 26 4 1 23 121 10
2012 1 20 19 12 24 20 23 5 0 19 149 9.5
2012 1 24 23 17 23 18 25 5 0 4 168 9
2012 1 25 16 11 22 20 20 6 0 20 140 10
2012 0 25 23 19 27 28 25 4 1 24 88 7.5
2012 1 20 18 12 26 21 26 4 1 20 168 4.5
2012 1 23 23 8 23 25 19 4 1 4 94 4.5
2012 1 21 20 17 22 18 21 6 1 24 51 0.5
2012 0 23 20 13 26 24 23 8 0 22 48 6.5
2012 1 23 23 17 22 28 24 10 1 16 145 4.5
2012 1 11 13 7 17 9 6 4 1 3 66 5.5
2012 0 21 21 23 25 22 22 5 1 15 85 5
2012 1 27 26 18 22 26 21 4 0 24 109 6
2012 0 19 18 13 28 28 28 4 0 17 63 4
2012 0 21 19 17 22 18 24 4 1 20 102 8
2012 0 16 18 13 21 23 14 16 0 27 162 10.5
2012 1 22 19 13 21 22 17 4 1 23 128 8.5
2012 0 21 18 8 24 15 20 7 1 26 86 6.5
2012 0 22 19 16 26 24 28 4 1 23 114 8
2012 1 16 13 14 26 12 19 4 0 17 164 8.5
2012 1 18 10 13 24 12 24 14 1 20 119 5.5
2012 1 23 21 19 27 20 21 5 0 22 126 7
2012 1 24 24 15 22 25 21 5 1 19 132 5
2012 1 20 21 15 23 24 26 5 1 24 142 3.5
2012 1 20 23 8 22 23 24 5 0 19 83 5
2012 0 18 18 14 23 18 26 7 1 23 94 9
2012 0 4 11 7 15 20 25 19 0 15 81 8.5
2012 1 14 16 11 20 22 23 16 1 27 166 5
2012 0 22 20 17 22 20 24 4 0 26 110 9.5
2012 0 17 20 19 25 25 24 4 1 22 64 3
2012 1 23 26 17 27 28 26 7 0 22 93 1.5
2012 0 20 21 12 24 25 23 9 0 18 104 6
2012 0 18 12 12 21 14 20 5 1 15 105 0.5
2012 0 19 15 18 17 16 16 14 1 22 49 6.5
2012 0 20 18 16 26 24 24 4 0 27 88 7.5
2012 0 15 14 15 20 13 20 16 1 10 95 4.5
2012 0 24 18 20 22 19 23 10 1 20 102 8
2012 0 21 16 16 24 18 23 5 0 17 99 9
2012 0 19 19 12 23 16 18 6 1 23 63 7.5
2012 0 19 7 10 22 8 21 4 0 19 76 8.5
2012 0 27 21 28 28 27 25 4 0 13 109 7
2012 0 23 24 19 21 23 23 4 1 27 117 9.5
2012 0 23 21 18 24 20 26 5 1 23 57 6.5
2012 0 20 20 19 28 20 26 4 0 16 120 9.5
2012 0 17 22 8 25 26 24 4 1 25 73 6
2012 0 21 17 17 24 23 23 5 0 2 91 8
2012 0 23 19 16 24 24 21 4 0 26 108 9.5
2012 0 22 20 18 21 21 23 4 1 20 105 8
2012 1 16 16 12 20 15 20 5 0 23 117 8
2012 0 20 20 17 26 22 23 8 0 22 119 9
2012 0 16 16 13 16 25 24 15 1 24 31 5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time11 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 11 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]11 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time11 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Ex[t] = -6106.27 + 3.0387year[t] -1.03807group[t] + 0.0540701AMS.I1[t] -0.0631127AMS.I2[t] -0.0117914AMS.I3[t] -0.0638974AMS.E1[t] + 0.00329219AMS.E2[t] -0.0448092AMS.E3[t] -0.0648946AMS.A[t] -0.446862genderN[t] + 0.0635172NUMERACYTOT[t] + 0.0202618LFM[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Ex[t] =  -6106.27 +  3.0387year[t] -1.03807group[t] +  0.0540701AMS.I1[t] -0.0631127AMS.I2[t] -0.0117914AMS.I3[t] -0.0638974AMS.E1[t] +  0.00329219AMS.E2[t] -0.0448092AMS.E3[t] -0.0648946AMS.A[t] -0.446862genderN[t] +  0.0635172NUMERACYTOT[t] +  0.0202618LFM[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Ex[t] =  -6106.27 +  3.0387year[t] -1.03807group[t] +  0.0540701AMS.I1[t] -0.0631127AMS.I2[t] -0.0117914AMS.I3[t] -0.0638974AMS.E1[t] +  0.00329219AMS.E2[t] -0.0448092AMS.E3[t] -0.0648946AMS.A[t] -0.446862genderN[t] +  0.0635172NUMERACYTOT[t] +  0.0202618LFM[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Ex[t] = -6106.27 + 3.0387year[t] -1.03807group[t] + 0.0540701AMS.I1[t] -0.0631127AMS.I2[t] -0.0117914AMS.I3[t] -0.0638974AMS.E1[t] + 0.00329219AMS.E2[t] -0.0448092AMS.E3[t] -0.0648946AMS.A[t] -0.446862genderN[t] + 0.0635172NUMERACYTOT[t] + 0.0202618LFM[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-6106.27516.361-11.832.49369e-261.24684e-26
year3.03870.2566311.842.21242e-261.10621e-26
group-1.038070.295623-3.5110.0005212330.000260616
AMS.I10.05407010.04842321.1170.2651410.132571
AMS.I2-0.06311270.0428485-1.4730.1419230.0709613
AMS.I3-0.01179140.0366573-0.32170.7479530.373976
AMS.E1-0.06389740.0501398-1.2740.2036110.101805
AMS.E20.003292190.0356290.09240.9264460.463223
AMS.E3-0.04480920.0418761-1.070.2855450.142773
AMS.A-0.06489460.0427581-1.5180.1302440.0651218
genderN-0.4468620.254593-1.7550.08034660.0401733
NUMERACYTOT0.06351720.02437952.6050.00968130.00484065
LFM0.02026180.00372155.4451.15798e-075.78988e-08

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -6106.27 & 516.361 & -11.83 & 2.49369e-26 & 1.24684e-26 \tabularnewline
year & 3.0387 & 0.25663 & 11.84 & 2.21242e-26 & 1.10621e-26 \tabularnewline
group & -1.03807 & 0.295623 & -3.511 & 0.000521233 & 0.000260616 \tabularnewline
AMS.I1 & 0.0540701 & 0.0484232 & 1.117 & 0.265141 & 0.132571 \tabularnewline
AMS.I2 & -0.0631127 & 0.0428485 & -1.473 & 0.141923 & 0.0709613 \tabularnewline
AMS.I3 & -0.0117914 & 0.0366573 & -0.3217 & 0.747953 & 0.373976 \tabularnewline
AMS.E1 & -0.0638974 & 0.0501398 & -1.274 & 0.203611 & 0.101805 \tabularnewline
AMS.E2 & 0.00329219 & 0.035629 & 0.0924 & 0.926446 & 0.463223 \tabularnewline
AMS.E3 & -0.0448092 & 0.0418761 & -1.07 & 0.285545 & 0.142773 \tabularnewline
AMS.A & -0.0648946 & 0.0427581 & -1.518 & 0.130244 & 0.0651218 \tabularnewline
genderN & -0.446862 & 0.254593 & -1.755 & 0.0803466 & 0.0401733 \tabularnewline
NUMERACYTOT & 0.0635172 & 0.0243795 & 2.605 & 0.0096813 & 0.00484065 \tabularnewline
LFM & 0.0202618 & 0.0037215 & 5.445 & 1.15798e-07 & 5.78988e-08 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-6106.27[/C][C]516.361[/C][C]-11.83[/C][C]2.49369e-26[/C][C]1.24684e-26[/C][/ROW]
[ROW][C]year[/C][C]3.0387[/C][C]0.25663[/C][C]11.84[/C][C]2.21242e-26[/C][C]1.10621e-26[/C][/ROW]
[ROW][C]group[/C][C]-1.03807[/C][C]0.295623[/C][C]-3.511[/C][C]0.000521233[/C][C]0.000260616[/C][/ROW]
[ROW][C]AMS.I1[/C][C]0.0540701[/C][C]0.0484232[/C][C]1.117[/C][C]0.265141[/C][C]0.132571[/C][/ROW]
[ROW][C]AMS.I2[/C][C]-0.0631127[/C][C]0.0428485[/C][C]-1.473[/C][C]0.141923[/C][C]0.0709613[/C][/ROW]
[ROW][C]AMS.I3[/C][C]-0.0117914[/C][C]0.0366573[/C][C]-0.3217[/C][C]0.747953[/C][C]0.373976[/C][/ROW]
[ROW][C]AMS.E1[/C][C]-0.0638974[/C][C]0.0501398[/C][C]-1.274[/C][C]0.203611[/C][C]0.101805[/C][/ROW]
[ROW][C]AMS.E2[/C][C]0.00329219[/C][C]0.035629[/C][C]0.0924[/C][C]0.926446[/C][C]0.463223[/C][/ROW]
[ROW][C]AMS.E3[/C][C]-0.0448092[/C][C]0.0418761[/C][C]-1.07[/C][C]0.285545[/C][C]0.142773[/C][/ROW]
[ROW][C]AMS.A[/C][C]-0.0648946[/C][C]0.0427581[/C][C]-1.518[/C][C]0.130244[/C][C]0.0651218[/C][/ROW]
[ROW][C]genderN[/C][C]-0.446862[/C][C]0.254593[/C][C]-1.755[/C][C]0.0803466[/C][C]0.0401733[/C][/ROW]
[ROW][C]NUMERACYTOT[/C][C]0.0635172[/C][C]0.0243795[/C][C]2.605[/C][C]0.0096813[/C][C]0.00484065[/C][/ROW]
[ROW][C]LFM[/C][C]0.0202618[/C][C]0.0037215[/C][C]5.445[/C][C]1.15798e-07[/C][C]5.78988e-08[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-6106.27516.361-11.832.49369e-261.24684e-26
year3.03870.2566311.842.21242e-261.10621e-26
group-1.038070.295623-3.5110.0005212330.000260616
AMS.I10.05407010.04842321.1170.2651410.132571
AMS.I2-0.06311270.0428485-1.4730.1419230.0709613
AMS.I3-0.01179140.0366573-0.32170.7479530.373976
AMS.E1-0.06389740.0501398-1.2740.2036110.101805
AMS.E20.003292190.0356290.09240.9264460.463223
AMS.E3-0.04480920.0418761-1.070.2855450.142773
AMS.A-0.06489460.0427581-1.5180.1302440.0651218
genderN-0.4468620.254593-1.7550.08034660.0401733
NUMERACYTOT0.06351720.02437952.6050.00968130.00484065
LFM0.02026180.00372155.4451.15798e-075.78988e-08







Multiple Linear Regression - Regression Statistics
Multiple R0.632313
R-squared0.39982
Adjusted R-squared0.373438
F-TEST (value)15.1553
F-TEST (DF numerator)12
F-TEST (DF denominator)273
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.02381
Sum Squared Residuals1118.16

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.632313 \tabularnewline
R-squared & 0.39982 \tabularnewline
Adjusted R-squared & 0.373438 \tabularnewline
F-TEST (value) & 15.1553 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 273 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 2.02381 \tabularnewline
Sum Squared Residuals & 1118.16 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.632313[/C][/ROW]
[ROW][C]R-squared[/C][C]0.39982[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.373438[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]15.1553[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]273[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]2.02381[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1118.16[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.632313
R-squared0.39982
Adjusted R-squared0.373438
F-TEST (value)15.1553
F-TEST (DF numerator)12
F-TEST (DF denominator)273
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.02381
Sum Squared Residuals1118.16







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
17.55.612591.88741
22.54.60474-2.10474
364.426431.57357
46.55.425881.07412
514.31711-3.31711
614.46566-3.46566
75.54.892340.607657
88.54.513273.98673
96.53.943512.55649
104.53.832890.667112
1125.49381-3.49381
1254.590390.409614
130.54.43219-3.93219
1453.045311.95469
1555.1869-0.186895
162.52.269530.230469
1753.801131.19887
185.54.716080.783917
193.54.1823-0.682303
2035.47493-2.47493
2143.143730.856271
220.53.71572-3.21572
236.54.579111.92089
244.56.16655-1.66655
257.54.874612.62539
265.54.35611.1439
2745.66522-1.66522
287.55.887651.61235
2974.729452.27055
3044.58424-0.58424
315.54.408011.09199
322.52.9312-0.431203
335.54.769360.730636
340.53.89003-3.39003
353.53.80687-0.306871
362.55.2122-2.7122
374.53.215081.28492
384.53.226831.27317
394.54.435660.064343
4064.675271.32473
412.54.92871-2.42871
4255.34838-0.34838
4304.36064-4.36064
4454.863120.136877
456.54.909521.59048
4655.30375-0.30375
4763.576962.42304
484.55.77585-1.27585
495.53.240092.25991
5013.84135-2.84135
517.53.498364.00164
5264.2961.704
5354.470560.529444
5413.21446-2.21446
5554.408460.591543
566.54.974441.52556
5774.017542.98246
584.54.349080.150917
5904.71193-4.71193
608.53.371745.12826
613.53.59541-0.0954132
627.55.047862.45214
633.55.30669-1.80669
6465.013060.986939
651.52.88503-1.38503
6695.733653.26635
673.55.33087-1.83087
683.53.81402-0.314018
6944.71239-0.712389
706.55.74720.752801
717.55.148482.35152
7265.050270.949729
7355.83812-0.838116
745.54.766490.733511
753.54.34831-0.848311
767.54.845462.65454
7714.61975-3.61975
786.54.187612.31239
796.54.438932.06107
806.55.313921.18608
8174.958192.04181
823.53.83289-0.332888
831.53.70596-2.20596
8445.07883-1.07883
857.54.596462.90354
864.54.292760.207236
8704.1037-4.1037
883.54.7698-1.2698
895.54.592370.907631
9053.91271.0873
914.53.847320.65268
922.54.72161-2.22161
937.55.149442.35056
9473.902443.09756
9504.59742-4.59742
964.54.93112-0.43112
9734.26048-1.26048
981.54.22092-2.72092
993.55.01272-1.51272
1002.55.14697-2.64697
1015.54.227911.27209
10284.42493.5751
10314.37652-3.37652
10453.704231.29577
1054.54.246610.253394
10633.72086-0.720862
10734.6406-1.6406
10884.244193.75581
1092.54.16581-1.66581
11074.280172.71983
11104.23815-4.23815
11213.7645-2.7645
1133.54.6495-1.1495
1145.54.9290.571004
1155.54.548630.951374
1160.55.95456-5.45456
1177.55.433182.06682
11897.11871.8813
1199.57.434262.06574
1208.59.07513-0.575126
12176.591510.40849
12288.92816-0.928158
123108.116951.88305
12477.36844-0.368444
1258.56.313922.18608
12698.188740.811257
1279.55.063174.43683
12845.94199-1.94199
12966.04897-0.0489686
13086.994331.00567
1315.56.38088-0.880875
1329.57.990531.50947
1337.57.009950.490051
13477.01822-0.0182246
1357.57.88643-0.386433
13686.472391.52761
13776.037820.962184
13876.490730.509267
13966.23126-0.231259
140107.257862.74214
1412.55.0504-2.5504
14297.716151.28385
14386.899891.10011
14466.22195-0.221951
1458.57.451291.04871
14665.869660.130344
14796.294312.70569
14887.53440.465601
14988.13987-0.139867
15098.321950.678047
1515.56.70764-1.20764
15257.63706-2.63706
15377.17515-0.175153
1545.57.28055-1.78055
15597.929511.07049
15627.29426-5.29426
1578.57.003691.49631
15897.777011.22299
1598.58.69997-0.19997
16096.722142.27786
1617.57.60833-0.108329
162108.471881.52812
16397.294181.70582
1647.58.64662-1.14662
16567.87545-1.87545
16610.58.730951.76905
1678.57.17061.3294
16888.89305-0.893051
169105.12024.8798
17010.59.637850.86215
1716.55.410981.08902
1729.58.785290.71471
1738.57.512570.987433
1747.58.0825-0.582497
17556.98619-1.98619
17687.589440.410563
177108.037781.96222
17878.52794-1.52794
1797.58.10946-0.609457
1807.58.13968-0.639678
1819.57.359322.14068
18267.16417-1.16417
183108.310981.68902
18478.3183-1.3183
18535.76438-2.76438
18667.66812-1.66812
18778.67341-1.67341
188107.896622.10338
18977.60413-0.604133
1903.57.96614-4.46614
19188.27423-0.274229
192107.917542.08246
1935.57.98748-2.48748
19467.74395-1.74395
1956.56.037060.462936
1966.57.45397-0.953974
1978.56.312252.18775
19846.76735-2.76735
1999.57.580721.91928
20087.925730.0742658
2018.57.412321.08768
2025.58.35951-2.85951
20376.525260.474742
20497.002771.99723
20587.988820.0111788
206108.65411.3459
20787.446460.553535
20867.5922-1.5922
20987.90220.0977991
21056.10356-1.10356
21197.820251.17975
2124.55.04696-0.546955
2138.57.418861.08114
21476.650810.349188
2159.57.515891.98411
2168.56.968691.53131
2177.56.419821.08018
2187.57.54088-0.0408781
21956.46792-1.46792
22076.902860.0971437
22188.13858-0.138579
2225.55.80773-0.307727
2238.57.488391.01161
2247.59.07852-1.57852
2259.58.092951.40705
22676.996990.00301469
22788.7947-0.794695
2288.57.136281.36372
2293.55.50648-2.00648
2306.57.36447-0.864468
2316.56.65388-0.153876
23210.57.766652.73335
2338.56.518231.98177
23487.477410.522589
235107.115462.88454
236106.731563.26844
2379.57.701321.79868
23897.00611.9939
239108.251291.74871
2407.57.119430.380571
2414.57.57202-3.07202
2424.55.46872-0.968717
2430.55.66433-5.16433
2446.56.6615-0.161502
2454.56.61851-2.11851
2465.55.74518-0.245177
24756.52734-1.52734
24867.37645-1.37645
24946.47869-2.47869
25087.540150.459847
25110.59.236981.26302
2528.57.71140.788597
2536.57.61318-1.11318
25487.624630.375366
2558.58.107020.392978
2565.56.50301-1.00301
25777.27722-0.277221
25857.00922-2.00922
2593.57.21125-3.71125
26056.25162-1.25162
26197.156691.84331
2628.56.383192.11681
26357.53209-2.53209
2649.58.527750.972247
26536.42562-3.42562
2661.55.9891-4.4891
26767.39475-1.39475
2680.57.78696-7.28696
2696.56.74826-0.248264
2707.57.93297-0.432968
2714.56.28971-1.78971
27287.388840.611164
27397.788931.21107
2747.56.95990.540103
2758.58.229950.27005
27677.35415-0.354152
2779.58.182861.31714
2786.56.51333-0.0133254
2799.57.490472.00953
28066.8053-0.805297
28186.615631.38437
2829.58.636010.863994
28387.698690.301313
28487.653620.346375
28597.884131.11587
28656.01438-1.01438

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 7.5 & 5.61259 & 1.88741 \tabularnewline
2 & 2.5 & 4.60474 & -2.10474 \tabularnewline
3 & 6 & 4.42643 & 1.57357 \tabularnewline
4 & 6.5 & 5.42588 & 1.07412 \tabularnewline
5 & 1 & 4.31711 & -3.31711 \tabularnewline
6 & 1 & 4.46566 & -3.46566 \tabularnewline
7 & 5.5 & 4.89234 & 0.607657 \tabularnewline
8 & 8.5 & 4.51327 & 3.98673 \tabularnewline
9 & 6.5 & 3.94351 & 2.55649 \tabularnewline
10 & 4.5 & 3.83289 & 0.667112 \tabularnewline
11 & 2 & 5.49381 & -3.49381 \tabularnewline
12 & 5 & 4.59039 & 0.409614 \tabularnewline
13 & 0.5 & 4.43219 & -3.93219 \tabularnewline
14 & 5 & 3.04531 & 1.95469 \tabularnewline
15 & 5 & 5.1869 & -0.186895 \tabularnewline
16 & 2.5 & 2.26953 & 0.230469 \tabularnewline
17 & 5 & 3.80113 & 1.19887 \tabularnewline
18 & 5.5 & 4.71608 & 0.783917 \tabularnewline
19 & 3.5 & 4.1823 & -0.682303 \tabularnewline
20 & 3 & 5.47493 & -2.47493 \tabularnewline
21 & 4 & 3.14373 & 0.856271 \tabularnewline
22 & 0.5 & 3.71572 & -3.21572 \tabularnewline
23 & 6.5 & 4.57911 & 1.92089 \tabularnewline
24 & 4.5 & 6.16655 & -1.66655 \tabularnewline
25 & 7.5 & 4.87461 & 2.62539 \tabularnewline
26 & 5.5 & 4.3561 & 1.1439 \tabularnewline
27 & 4 & 5.66522 & -1.66522 \tabularnewline
28 & 7.5 & 5.88765 & 1.61235 \tabularnewline
29 & 7 & 4.72945 & 2.27055 \tabularnewline
30 & 4 & 4.58424 & -0.58424 \tabularnewline
31 & 5.5 & 4.40801 & 1.09199 \tabularnewline
32 & 2.5 & 2.9312 & -0.431203 \tabularnewline
33 & 5.5 & 4.76936 & 0.730636 \tabularnewline
34 & 0.5 & 3.89003 & -3.39003 \tabularnewline
35 & 3.5 & 3.80687 & -0.306871 \tabularnewline
36 & 2.5 & 5.2122 & -2.7122 \tabularnewline
37 & 4.5 & 3.21508 & 1.28492 \tabularnewline
38 & 4.5 & 3.22683 & 1.27317 \tabularnewline
39 & 4.5 & 4.43566 & 0.064343 \tabularnewline
40 & 6 & 4.67527 & 1.32473 \tabularnewline
41 & 2.5 & 4.92871 & -2.42871 \tabularnewline
42 & 5 & 5.34838 & -0.34838 \tabularnewline
43 & 0 & 4.36064 & -4.36064 \tabularnewline
44 & 5 & 4.86312 & 0.136877 \tabularnewline
45 & 6.5 & 4.90952 & 1.59048 \tabularnewline
46 & 5 & 5.30375 & -0.30375 \tabularnewline
47 & 6 & 3.57696 & 2.42304 \tabularnewline
48 & 4.5 & 5.77585 & -1.27585 \tabularnewline
49 & 5.5 & 3.24009 & 2.25991 \tabularnewline
50 & 1 & 3.84135 & -2.84135 \tabularnewline
51 & 7.5 & 3.49836 & 4.00164 \tabularnewline
52 & 6 & 4.296 & 1.704 \tabularnewline
53 & 5 & 4.47056 & 0.529444 \tabularnewline
54 & 1 & 3.21446 & -2.21446 \tabularnewline
55 & 5 & 4.40846 & 0.591543 \tabularnewline
56 & 6.5 & 4.97444 & 1.52556 \tabularnewline
57 & 7 & 4.01754 & 2.98246 \tabularnewline
58 & 4.5 & 4.34908 & 0.150917 \tabularnewline
59 & 0 & 4.71193 & -4.71193 \tabularnewline
60 & 8.5 & 3.37174 & 5.12826 \tabularnewline
61 & 3.5 & 3.59541 & -0.0954132 \tabularnewline
62 & 7.5 & 5.04786 & 2.45214 \tabularnewline
63 & 3.5 & 5.30669 & -1.80669 \tabularnewline
64 & 6 & 5.01306 & 0.986939 \tabularnewline
65 & 1.5 & 2.88503 & -1.38503 \tabularnewline
66 & 9 & 5.73365 & 3.26635 \tabularnewline
67 & 3.5 & 5.33087 & -1.83087 \tabularnewline
68 & 3.5 & 3.81402 & -0.314018 \tabularnewline
69 & 4 & 4.71239 & -0.712389 \tabularnewline
70 & 6.5 & 5.7472 & 0.752801 \tabularnewline
71 & 7.5 & 5.14848 & 2.35152 \tabularnewline
72 & 6 & 5.05027 & 0.949729 \tabularnewline
73 & 5 & 5.83812 & -0.838116 \tabularnewline
74 & 5.5 & 4.76649 & 0.733511 \tabularnewline
75 & 3.5 & 4.34831 & -0.848311 \tabularnewline
76 & 7.5 & 4.84546 & 2.65454 \tabularnewline
77 & 1 & 4.61975 & -3.61975 \tabularnewline
78 & 6.5 & 4.18761 & 2.31239 \tabularnewline
79 & 6.5 & 4.43893 & 2.06107 \tabularnewline
80 & 6.5 & 5.31392 & 1.18608 \tabularnewline
81 & 7 & 4.95819 & 2.04181 \tabularnewline
82 & 3.5 & 3.83289 & -0.332888 \tabularnewline
83 & 1.5 & 3.70596 & -2.20596 \tabularnewline
84 & 4 & 5.07883 & -1.07883 \tabularnewline
85 & 7.5 & 4.59646 & 2.90354 \tabularnewline
86 & 4.5 & 4.29276 & 0.207236 \tabularnewline
87 & 0 & 4.1037 & -4.1037 \tabularnewline
88 & 3.5 & 4.7698 & -1.2698 \tabularnewline
89 & 5.5 & 4.59237 & 0.907631 \tabularnewline
90 & 5 & 3.9127 & 1.0873 \tabularnewline
91 & 4.5 & 3.84732 & 0.65268 \tabularnewline
92 & 2.5 & 4.72161 & -2.22161 \tabularnewline
93 & 7.5 & 5.14944 & 2.35056 \tabularnewline
94 & 7 & 3.90244 & 3.09756 \tabularnewline
95 & 0 & 4.59742 & -4.59742 \tabularnewline
96 & 4.5 & 4.93112 & -0.43112 \tabularnewline
97 & 3 & 4.26048 & -1.26048 \tabularnewline
98 & 1.5 & 4.22092 & -2.72092 \tabularnewline
99 & 3.5 & 5.01272 & -1.51272 \tabularnewline
100 & 2.5 & 5.14697 & -2.64697 \tabularnewline
101 & 5.5 & 4.22791 & 1.27209 \tabularnewline
102 & 8 & 4.4249 & 3.5751 \tabularnewline
103 & 1 & 4.37652 & -3.37652 \tabularnewline
104 & 5 & 3.70423 & 1.29577 \tabularnewline
105 & 4.5 & 4.24661 & 0.253394 \tabularnewline
106 & 3 & 3.72086 & -0.720862 \tabularnewline
107 & 3 & 4.6406 & -1.6406 \tabularnewline
108 & 8 & 4.24419 & 3.75581 \tabularnewline
109 & 2.5 & 4.16581 & -1.66581 \tabularnewline
110 & 7 & 4.28017 & 2.71983 \tabularnewline
111 & 0 & 4.23815 & -4.23815 \tabularnewline
112 & 1 & 3.7645 & -2.7645 \tabularnewline
113 & 3.5 & 4.6495 & -1.1495 \tabularnewline
114 & 5.5 & 4.929 & 0.571004 \tabularnewline
115 & 5.5 & 4.54863 & 0.951374 \tabularnewline
116 & 0.5 & 5.95456 & -5.45456 \tabularnewline
117 & 7.5 & 5.43318 & 2.06682 \tabularnewline
118 & 9 & 7.1187 & 1.8813 \tabularnewline
119 & 9.5 & 7.43426 & 2.06574 \tabularnewline
120 & 8.5 & 9.07513 & -0.575126 \tabularnewline
121 & 7 & 6.59151 & 0.40849 \tabularnewline
122 & 8 & 8.92816 & -0.928158 \tabularnewline
123 & 10 & 8.11695 & 1.88305 \tabularnewline
124 & 7 & 7.36844 & -0.368444 \tabularnewline
125 & 8.5 & 6.31392 & 2.18608 \tabularnewline
126 & 9 & 8.18874 & 0.811257 \tabularnewline
127 & 9.5 & 5.06317 & 4.43683 \tabularnewline
128 & 4 & 5.94199 & -1.94199 \tabularnewline
129 & 6 & 6.04897 & -0.0489686 \tabularnewline
130 & 8 & 6.99433 & 1.00567 \tabularnewline
131 & 5.5 & 6.38088 & -0.880875 \tabularnewline
132 & 9.5 & 7.99053 & 1.50947 \tabularnewline
133 & 7.5 & 7.00995 & 0.490051 \tabularnewline
134 & 7 & 7.01822 & -0.0182246 \tabularnewline
135 & 7.5 & 7.88643 & -0.386433 \tabularnewline
136 & 8 & 6.47239 & 1.52761 \tabularnewline
137 & 7 & 6.03782 & 0.962184 \tabularnewline
138 & 7 & 6.49073 & 0.509267 \tabularnewline
139 & 6 & 6.23126 & -0.231259 \tabularnewline
140 & 10 & 7.25786 & 2.74214 \tabularnewline
141 & 2.5 & 5.0504 & -2.5504 \tabularnewline
142 & 9 & 7.71615 & 1.28385 \tabularnewline
143 & 8 & 6.89989 & 1.10011 \tabularnewline
144 & 6 & 6.22195 & -0.221951 \tabularnewline
145 & 8.5 & 7.45129 & 1.04871 \tabularnewline
146 & 6 & 5.86966 & 0.130344 \tabularnewline
147 & 9 & 6.29431 & 2.70569 \tabularnewline
148 & 8 & 7.5344 & 0.465601 \tabularnewline
149 & 8 & 8.13987 & -0.139867 \tabularnewline
150 & 9 & 8.32195 & 0.678047 \tabularnewline
151 & 5.5 & 6.70764 & -1.20764 \tabularnewline
152 & 5 & 7.63706 & -2.63706 \tabularnewline
153 & 7 & 7.17515 & -0.175153 \tabularnewline
154 & 5.5 & 7.28055 & -1.78055 \tabularnewline
155 & 9 & 7.92951 & 1.07049 \tabularnewline
156 & 2 & 7.29426 & -5.29426 \tabularnewline
157 & 8.5 & 7.00369 & 1.49631 \tabularnewline
158 & 9 & 7.77701 & 1.22299 \tabularnewline
159 & 8.5 & 8.69997 & -0.19997 \tabularnewline
160 & 9 & 6.72214 & 2.27786 \tabularnewline
161 & 7.5 & 7.60833 & -0.108329 \tabularnewline
162 & 10 & 8.47188 & 1.52812 \tabularnewline
163 & 9 & 7.29418 & 1.70582 \tabularnewline
164 & 7.5 & 8.64662 & -1.14662 \tabularnewline
165 & 6 & 7.87545 & -1.87545 \tabularnewline
166 & 10.5 & 8.73095 & 1.76905 \tabularnewline
167 & 8.5 & 7.1706 & 1.3294 \tabularnewline
168 & 8 & 8.89305 & -0.893051 \tabularnewline
169 & 10 & 5.1202 & 4.8798 \tabularnewline
170 & 10.5 & 9.63785 & 0.86215 \tabularnewline
171 & 6.5 & 5.41098 & 1.08902 \tabularnewline
172 & 9.5 & 8.78529 & 0.71471 \tabularnewline
173 & 8.5 & 7.51257 & 0.987433 \tabularnewline
174 & 7.5 & 8.0825 & -0.582497 \tabularnewline
175 & 5 & 6.98619 & -1.98619 \tabularnewline
176 & 8 & 7.58944 & 0.410563 \tabularnewline
177 & 10 & 8.03778 & 1.96222 \tabularnewline
178 & 7 & 8.52794 & -1.52794 \tabularnewline
179 & 7.5 & 8.10946 & -0.609457 \tabularnewline
180 & 7.5 & 8.13968 & -0.639678 \tabularnewline
181 & 9.5 & 7.35932 & 2.14068 \tabularnewline
182 & 6 & 7.16417 & -1.16417 \tabularnewline
183 & 10 & 8.31098 & 1.68902 \tabularnewline
184 & 7 & 8.3183 & -1.3183 \tabularnewline
185 & 3 & 5.76438 & -2.76438 \tabularnewline
186 & 6 & 7.66812 & -1.66812 \tabularnewline
187 & 7 & 8.67341 & -1.67341 \tabularnewline
188 & 10 & 7.89662 & 2.10338 \tabularnewline
189 & 7 & 7.60413 & -0.604133 \tabularnewline
190 & 3.5 & 7.96614 & -4.46614 \tabularnewline
191 & 8 & 8.27423 & -0.274229 \tabularnewline
192 & 10 & 7.91754 & 2.08246 \tabularnewline
193 & 5.5 & 7.98748 & -2.48748 \tabularnewline
194 & 6 & 7.74395 & -1.74395 \tabularnewline
195 & 6.5 & 6.03706 & 0.462936 \tabularnewline
196 & 6.5 & 7.45397 & -0.953974 \tabularnewline
197 & 8.5 & 6.31225 & 2.18775 \tabularnewline
198 & 4 & 6.76735 & -2.76735 \tabularnewline
199 & 9.5 & 7.58072 & 1.91928 \tabularnewline
200 & 8 & 7.92573 & 0.0742658 \tabularnewline
201 & 8.5 & 7.41232 & 1.08768 \tabularnewline
202 & 5.5 & 8.35951 & -2.85951 \tabularnewline
203 & 7 & 6.52526 & 0.474742 \tabularnewline
204 & 9 & 7.00277 & 1.99723 \tabularnewline
205 & 8 & 7.98882 & 0.0111788 \tabularnewline
206 & 10 & 8.6541 & 1.3459 \tabularnewline
207 & 8 & 7.44646 & 0.553535 \tabularnewline
208 & 6 & 7.5922 & -1.5922 \tabularnewline
209 & 8 & 7.9022 & 0.0977991 \tabularnewline
210 & 5 & 6.10356 & -1.10356 \tabularnewline
211 & 9 & 7.82025 & 1.17975 \tabularnewline
212 & 4.5 & 5.04696 & -0.546955 \tabularnewline
213 & 8.5 & 7.41886 & 1.08114 \tabularnewline
214 & 7 & 6.65081 & 0.349188 \tabularnewline
215 & 9.5 & 7.51589 & 1.98411 \tabularnewline
216 & 8.5 & 6.96869 & 1.53131 \tabularnewline
217 & 7.5 & 6.41982 & 1.08018 \tabularnewline
218 & 7.5 & 7.54088 & -0.0408781 \tabularnewline
219 & 5 & 6.46792 & -1.46792 \tabularnewline
220 & 7 & 6.90286 & 0.0971437 \tabularnewline
221 & 8 & 8.13858 & -0.138579 \tabularnewline
222 & 5.5 & 5.80773 & -0.307727 \tabularnewline
223 & 8.5 & 7.48839 & 1.01161 \tabularnewline
224 & 7.5 & 9.07852 & -1.57852 \tabularnewline
225 & 9.5 & 8.09295 & 1.40705 \tabularnewline
226 & 7 & 6.99699 & 0.00301469 \tabularnewline
227 & 8 & 8.7947 & -0.794695 \tabularnewline
228 & 8.5 & 7.13628 & 1.36372 \tabularnewline
229 & 3.5 & 5.50648 & -2.00648 \tabularnewline
230 & 6.5 & 7.36447 & -0.864468 \tabularnewline
231 & 6.5 & 6.65388 & -0.153876 \tabularnewline
232 & 10.5 & 7.76665 & 2.73335 \tabularnewline
233 & 8.5 & 6.51823 & 1.98177 \tabularnewline
234 & 8 & 7.47741 & 0.522589 \tabularnewline
235 & 10 & 7.11546 & 2.88454 \tabularnewline
236 & 10 & 6.73156 & 3.26844 \tabularnewline
237 & 9.5 & 7.70132 & 1.79868 \tabularnewline
238 & 9 & 7.0061 & 1.9939 \tabularnewline
239 & 10 & 8.25129 & 1.74871 \tabularnewline
240 & 7.5 & 7.11943 & 0.380571 \tabularnewline
241 & 4.5 & 7.57202 & -3.07202 \tabularnewline
242 & 4.5 & 5.46872 & -0.968717 \tabularnewline
243 & 0.5 & 5.66433 & -5.16433 \tabularnewline
244 & 6.5 & 6.6615 & -0.161502 \tabularnewline
245 & 4.5 & 6.61851 & -2.11851 \tabularnewline
246 & 5.5 & 5.74518 & -0.245177 \tabularnewline
247 & 5 & 6.52734 & -1.52734 \tabularnewline
248 & 6 & 7.37645 & -1.37645 \tabularnewline
249 & 4 & 6.47869 & -2.47869 \tabularnewline
250 & 8 & 7.54015 & 0.459847 \tabularnewline
251 & 10.5 & 9.23698 & 1.26302 \tabularnewline
252 & 8.5 & 7.7114 & 0.788597 \tabularnewline
253 & 6.5 & 7.61318 & -1.11318 \tabularnewline
254 & 8 & 7.62463 & 0.375366 \tabularnewline
255 & 8.5 & 8.10702 & 0.392978 \tabularnewline
256 & 5.5 & 6.50301 & -1.00301 \tabularnewline
257 & 7 & 7.27722 & -0.277221 \tabularnewline
258 & 5 & 7.00922 & -2.00922 \tabularnewline
259 & 3.5 & 7.21125 & -3.71125 \tabularnewline
260 & 5 & 6.25162 & -1.25162 \tabularnewline
261 & 9 & 7.15669 & 1.84331 \tabularnewline
262 & 8.5 & 6.38319 & 2.11681 \tabularnewline
263 & 5 & 7.53209 & -2.53209 \tabularnewline
264 & 9.5 & 8.52775 & 0.972247 \tabularnewline
265 & 3 & 6.42562 & -3.42562 \tabularnewline
266 & 1.5 & 5.9891 & -4.4891 \tabularnewline
267 & 6 & 7.39475 & -1.39475 \tabularnewline
268 & 0.5 & 7.78696 & -7.28696 \tabularnewline
269 & 6.5 & 6.74826 & -0.248264 \tabularnewline
270 & 7.5 & 7.93297 & -0.432968 \tabularnewline
271 & 4.5 & 6.28971 & -1.78971 \tabularnewline
272 & 8 & 7.38884 & 0.611164 \tabularnewline
273 & 9 & 7.78893 & 1.21107 \tabularnewline
274 & 7.5 & 6.9599 & 0.540103 \tabularnewline
275 & 8.5 & 8.22995 & 0.27005 \tabularnewline
276 & 7 & 7.35415 & -0.354152 \tabularnewline
277 & 9.5 & 8.18286 & 1.31714 \tabularnewline
278 & 6.5 & 6.51333 & -0.0133254 \tabularnewline
279 & 9.5 & 7.49047 & 2.00953 \tabularnewline
280 & 6 & 6.8053 & -0.805297 \tabularnewline
281 & 8 & 6.61563 & 1.38437 \tabularnewline
282 & 9.5 & 8.63601 & 0.863994 \tabularnewline
283 & 8 & 7.69869 & 0.301313 \tabularnewline
284 & 8 & 7.65362 & 0.346375 \tabularnewline
285 & 9 & 7.88413 & 1.11587 \tabularnewline
286 & 5 & 6.01438 & -1.01438 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]7.5[/C][C]5.61259[/C][C]1.88741[/C][/ROW]
[ROW][C]2[/C][C]2.5[/C][C]4.60474[/C][C]-2.10474[/C][/ROW]
[ROW][C]3[/C][C]6[/C][C]4.42643[/C][C]1.57357[/C][/ROW]
[ROW][C]4[/C][C]6.5[/C][C]5.42588[/C][C]1.07412[/C][/ROW]
[ROW][C]5[/C][C]1[/C][C]4.31711[/C][C]-3.31711[/C][/ROW]
[ROW][C]6[/C][C]1[/C][C]4.46566[/C][C]-3.46566[/C][/ROW]
[ROW][C]7[/C][C]5.5[/C][C]4.89234[/C][C]0.607657[/C][/ROW]
[ROW][C]8[/C][C]8.5[/C][C]4.51327[/C][C]3.98673[/C][/ROW]
[ROW][C]9[/C][C]6.5[/C][C]3.94351[/C][C]2.55649[/C][/ROW]
[ROW][C]10[/C][C]4.5[/C][C]3.83289[/C][C]0.667112[/C][/ROW]
[ROW][C]11[/C][C]2[/C][C]5.49381[/C][C]-3.49381[/C][/ROW]
[ROW][C]12[/C][C]5[/C][C]4.59039[/C][C]0.409614[/C][/ROW]
[ROW][C]13[/C][C]0.5[/C][C]4.43219[/C][C]-3.93219[/C][/ROW]
[ROW][C]14[/C][C]5[/C][C]3.04531[/C][C]1.95469[/C][/ROW]
[ROW][C]15[/C][C]5[/C][C]5.1869[/C][C]-0.186895[/C][/ROW]
[ROW][C]16[/C][C]2.5[/C][C]2.26953[/C][C]0.230469[/C][/ROW]
[ROW][C]17[/C][C]5[/C][C]3.80113[/C][C]1.19887[/C][/ROW]
[ROW][C]18[/C][C]5.5[/C][C]4.71608[/C][C]0.783917[/C][/ROW]
[ROW][C]19[/C][C]3.5[/C][C]4.1823[/C][C]-0.682303[/C][/ROW]
[ROW][C]20[/C][C]3[/C][C]5.47493[/C][C]-2.47493[/C][/ROW]
[ROW][C]21[/C][C]4[/C][C]3.14373[/C][C]0.856271[/C][/ROW]
[ROW][C]22[/C][C]0.5[/C][C]3.71572[/C][C]-3.21572[/C][/ROW]
[ROW][C]23[/C][C]6.5[/C][C]4.57911[/C][C]1.92089[/C][/ROW]
[ROW][C]24[/C][C]4.5[/C][C]6.16655[/C][C]-1.66655[/C][/ROW]
[ROW][C]25[/C][C]7.5[/C][C]4.87461[/C][C]2.62539[/C][/ROW]
[ROW][C]26[/C][C]5.5[/C][C]4.3561[/C][C]1.1439[/C][/ROW]
[ROW][C]27[/C][C]4[/C][C]5.66522[/C][C]-1.66522[/C][/ROW]
[ROW][C]28[/C][C]7.5[/C][C]5.88765[/C][C]1.61235[/C][/ROW]
[ROW][C]29[/C][C]7[/C][C]4.72945[/C][C]2.27055[/C][/ROW]
[ROW][C]30[/C][C]4[/C][C]4.58424[/C][C]-0.58424[/C][/ROW]
[ROW][C]31[/C][C]5.5[/C][C]4.40801[/C][C]1.09199[/C][/ROW]
[ROW][C]32[/C][C]2.5[/C][C]2.9312[/C][C]-0.431203[/C][/ROW]
[ROW][C]33[/C][C]5.5[/C][C]4.76936[/C][C]0.730636[/C][/ROW]
[ROW][C]34[/C][C]0.5[/C][C]3.89003[/C][C]-3.39003[/C][/ROW]
[ROW][C]35[/C][C]3.5[/C][C]3.80687[/C][C]-0.306871[/C][/ROW]
[ROW][C]36[/C][C]2.5[/C][C]5.2122[/C][C]-2.7122[/C][/ROW]
[ROW][C]37[/C][C]4.5[/C][C]3.21508[/C][C]1.28492[/C][/ROW]
[ROW][C]38[/C][C]4.5[/C][C]3.22683[/C][C]1.27317[/C][/ROW]
[ROW][C]39[/C][C]4.5[/C][C]4.43566[/C][C]0.064343[/C][/ROW]
[ROW][C]40[/C][C]6[/C][C]4.67527[/C][C]1.32473[/C][/ROW]
[ROW][C]41[/C][C]2.5[/C][C]4.92871[/C][C]-2.42871[/C][/ROW]
[ROW][C]42[/C][C]5[/C][C]5.34838[/C][C]-0.34838[/C][/ROW]
[ROW][C]43[/C][C]0[/C][C]4.36064[/C][C]-4.36064[/C][/ROW]
[ROW][C]44[/C][C]5[/C][C]4.86312[/C][C]0.136877[/C][/ROW]
[ROW][C]45[/C][C]6.5[/C][C]4.90952[/C][C]1.59048[/C][/ROW]
[ROW][C]46[/C][C]5[/C][C]5.30375[/C][C]-0.30375[/C][/ROW]
[ROW][C]47[/C][C]6[/C][C]3.57696[/C][C]2.42304[/C][/ROW]
[ROW][C]48[/C][C]4.5[/C][C]5.77585[/C][C]-1.27585[/C][/ROW]
[ROW][C]49[/C][C]5.5[/C][C]3.24009[/C][C]2.25991[/C][/ROW]
[ROW][C]50[/C][C]1[/C][C]3.84135[/C][C]-2.84135[/C][/ROW]
[ROW][C]51[/C][C]7.5[/C][C]3.49836[/C][C]4.00164[/C][/ROW]
[ROW][C]52[/C][C]6[/C][C]4.296[/C][C]1.704[/C][/ROW]
[ROW][C]53[/C][C]5[/C][C]4.47056[/C][C]0.529444[/C][/ROW]
[ROW][C]54[/C][C]1[/C][C]3.21446[/C][C]-2.21446[/C][/ROW]
[ROW][C]55[/C][C]5[/C][C]4.40846[/C][C]0.591543[/C][/ROW]
[ROW][C]56[/C][C]6.5[/C][C]4.97444[/C][C]1.52556[/C][/ROW]
[ROW][C]57[/C][C]7[/C][C]4.01754[/C][C]2.98246[/C][/ROW]
[ROW][C]58[/C][C]4.5[/C][C]4.34908[/C][C]0.150917[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]4.71193[/C][C]-4.71193[/C][/ROW]
[ROW][C]60[/C][C]8.5[/C][C]3.37174[/C][C]5.12826[/C][/ROW]
[ROW][C]61[/C][C]3.5[/C][C]3.59541[/C][C]-0.0954132[/C][/ROW]
[ROW][C]62[/C][C]7.5[/C][C]5.04786[/C][C]2.45214[/C][/ROW]
[ROW][C]63[/C][C]3.5[/C][C]5.30669[/C][C]-1.80669[/C][/ROW]
[ROW][C]64[/C][C]6[/C][C]5.01306[/C][C]0.986939[/C][/ROW]
[ROW][C]65[/C][C]1.5[/C][C]2.88503[/C][C]-1.38503[/C][/ROW]
[ROW][C]66[/C][C]9[/C][C]5.73365[/C][C]3.26635[/C][/ROW]
[ROW][C]67[/C][C]3.5[/C][C]5.33087[/C][C]-1.83087[/C][/ROW]
[ROW][C]68[/C][C]3.5[/C][C]3.81402[/C][C]-0.314018[/C][/ROW]
[ROW][C]69[/C][C]4[/C][C]4.71239[/C][C]-0.712389[/C][/ROW]
[ROW][C]70[/C][C]6.5[/C][C]5.7472[/C][C]0.752801[/C][/ROW]
[ROW][C]71[/C][C]7.5[/C][C]5.14848[/C][C]2.35152[/C][/ROW]
[ROW][C]72[/C][C]6[/C][C]5.05027[/C][C]0.949729[/C][/ROW]
[ROW][C]73[/C][C]5[/C][C]5.83812[/C][C]-0.838116[/C][/ROW]
[ROW][C]74[/C][C]5.5[/C][C]4.76649[/C][C]0.733511[/C][/ROW]
[ROW][C]75[/C][C]3.5[/C][C]4.34831[/C][C]-0.848311[/C][/ROW]
[ROW][C]76[/C][C]7.5[/C][C]4.84546[/C][C]2.65454[/C][/ROW]
[ROW][C]77[/C][C]1[/C][C]4.61975[/C][C]-3.61975[/C][/ROW]
[ROW][C]78[/C][C]6.5[/C][C]4.18761[/C][C]2.31239[/C][/ROW]
[ROW][C]79[/C][C]6.5[/C][C]4.43893[/C][C]2.06107[/C][/ROW]
[ROW][C]80[/C][C]6.5[/C][C]5.31392[/C][C]1.18608[/C][/ROW]
[ROW][C]81[/C][C]7[/C][C]4.95819[/C][C]2.04181[/C][/ROW]
[ROW][C]82[/C][C]3.5[/C][C]3.83289[/C][C]-0.332888[/C][/ROW]
[ROW][C]83[/C][C]1.5[/C][C]3.70596[/C][C]-2.20596[/C][/ROW]
[ROW][C]84[/C][C]4[/C][C]5.07883[/C][C]-1.07883[/C][/ROW]
[ROW][C]85[/C][C]7.5[/C][C]4.59646[/C][C]2.90354[/C][/ROW]
[ROW][C]86[/C][C]4.5[/C][C]4.29276[/C][C]0.207236[/C][/ROW]
[ROW][C]87[/C][C]0[/C][C]4.1037[/C][C]-4.1037[/C][/ROW]
[ROW][C]88[/C][C]3.5[/C][C]4.7698[/C][C]-1.2698[/C][/ROW]
[ROW][C]89[/C][C]5.5[/C][C]4.59237[/C][C]0.907631[/C][/ROW]
[ROW][C]90[/C][C]5[/C][C]3.9127[/C][C]1.0873[/C][/ROW]
[ROW][C]91[/C][C]4.5[/C][C]3.84732[/C][C]0.65268[/C][/ROW]
[ROW][C]92[/C][C]2.5[/C][C]4.72161[/C][C]-2.22161[/C][/ROW]
[ROW][C]93[/C][C]7.5[/C][C]5.14944[/C][C]2.35056[/C][/ROW]
[ROW][C]94[/C][C]7[/C][C]3.90244[/C][C]3.09756[/C][/ROW]
[ROW][C]95[/C][C]0[/C][C]4.59742[/C][C]-4.59742[/C][/ROW]
[ROW][C]96[/C][C]4.5[/C][C]4.93112[/C][C]-0.43112[/C][/ROW]
[ROW][C]97[/C][C]3[/C][C]4.26048[/C][C]-1.26048[/C][/ROW]
[ROW][C]98[/C][C]1.5[/C][C]4.22092[/C][C]-2.72092[/C][/ROW]
[ROW][C]99[/C][C]3.5[/C][C]5.01272[/C][C]-1.51272[/C][/ROW]
[ROW][C]100[/C][C]2.5[/C][C]5.14697[/C][C]-2.64697[/C][/ROW]
[ROW][C]101[/C][C]5.5[/C][C]4.22791[/C][C]1.27209[/C][/ROW]
[ROW][C]102[/C][C]8[/C][C]4.4249[/C][C]3.5751[/C][/ROW]
[ROW][C]103[/C][C]1[/C][C]4.37652[/C][C]-3.37652[/C][/ROW]
[ROW][C]104[/C][C]5[/C][C]3.70423[/C][C]1.29577[/C][/ROW]
[ROW][C]105[/C][C]4.5[/C][C]4.24661[/C][C]0.253394[/C][/ROW]
[ROW][C]106[/C][C]3[/C][C]3.72086[/C][C]-0.720862[/C][/ROW]
[ROW][C]107[/C][C]3[/C][C]4.6406[/C][C]-1.6406[/C][/ROW]
[ROW][C]108[/C][C]8[/C][C]4.24419[/C][C]3.75581[/C][/ROW]
[ROW][C]109[/C][C]2.5[/C][C]4.16581[/C][C]-1.66581[/C][/ROW]
[ROW][C]110[/C][C]7[/C][C]4.28017[/C][C]2.71983[/C][/ROW]
[ROW][C]111[/C][C]0[/C][C]4.23815[/C][C]-4.23815[/C][/ROW]
[ROW][C]112[/C][C]1[/C][C]3.7645[/C][C]-2.7645[/C][/ROW]
[ROW][C]113[/C][C]3.5[/C][C]4.6495[/C][C]-1.1495[/C][/ROW]
[ROW][C]114[/C][C]5.5[/C][C]4.929[/C][C]0.571004[/C][/ROW]
[ROW][C]115[/C][C]5.5[/C][C]4.54863[/C][C]0.951374[/C][/ROW]
[ROW][C]116[/C][C]0.5[/C][C]5.95456[/C][C]-5.45456[/C][/ROW]
[ROW][C]117[/C][C]7.5[/C][C]5.43318[/C][C]2.06682[/C][/ROW]
[ROW][C]118[/C][C]9[/C][C]7.1187[/C][C]1.8813[/C][/ROW]
[ROW][C]119[/C][C]9.5[/C][C]7.43426[/C][C]2.06574[/C][/ROW]
[ROW][C]120[/C][C]8.5[/C][C]9.07513[/C][C]-0.575126[/C][/ROW]
[ROW][C]121[/C][C]7[/C][C]6.59151[/C][C]0.40849[/C][/ROW]
[ROW][C]122[/C][C]8[/C][C]8.92816[/C][C]-0.928158[/C][/ROW]
[ROW][C]123[/C][C]10[/C][C]8.11695[/C][C]1.88305[/C][/ROW]
[ROW][C]124[/C][C]7[/C][C]7.36844[/C][C]-0.368444[/C][/ROW]
[ROW][C]125[/C][C]8.5[/C][C]6.31392[/C][C]2.18608[/C][/ROW]
[ROW][C]126[/C][C]9[/C][C]8.18874[/C][C]0.811257[/C][/ROW]
[ROW][C]127[/C][C]9.5[/C][C]5.06317[/C][C]4.43683[/C][/ROW]
[ROW][C]128[/C][C]4[/C][C]5.94199[/C][C]-1.94199[/C][/ROW]
[ROW][C]129[/C][C]6[/C][C]6.04897[/C][C]-0.0489686[/C][/ROW]
[ROW][C]130[/C][C]8[/C][C]6.99433[/C][C]1.00567[/C][/ROW]
[ROW][C]131[/C][C]5.5[/C][C]6.38088[/C][C]-0.880875[/C][/ROW]
[ROW][C]132[/C][C]9.5[/C][C]7.99053[/C][C]1.50947[/C][/ROW]
[ROW][C]133[/C][C]7.5[/C][C]7.00995[/C][C]0.490051[/C][/ROW]
[ROW][C]134[/C][C]7[/C][C]7.01822[/C][C]-0.0182246[/C][/ROW]
[ROW][C]135[/C][C]7.5[/C][C]7.88643[/C][C]-0.386433[/C][/ROW]
[ROW][C]136[/C][C]8[/C][C]6.47239[/C][C]1.52761[/C][/ROW]
[ROW][C]137[/C][C]7[/C][C]6.03782[/C][C]0.962184[/C][/ROW]
[ROW][C]138[/C][C]7[/C][C]6.49073[/C][C]0.509267[/C][/ROW]
[ROW][C]139[/C][C]6[/C][C]6.23126[/C][C]-0.231259[/C][/ROW]
[ROW][C]140[/C][C]10[/C][C]7.25786[/C][C]2.74214[/C][/ROW]
[ROW][C]141[/C][C]2.5[/C][C]5.0504[/C][C]-2.5504[/C][/ROW]
[ROW][C]142[/C][C]9[/C][C]7.71615[/C][C]1.28385[/C][/ROW]
[ROW][C]143[/C][C]8[/C][C]6.89989[/C][C]1.10011[/C][/ROW]
[ROW][C]144[/C][C]6[/C][C]6.22195[/C][C]-0.221951[/C][/ROW]
[ROW][C]145[/C][C]8.5[/C][C]7.45129[/C][C]1.04871[/C][/ROW]
[ROW][C]146[/C][C]6[/C][C]5.86966[/C][C]0.130344[/C][/ROW]
[ROW][C]147[/C][C]9[/C][C]6.29431[/C][C]2.70569[/C][/ROW]
[ROW][C]148[/C][C]8[/C][C]7.5344[/C][C]0.465601[/C][/ROW]
[ROW][C]149[/C][C]8[/C][C]8.13987[/C][C]-0.139867[/C][/ROW]
[ROW][C]150[/C][C]9[/C][C]8.32195[/C][C]0.678047[/C][/ROW]
[ROW][C]151[/C][C]5.5[/C][C]6.70764[/C][C]-1.20764[/C][/ROW]
[ROW][C]152[/C][C]5[/C][C]7.63706[/C][C]-2.63706[/C][/ROW]
[ROW][C]153[/C][C]7[/C][C]7.17515[/C][C]-0.175153[/C][/ROW]
[ROW][C]154[/C][C]5.5[/C][C]7.28055[/C][C]-1.78055[/C][/ROW]
[ROW][C]155[/C][C]9[/C][C]7.92951[/C][C]1.07049[/C][/ROW]
[ROW][C]156[/C][C]2[/C][C]7.29426[/C][C]-5.29426[/C][/ROW]
[ROW][C]157[/C][C]8.5[/C][C]7.00369[/C][C]1.49631[/C][/ROW]
[ROW][C]158[/C][C]9[/C][C]7.77701[/C][C]1.22299[/C][/ROW]
[ROW][C]159[/C][C]8.5[/C][C]8.69997[/C][C]-0.19997[/C][/ROW]
[ROW][C]160[/C][C]9[/C][C]6.72214[/C][C]2.27786[/C][/ROW]
[ROW][C]161[/C][C]7.5[/C][C]7.60833[/C][C]-0.108329[/C][/ROW]
[ROW][C]162[/C][C]10[/C][C]8.47188[/C][C]1.52812[/C][/ROW]
[ROW][C]163[/C][C]9[/C][C]7.29418[/C][C]1.70582[/C][/ROW]
[ROW][C]164[/C][C]7.5[/C][C]8.64662[/C][C]-1.14662[/C][/ROW]
[ROW][C]165[/C][C]6[/C][C]7.87545[/C][C]-1.87545[/C][/ROW]
[ROW][C]166[/C][C]10.5[/C][C]8.73095[/C][C]1.76905[/C][/ROW]
[ROW][C]167[/C][C]8.5[/C][C]7.1706[/C][C]1.3294[/C][/ROW]
[ROW][C]168[/C][C]8[/C][C]8.89305[/C][C]-0.893051[/C][/ROW]
[ROW][C]169[/C][C]10[/C][C]5.1202[/C][C]4.8798[/C][/ROW]
[ROW][C]170[/C][C]10.5[/C][C]9.63785[/C][C]0.86215[/C][/ROW]
[ROW][C]171[/C][C]6.5[/C][C]5.41098[/C][C]1.08902[/C][/ROW]
[ROW][C]172[/C][C]9.5[/C][C]8.78529[/C][C]0.71471[/C][/ROW]
[ROW][C]173[/C][C]8.5[/C][C]7.51257[/C][C]0.987433[/C][/ROW]
[ROW][C]174[/C][C]7.5[/C][C]8.0825[/C][C]-0.582497[/C][/ROW]
[ROW][C]175[/C][C]5[/C][C]6.98619[/C][C]-1.98619[/C][/ROW]
[ROW][C]176[/C][C]8[/C][C]7.58944[/C][C]0.410563[/C][/ROW]
[ROW][C]177[/C][C]10[/C][C]8.03778[/C][C]1.96222[/C][/ROW]
[ROW][C]178[/C][C]7[/C][C]8.52794[/C][C]-1.52794[/C][/ROW]
[ROW][C]179[/C][C]7.5[/C][C]8.10946[/C][C]-0.609457[/C][/ROW]
[ROW][C]180[/C][C]7.5[/C][C]8.13968[/C][C]-0.639678[/C][/ROW]
[ROW][C]181[/C][C]9.5[/C][C]7.35932[/C][C]2.14068[/C][/ROW]
[ROW][C]182[/C][C]6[/C][C]7.16417[/C][C]-1.16417[/C][/ROW]
[ROW][C]183[/C][C]10[/C][C]8.31098[/C][C]1.68902[/C][/ROW]
[ROW][C]184[/C][C]7[/C][C]8.3183[/C][C]-1.3183[/C][/ROW]
[ROW][C]185[/C][C]3[/C][C]5.76438[/C][C]-2.76438[/C][/ROW]
[ROW][C]186[/C][C]6[/C][C]7.66812[/C][C]-1.66812[/C][/ROW]
[ROW][C]187[/C][C]7[/C][C]8.67341[/C][C]-1.67341[/C][/ROW]
[ROW][C]188[/C][C]10[/C][C]7.89662[/C][C]2.10338[/C][/ROW]
[ROW][C]189[/C][C]7[/C][C]7.60413[/C][C]-0.604133[/C][/ROW]
[ROW][C]190[/C][C]3.5[/C][C]7.96614[/C][C]-4.46614[/C][/ROW]
[ROW][C]191[/C][C]8[/C][C]8.27423[/C][C]-0.274229[/C][/ROW]
[ROW][C]192[/C][C]10[/C][C]7.91754[/C][C]2.08246[/C][/ROW]
[ROW][C]193[/C][C]5.5[/C][C]7.98748[/C][C]-2.48748[/C][/ROW]
[ROW][C]194[/C][C]6[/C][C]7.74395[/C][C]-1.74395[/C][/ROW]
[ROW][C]195[/C][C]6.5[/C][C]6.03706[/C][C]0.462936[/C][/ROW]
[ROW][C]196[/C][C]6.5[/C][C]7.45397[/C][C]-0.953974[/C][/ROW]
[ROW][C]197[/C][C]8.5[/C][C]6.31225[/C][C]2.18775[/C][/ROW]
[ROW][C]198[/C][C]4[/C][C]6.76735[/C][C]-2.76735[/C][/ROW]
[ROW][C]199[/C][C]9.5[/C][C]7.58072[/C][C]1.91928[/C][/ROW]
[ROW][C]200[/C][C]8[/C][C]7.92573[/C][C]0.0742658[/C][/ROW]
[ROW][C]201[/C][C]8.5[/C][C]7.41232[/C][C]1.08768[/C][/ROW]
[ROW][C]202[/C][C]5.5[/C][C]8.35951[/C][C]-2.85951[/C][/ROW]
[ROW][C]203[/C][C]7[/C][C]6.52526[/C][C]0.474742[/C][/ROW]
[ROW][C]204[/C][C]9[/C][C]7.00277[/C][C]1.99723[/C][/ROW]
[ROW][C]205[/C][C]8[/C][C]7.98882[/C][C]0.0111788[/C][/ROW]
[ROW][C]206[/C][C]10[/C][C]8.6541[/C][C]1.3459[/C][/ROW]
[ROW][C]207[/C][C]8[/C][C]7.44646[/C][C]0.553535[/C][/ROW]
[ROW][C]208[/C][C]6[/C][C]7.5922[/C][C]-1.5922[/C][/ROW]
[ROW][C]209[/C][C]8[/C][C]7.9022[/C][C]0.0977991[/C][/ROW]
[ROW][C]210[/C][C]5[/C][C]6.10356[/C][C]-1.10356[/C][/ROW]
[ROW][C]211[/C][C]9[/C][C]7.82025[/C][C]1.17975[/C][/ROW]
[ROW][C]212[/C][C]4.5[/C][C]5.04696[/C][C]-0.546955[/C][/ROW]
[ROW][C]213[/C][C]8.5[/C][C]7.41886[/C][C]1.08114[/C][/ROW]
[ROW][C]214[/C][C]7[/C][C]6.65081[/C][C]0.349188[/C][/ROW]
[ROW][C]215[/C][C]9.5[/C][C]7.51589[/C][C]1.98411[/C][/ROW]
[ROW][C]216[/C][C]8.5[/C][C]6.96869[/C][C]1.53131[/C][/ROW]
[ROW][C]217[/C][C]7.5[/C][C]6.41982[/C][C]1.08018[/C][/ROW]
[ROW][C]218[/C][C]7.5[/C][C]7.54088[/C][C]-0.0408781[/C][/ROW]
[ROW][C]219[/C][C]5[/C][C]6.46792[/C][C]-1.46792[/C][/ROW]
[ROW][C]220[/C][C]7[/C][C]6.90286[/C][C]0.0971437[/C][/ROW]
[ROW][C]221[/C][C]8[/C][C]8.13858[/C][C]-0.138579[/C][/ROW]
[ROW][C]222[/C][C]5.5[/C][C]5.80773[/C][C]-0.307727[/C][/ROW]
[ROW][C]223[/C][C]8.5[/C][C]7.48839[/C][C]1.01161[/C][/ROW]
[ROW][C]224[/C][C]7.5[/C][C]9.07852[/C][C]-1.57852[/C][/ROW]
[ROW][C]225[/C][C]9.5[/C][C]8.09295[/C][C]1.40705[/C][/ROW]
[ROW][C]226[/C][C]7[/C][C]6.99699[/C][C]0.00301469[/C][/ROW]
[ROW][C]227[/C][C]8[/C][C]8.7947[/C][C]-0.794695[/C][/ROW]
[ROW][C]228[/C][C]8.5[/C][C]7.13628[/C][C]1.36372[/C][/ROW]
[ROW][C]229[/C][C]3.5[/C][C]5.50648[/C][C]-2.00648[/C][/ROW]
[ROW][C]230[/C][C]6.5[/C][C]7.36447[/C][C]-0.864468[/C][/ROW]
[ROW][C]231[/C][C]6.5[/C][C]6.65388[/C][C]-0.153876[/C][/ROW]
[ROW][C]232[/C][C]10.5[/C][C]7.76665[/C][C]2.73335[/C][/ROW]
[ROW][C]233[/C][C]8.5[/C][C]6.51823[/C][C]1.98177[/C][/ROW]
[ROW][C]234[/C][C]8[/C][C]7.47741[/C][C]0.522589[/C][/ROW]
[ROW][C]235[/C][C]10[/C][C]7.11546[/C][C]2.88454[/C][/ROW]
[ROW][C]236[/C][C]10[/C][C]6.73156[/C][C]3.26844[/C][/ROW]
[ROW][C]237[/C][C]9.5[/C][C]7.70132[/C][C]1.79868[/C][/ROW]
[ROW][C]238[/C][C]9[/C][C]7.0061[/C][C]1.9939[/C][/ROW]
[ROW][C]239[/C][C]10[/C][C]8.25129[/C][C]1.74871[/C][/ROW]
[ROW][C]240[/C][C]7.5[/C][C]7.11943[/C][C]0.380571[/C][/ROW]
[ROW][C]241[/C][C]4.5[/C][C]7.57202[/C][C]-3.07202[/C][/ROW]
[ROW][C]242[/C][C]4.5[/C][C]5.46872[/C][C]-0.968717[/C][/ROW]
[ROW][C]243[/C][C]0.5[/C][C]5.66433[/C][C]-5.16433[/C][/ROW]
[ROW][C]244[/C][C]6.5[/C][C]6.6615[/C][C]-0.161502[/C][/ROW]
[ROW][C]245[/C][C]4.5[/C][C]6.61851[/C][C]-2.11851[/C][/ROW]
[ROW][C]246[/C][C]5.5[/C][C]5.74518[/C][C]-0.245177[/C][/ROW]
[ROW][C]247[/C][C]5[/C][C]6.52734[/C][C]-1.52734[/C][/ROW]
[ROW][C]248[/C][C]6[/C][C]7.37645[/C][C]-1.37645[/C][/ROW]
[ROW][C]249[/C][C]4[/C][C]6.47869[/C][C]-2.47869[/C][/ROW]
[ROW][C]250[/C][C]8[/C][C]7.54015[/C][C]0.459847[/C][/ROW]
[ROW][C]251[/C][C]10.5[/C][C]9.23698[/C][C]1.26302[/C][/ROW]
[ROW][C]252[/C][C]8.5[/C][C]7.7114[/C][C]0.788597[/C][/ROW]
[ROW][C]253[/C][C]6.5[/C][C]7.61318[/C][C]-1.11318[/C][/ROW]
[ROW][C]254[/C][C]8[/C][C]7.62463[/C][C]0.375366[/C][/ROW]
[ROW][C]255[/C][C]8.5[/C][C]8.10702[/C][C]0.392978[/C][/ROW]
[ROW][C]256[/C][C]5.5[/C][C]6.50301[/C][C]-1.00301[/C][/ROW]
[ROW][C]257[/C][C]7[/C][C]7.27722[/C][C]-0.277221[/C][/ROW]
[ROW][C]258[/C][C]5[/C][C]7.00922[/C][C]-2.00922[/C][/ROW]
[ROW][C]259[/C][C]3.5[/C][C]7.21125[/C][C]-3.71125[/C][/ROW]
[ROW][C]260[/C][C]5[/C][C]6.25162[/C][C]-1.25162[/C][/ROW]
[ROW][C]261[/C][C]9[/C][C]7.15669[/C][C]1.84331[/C][/ROW]
[ROW][C]262[/C][C]8.5[/C][C]6.38319[/C][C]2.11681[/C][/ROW]
[ROW][C]263[/C][C]5[/C][C]7.53209[/C][C]-2.53209[/C][/ROW]
[ROW][C]264[/C][C]9.5[/C][C]8.52775[/C][C]0.972247[/C][/ROW]
[ROW][C]265[/C][C]3[/C][C]6.42562[/C][C]-3.42562[/C][/ROW]
[ROW][C]266[/C][C]1.5[/C][C]5.9891[/C][C]-4.4891[/C][/ROW]
[ROW][C]267[/C][C]6[/C][C]7.39475[/C][C]-1.39475[/C][/ROW]
[ROW][C]268[/C][C]0.5[/C][C]7.78696[/C][C]-7.28696[/C][/ROW]
[ROW][C]269[/C][C]6.5[/C][C]6.74826[/C][C]-0.248264[/C][/ROW]
[ROW][C]270[/C][C]7.5[/C][C]7.93297[/C][C]-0.432968[/C][/ROW]
[ROW][C]271[/C][C]4.5[/C][C]6.28971[/C][C]-1.78971[/C][/ROW]
[ROW][C]272[/C][C]8[/C][C]7.38884[/C][C]0.611164[/C][/ROW]
[ROW][C]273[/C][C]9[/C][C]7.78893[/C][C]1.21107[/C][/ROW]
[ROW][C]274[/C][C]7.5[/C][C]6.9599[/C][C]0.540103[/C][/ROW]
[ROW][C]275[/C][C]8.5[/C][C]8.22995[/C][C]0.27005[/C][/ROW]
[ROW][C]276[/C][C]7[/C][C]7.35415[/C][C]-0.354152[/C][/ROW]
[ROW][C]277[/C][C]9.5[/C][C]8.18286[/C][C]1.31714[/C][/ROW]
[ROW][C]278[/C][C]6.5[/C][C]6.51333[/C][C]-0.0133254[/C][/ROW]
[ROW][C]279[/C][C]9.5[/C][C]7.49047[/C][C]2.00953[/C][/ROW]
[ROW][C]280[/C][C]6[/C][C]6.8053[/C][C]-0.805297[/C][/ROW]
[ROW][C]281[/C][C]8[/C][C]6.61563[/C][C]1.38437[/C][/ROW]
[ROW][C]282[/C][C]9.5[/C][C]8.63601[/C][C]0.863994[/C][/ROW]
[ROW][C]283[/C][C]8[/C][C]7.69869[/C][C]0.301313[/C][/ROW]
[ROW][C]284[/C][C]8[/C][C]7.65362[/C][C]0.346375[/C][/ROW]
[ROW][C]285[/C][C]9[/C][C]7.88413[/C][C]1.11587[/C][/ROW]
[ROW][C]286[/C][C]5[/C][C]6.01438[/C][C]-1.01438[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
17.55.612591.88741
22.54.60474-2.10474
364.426431.57357
46.55.425881.07412
514.31711-3.31711
614.46566-3.46566
75.54.892340.607657
88.54.513273.98673
96.53.943512.55649
104.53.832890.667112
1125.49381-3.49381
1254.590390.409614
130.54.43219-3.93219
1453.045311.95469
1555.1869-0.186895
162.52.269530.230469
1753.801131.19887
185.54.716080.783917
193.54.1823-0.682303
2035.47493-2.47493
2143.143730.856271
220.53.71572-3.21572
236.54.579111.92089
244.56.16655-1.66655
257.54.874612.62539
265.54.35611.1439
2745.66522-1.66522
287.55.887651.61235
2974.729452.27055
3044.58424-0.58424
315.54.408011.09199
322.52.9312-0.431203
335.54.769360.730636
340.53.89003-3.39003
353.53.80687-0.306871
362.55.2122-2.7122
374.53.215081.28492
384.53.226831.27317
394.54.435660.064343
4064.675271.32473
412.54.92871-2.42871
4255.34838-0.34838
4304.36064-4.36064
4454.863120.136877
456.54.909521.59048
4655.30375-0.30375
4763.576962.42304
484.55.77585-1.27585
495.53.240092.25991
5013.84135-2.84135
517.53.498364.00164
5264.2961.704
5354.470560.529444
5413.21446-2.21446
5554.408460.591543
566.54.974441.52556
5774.017542.98246
584.54.349080.150917
5904.71193-4.71193
608.53.371745.12826
613.53.59541-0.0954132
627.55.047862.45214
633.55.30669-1.80669
6465.013060.986939
651.52.88503-1.38503
6695.733653.26635
673.55.33087-1.83087
683.53.81402-0.314018
6944.71239-0.712389
706.55.74720.752801
717.55.148482.35152
7265.050270.949729
7355.83812-0.838116
745.54.766490.733511
753.54.34831-0.848311
767.54.845462.65454
7714.61975-3.61975
786.54.187612.31239
796.54.438932.06107
806.55.313921.18608
8174.958192.04181
823.53.83289-0.332888
831.53.70596-2.20596
8445.07883-1.07883
857.54.596462.90354
864.54.292760.207236
8704.1037-4.1037
883.54.7698-1.2698
895.54.592370.907631
9053.91271.0873
914.53.847320.65268
922.54.72161-2.22161
937.55.149442.35056
9473.902443.09756
9504.59742-4.59742
964.54.93112-0.43112
9734.26048-1.26048
981.54.22092-2.72092
993.55.01272-1.51272
1002.55.14697-2.64697
1015.54.227911.27209
10284.42493.5751
10314.37652-3.37652
10453.704231.29577
1054.54.246610.253394
10633.72086-0.720862
10734.6406-1.6406
10884.244193.75581
1092.54.16581-1.66581
11074.280172.71983
11104.23815-4.23815
11213.7645-2.7645
1133.54.6495-1.1495
1145.54.9290.571004
1155.54.548630.951374
1160.55.95456-5.45456
1177.55.433182.06682
11897.11871.8813
1199.57.434262.06574
1208.59.07513-0.575126
12176.591510.40849
12288.92816-0.928158
123108.116951.88305
12477.36844-0.368444
1258.56.313922.18608
12698.188740.811257
1279.55.063174.43683
12845.94199-1.94199
12966.04897-0.0489686
13086.994331.00567
1315.56.38088-0.880875
1329.57.990531.50947
1337.57.009950.490051
13477.01822-0.0182246
1357.57.88643-0.386433
13686.472391.52761
13776.037820.962184
13876.490730.509267
13966.23126-0.231259
140107.257862.74214
1412.55.0504-2.5504
14297.716151.28385
14386.899891.10011
14466.22195-0.221951
1458.57.451291.04871
14665.869660.130344
14796.294312.70569
14887.53440.465601
14988.13987-0.139867
15098.321950.678047
1515.56.70764-1.20764
15257.63706-2.63706
15377.17515-0.175153
1545.57.28055-1.78055
15597.929511.07049
15627.29426-5.29426
1578.57.003691.49631
15897.777011.22299
1598.58.69997-0.19997
16096.722142.27786
1617.57.60833-0.108329
162108.471881.52812
16397.294181.70582
1647.58.64662-1.14662
16567.87545-1.87545
16610.58.730951.76905
1678.57.17061.3294
16888.89305-0.893051
169105.12024.8798
17010.59.637850.86215
1716.55.410981.08902
1729.58.785290.71471
1738.57.512570.987433
1747.58.0825-0.582497
17556.98619-1.98619
17687.589440.410563
177108.037781.96222
17878.52794-1.52794
1797.58.10946-0.609457
1807.58.13968-0.639678
1819.57.359322.14068
18267.16417-1.16417
183108.310981.68902
18478.3183-1.3183
18535.76438-2.76438
18667.66812-1.66812
18778.67341-1.67341
188107.896622.10338
18977.60413-0.604133
1903.57.96614-4.46614
19188.27423-0.274229
192107.917542.08246
1935.57.98748-2.48748
19467.74395-1.74395
1956.56.037060.462936
1966.57.45397-0.953974
1978.56.312252.18775
19846.76735-2.76735
1999.57.580721.91928
20087.925730.0742658
2018.57.412321.08768
2025.58.35951-2.85951
20376.525260.474742
20497.002771.99723
20587.988820.0111788
206108.65411.3459
20787.446460.553535
20867.5922-1.5922
20987.90220.0977991
21056.10356-1.10356
21197.820251.17975
2124.55.04696-0.546955
2138.57.418861.08114
21476.650810.349188
2159.57.515891.98411
2168.56.968691.53131
2177.56.419821.08018
2187.57.54088-0.0408781
21956.46792-1.46792
22076.902860.0971437
22188.13858-0.138579
2225.55.80773-0.307727
2238.57.488391.01161
2247.59.07852-1.57852
2259.58.092951.40705
22676.996990.00301469
22788.7947-0.794695
2288.57.136281.36372
2293.55.50648-2.00648
2306.57.36447-0.864468
2316.56.65388-0.153876
23210.57.766652.73335
2338.56.518231.98177
23487.477410.522589
235107.115462.88454
236106.731563.26844
2379.57.701321.79868
23897.00611.9939
239108.251291.74871
2407.57.119430.380571
2414.57.57202-3.07202
2424.55.46872-0.968717
2430.55.66433-5.16433
2446.56.6615-0.161502
2454.56.61851-2.11851
2465.55.74518-0.245177
24756.52734-1.52734
24867.37645-1.37645
24946.47869-2.47869
25087.540150.459847
25110.59.236981.26302
2528.57.71140.788597
2536.57.61318-1.11318
25487.624630.375366
2558.58.107020.392978
2565.56.50301-1.00301
25777.27722-0.277221
25857.00922-2.00922
2593.57.21125-3.71125
26056.25162-1.25162
26197.156691.84331
2628.56.383192.11681
26357.53209-2.53209
2649.58.527750.972247
26536.42562-3.42562
2661.55.9891-4.4891
26767.39475-1.39475
2680.57.78696-7.28696
2696.56.74826-0.248264
2707.57.93297-0.432968
2714.56.28971-1.78971
27287.388840.611164
27397.788931.21107
2747.56.95990.540103
2758.58.229950.27005
27677.35415-0.354152
2779.58.182861.31714
2786.56.51333-0.0133254
2799.57.490472.00953
28066.8053-0.805297
28186.615631.38437
2829.58.636010.863994
28387.698690.301313
28487.653620.346375
28597.884131.11587
28656.01438-1.01438







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.8857030.2285940.114297
170.7965810.4068370.203419
180.6935120.6129770.306488
190.6487450.702510.351255
200.6656050.6687890.334395
210.579830.8403390.42017
220.5486110.9027790.451389
230.4675020.9350040.532498
240.3849160.7698320.615084
250.4247160.8494330.575284
260.3932780.7865560.606722
270.3312690.6625370.668731
280.2644150.5288310.735585
290.3020990.6041990.697901
300.2572010.5144020.742799
310.202060.404120.79794
320.2116380.4232770.788362
330.1677440.3354880.832256
340.1354590.2709180.864541
350.1534510.3069010.846549
360.6277670.7444670.372233
370.5724850.8550290.427515
380.5961940.8076110.403806
390.544030.9119410.45597
400.4981110.9962210.501889
410.4948250.9896510.505175
420.4450240.8900470.554976
430.5473170.9053650.452683
440.5310750.937850.468925
450.552670.894660.44733
460.5221550.955690.477845
470.4901260.9802520.509874
480.4426930.8853860.557307
490.4688660.9377320.531134
500.478220.9564410.52178
510.5881720.8236560.411828
520.6195390.7609220.380461
530.5774110.8451780.422589
540.6525150.6949710.347485
550.62870.7426010.3713
560.6381360.7237280.361864
570.7185390.5629210.281461
580.6793910.6412180.320609
590.857730.284540.14227
600.9045260.1909480.0954741
610.8842980.2314040.115702
620.9143310.1713390.0856695
630.9029620.1940750.0970377
640.8895930.2208150.110407
650.9276220.1447560.0723779
660.9526280.09474440.0473722
670.9518120.09637590.048188
680.9426680.1146640.0573318
690.9309840.1380320.0690161
700.9235590.1528810.0764407
710.9276630.1446730.0723365
720.9177470.1645070.0822533
730.9040030.1919940.095997
740.887790.224420.11221
750.8711440.2577110.128856
760.8913470.2173060.108653
770.9203250.1593510.0796755
780.919970.1600610.0800305
790.9229260.1541480.0770742
800.9133280.1733440.0866722
810.9175550.164890.0824449
820.9051390.1897220.0948608
830.903890.1922210.0961103
840.8889470.2221050.111053
850.9029080.1941850.0970924
860.8863130.2273750.113687
870.9295030.1409950.0704974
880.9256380.1487240.0743619
890.9152420.1695160.0847582
900.9046310.1907370.0953687
910.8907850.2184290.109215
920.8914810.2170390.108519
930.8999150.200170.100085
940.9196460.1607080.0803538
950.9611470.07770520.0388526
960.9528760.09424750.0471237
970.9455390.1089230.0544614
980.9478850.104230.0521152
990.941610.1167810.0583904
1000.944070.111860.0559298
1010.9380470.1239060.061953
1020.9609610.07807810.039039
1030.9693990.06120130.0306006
1040.9658330.06833430.0341672
1050.9588750.08225050.0411252
1060.9529550.09408950.0470448
1070.9474280.1051440.0525721
1080.9683220.06335510.0316776
1090.9644080.07118420.0355921
1100.9736640.05267110.0263356
1110.9835720.03285660.0164283
1120.9851190.02976150.0148808
1130.9828770.03424590.0171229
1140.9793470.04130550.0206528
1150.9751470.0497060.024853
1160.9849760.03004810.015024
1170.9941430.0117140.005857
1180.9946130.01077470.00538733
1190.9947340.01053240.00526622
1200.9933580.01328340.00664169
1210.9916230.01675420.00837709
1220.9898760.02024850.0101243
1230.9893210.02135720.0106786
1240.9868740.02625170.0131258
1250.9866780.02664410.013322
1260.9838460.03230760.0161538
1270.9919980.01600430.00800215
1280.9923350.01532990.00766496
1290.9906480.01870420.00935212
1300.9887170.02256670.0112834
1310.987160.02567940.0128397
1320.9851630.02967360.0148368
1330.9817770.0364450.0182225
1340.977870.04426060.0221303
1350.9735460.05290760.0264538
1360.9711080.05778360.0288918
1370.9658330.06833480.0341674
1380.9592340.08153240.0407662
1390.9523430.09531440.0476572
1400.9587780.08244480.0412224
1410.9658530.06829480.0341474
1420.9612210.07755740.0387787
1430.9552020.08959590.0447979
1440.9465330.1069330.0534667
1450.9389210.1221570.0610787
1460.9299490.1401020.0700511
1470.9397370.1205250.0602626
1480.9300760.1398480.0699242
1490.91860.16280.0814
1500.9062610.1874780.0937392
1510.8972510.2054970.102749
1520.9098910.1802190.0901094
1530.8951390.2097230.104861
1540.8934710.2130590.106529
1550.8845280.2309440.115472
1560.9568890.08622130.0431106
1570.9541560.09168790.045844
1580.9487010.1025970.0512987
1590.9388080.1223850.0611924
1600.9426540.1146930.0573463
1610.9317950.136410.0682051
1620.9277590.1444820.0722409
1630.9230820.1538370.0769183
1640.9170270.1659470.0829734
1650.9179150.1641710.0820853
1660.9144160.1711690.0855845
1670.906740.1865210.0932603
1680.8929620.2140760.107038
1690.9663590.06728250.0336413
1700.9598310.08033740.0401687
1710.9574630.08507380.0425369
1720.948790.1024190.0512097
1730.9406290.1187420.0593709
1740.9325460.1349070.0674537
1750.9335780.1328440.0664219
1760.9213530.1572930.0786467
1770.9169550.1660890.0830447
1780.911890.1762190.0881095
1790.8983920.2032170.101608
1800.8828050.2343910.117195
1810.884750.23050.11525
1820.870770.258460.12923
1830.8680020.2639950.131998
1840.8610120.2779760.138988
1850.8665390.2669220.133461
1860.8661750.2676490.133825
1870.8686740.2626520.131326
1880.8750150.249970.124985
1890.8599430.2801130.140057
1900.9374590.1250820.062541
1910.9271310.1457380.0728688
1920.9241970.1516060.0758028
1930.9399070.1201860.0600932
1940.9484620.1030760.051538
1950.9384430.1231150.0615575
1960.9270510.1458970.0729487
1970.9290920.1418160.0709079
1980.9475360.1049270.0524636
1990.9424190.1151610.0575807
2000.9326540.1346920.0673458
2010.9221540.1556920.0778459
2020.9313790.1372420.068621
2030.9173890.1652220.0826112
2040.9091690.1816620.0908309
2050.8945470.2109050.105453
2060.8797180.2405650.120282
2070.8609790.2780420.139021
2080.8530.2939990.147
2090.8314180.3371650.168582
2100.8076730.3846550.192327
2110.7906010.4187990.209399
2120.7768890.4462220.223111
2130.7704910.4590180.229509
2140.7445720.5108550.255428
2150.7299360.5401290.270064
2160.7130550.573890.286945
2170.7073860.5852280.292614
2180.6699620.6600760.330038
2190.6376590.7246810.362341
2200.5957710.8084570.404229
2210.5526610.8946780.447339
2220.5109190.9781620.489081
2230.4844250.9688510.515575
2240.5023150.995370.497685
2250.48730.9746010.5127
2260.4577610.9155220.542239
2270.4535760.9071520.546424
2280.4439130.8878270.556087
2290.420250.8404990.57975
2300.37740.7547990.6226
2310.3654970.7309940.634503
2320.3959580.7919160.604042
2330.3836930.7673860.616307
2340.3418820.6837640.658118
2350.4432690.8865390.556731
2360.713310.573380.28669
2370.7109030.5781940.289097
2380.6773720.6452560.322628
2390.6818030.6363940.318197
2400.6830280.6339450.316972
2410.6606760.6786480.339324
2420.6473210.7053580.352679
2430.7240510.5518980.275949
2440.681780.6364390.31822
2450.6395250.720950.360475
2460.6227790.7544420.377221
2470.5728380.8543250.427162
2480.5303720.9392560.469628
2490.4858140.9716270.514186
2500.4263950.852790.573605
2510.3678530.7357060.632147
2520.5249230.9501530.475077
2530.4646460.9292920.535354
2540.4361680.8723350.563832
2550.4099510.8199010.590049
2560.4420440.8840870.557956
2570.4069560.8139120.593044
2580.3875820.7751640.612418
2590.3311430.6622850.668857
2600.264810.529620.73519
2610.2562970.5125930.743703
2620.1970990.3941980.802901
2630.281620.5632410.71838
2640.3900980.7801970.609902
2650.350050.70010.64995
2660.4517890.9035780.548211
2670.8186860.3626290.181314
2680.9795530.04089330.0204466
2690.954970.09006040.0450302
2700.8799310.2401370.120069

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.885703 & 0.228594 & 0.114297 \tabularnewline
17 & 0.796581 & 0.406837 & 0.203419 \tabularnewline
18 & 0.693512 & 0.612977 & 0.306488 \tabularnewline
19 & 0.648745 & 0.70251 & 0.351255 \tabularnewline
20 & 0.665605 & 0.668789 & 0.334395 \tabularnewline
21 & 0.57983 & 0.840339 & 0.42017 \tabularnewline
22 & 0.548611 & 0.902779 & 0.451389 \tabularnewline
23 & 0.467502 & 0.935004 & 0.532498 \tabularnewline
24 & 0.384916 & 0.769832 & 0.615084 \tabularnewline
25 & 0.424716 & 0.849433 & 0.575284 \tabularnewline
26 & 0.393278 & 0.786556 & 0.606722 \tabularnewline
27 & 0.331269 & 0.662537 & 0.668731 \tabularnewline
28 & 0.264415 & 0.528831 & 0.735585 \tabularnewline
29 & 0.302099 & 0.604199 & 0.697901 \tabularnewline
30 & 0.257201 & 0.514402 & 0.742799 \tabularnewline
31 & 0.20206 & 0.40412 & 0.79794 \tabularnewline
32 & 0.211638 & 0.423277 & 0.788362 \tabularnewline
33 & 0.167744 & 0.335488 & 0.832256 \tabularnewline
34 & 0.135459 & 0.270918 & 0.864541 \tabularnewline
35 & 0.153451 & 0.306901 & 0.846549 \tabularnewline
36 & 0.627767 & 0.744467 & 0.372233 \tabularnewline
37 & 0.572485 & 0.855029 & 0.427515 \tabularnewline
38 & 0.596194 & 0.807611 & 0.403806 \tabularnewline
39 & 0.54403 & 0.911941 & 0.45597 \tabularnewline
40 & 0.498111 & 0.996221 & 0.501889 \tabularnewline
41 & 0.494825 & 0.989651 & 0.505175 \tabularnewline
42 & 0.445024 & 0.890047 & 0.554976 \tabularnewline
43 & 0.547317 & 0.905365 & 0.452683 \tabularnewline
44 & 0.531075 & 0.93785 & 0.468925 \tabularnewline
45 & 0.55267 & 0.89466 & 0.44733 \tabularnewline
46 & 0.522155 & 0.95569 & 0.477845 \tabularnewline
47 & 0.490126 & 0.980252 & 0.509874 \tabularnewline
48 & 0.442693 & 0.885386 & 0.557307 \tabularnewline
49 & 0.468866 & 0.937732 & 0.531134 \tabularnewline
50 & 0.47822 & 0.956441 & 0.52178 \tabularnewline
51 & 0.588172 & 0.823656 & 0.411828 \tabularnewline
52 & 0.619539 & 0.760922 & 0.380461 \tabularnewline
53 & 0.577411 & 0.845178 & 0.422589 \tabularnewline
54 & 0.652515 & 0.694971 & 0.347485 \tabularnewline
55 & 0.6287 & 0.742601 & 0.3713 \tabularnewline
56 & 0.638136 & 0.723728 & 0.361864 \tabularnewline
57 & 0.718539 & 0.562921 & 0.281461 \tabularnewline
58 & 0.679391 & 0.641218 & 0.320609 \tabularnewline
59 & 0.85773 & 0.28454 & 0.14227 \tabularnewline
60 & 0.904526 & 0.190948 & 0.0954741 \tabularnewline
61 & 0.884298 & 0.231404 & 0.115702 \tabularnewline
62 & 0.914331 & 0.171339 & 0.0856695 \tabularnewline
63 & 0.902962 & 0.194075 & 0.0970377 \tabularnewline
64 & 0.889593 & 0.220815 & 0.110407 \tabularnewline
65 & 0.927622 & 0.144756 & 0.0723779 \tabularnewline
66 & 0.952628 & 0.0947444 & 0.0473722 \tabularnewline
67 & 0.951812 & 0.0963759 & 0.048188 \tabularnewline
68 & 0.942668 & 0.114664 & 0.0573318 \tabularnewline
69 & 0.930984 & 0.138032 & 0.0690161 \tabularnewline
70 & 0.923559 & 0.152881 & 0.0764407 \tabularnewline
71 & 0.927663 & 0.144673 & 0.0723365 \tabularnewline
72 & 0.917747 & 0.164507 & 0.0822533 \tabularnewline
73 & 0.904003 & 0.191994 & 0.095997 \tabularnewline
74 & 0.88779 & 0.22442 & 0.11221 \tabularnewline
75 & 0.871144 & 0.257711 & 0.128856 \tabularnewline
76 & 0.891347 & 0.217306 & 0.108653 \tabularnewline
77 & 0.920325 & 0.159351 & 0.0796755 \tabularnewline
78 & 0.91997 & 0.160061 & 0.0800305 \tabularnewline
79 & 0.922926 & 0.154148 & 0.0770742 \tabularnewline
80 & 0.913328 & 0.173344 & 0.0866722 \tabularnewline
81 & 0.917555 & 0.16489 & 0.0824449 \tabularnewline
82 & 0.905139 & 0.189722 & 0.0948608 \tabularnewline
83 & 0.90389 & 0.192221 & 0.0961103 \tabularnewline
84 & 0.888947 & 0.222105 & 0.111053 \tabularnewline
85 & 0.902908 & 0.194185 & 0.0970924 \tabularnewline
86 & 0.886313 & 0.227375 & 0.113687 \tabularnewline
87 & 0.929503 & 0.140995 & 0.0704974 \tabularnewline
88 & 0.925638 & 0.148724 & 0.0743619 \tabularnewline
89 & 0.915242 & 0.169516 & 0.0847582 \tabularnewline
90 & 0.904631 & 0.190737 & 0.0953687 \tabularnewline
91 & 0.890785 & 0.218429 & 0.109215 \tabularnewline
92 & 0.891481 & 0.217039 & 0.108519 \tabularnewline
93 & 0.899915 & 0.20017 & 0.100085 \tabularnewline
94 & 0.919646 & 0.160708 & 0.0803538 \tabularnewline
95 & 0.961147 & 0.0777052 & 0.0388526 \tabularnewline
96 & 0.952876 & 0.0942475 & 0.0471237 \tabularnewline
97 & 0.945539 & 0.108923 & 0.0544614 \tabularnewline
98 & 0.947885 & 0.10423 & 0.0521152 \tabularnewline
99 & 0.94161 & 0.116781 & 0.0583904 \tabularnewline
100 & 0.94407 & 0.11186 & 0.0559298 \tabularnewline
101 & 0.938047 & 0.123906 & 0.061953 \tabularnewline
102 & 0.960961 & 0.0780781 & 0.039039 \tabularnewline
103 & 0.969399 & 0.0612013 & 0.0306006 \tabularnewline
104 & 0.965833 & 0.0683343 & 0.0341672 \tabularnewline
105 & 0.958875 & 0.0822505 & 0.0411252 \tabularnewline
106 & 0.952955 & 0.0940895 & 0.0470448 \tabularnewline
107 & 0.947428 & 0.105144 & 0.0525721 \tabularnewline
108 & 0.968322 & 0.0633551 & 0.0316776 \tabularnewline
109 & 0.964408 & 0.0711842 & 0.0355921 \tabularnewline
110 & 0.973664 & 0.0526711 & 0.0263356 \tabularnewline
111 & 0.983572 & 0.0328566 & 0.0164283 \tabularnewline
112 & 0.985119 & 0.0297615 & 0.0148808 \tabularnewline
113 & 0.982877 & 0.0342459 & 0.0171229 \tabularnewline
114 & 0.979347 & 0.0413055 & 0.0206528 \tabularnewline
115 & 0.975147 & 0.049706 & 0.024853 \tabularnewline
116 & 0.984976 & 0.0300481 & 0.015024 \tabularnewline
117 & 0.994143 & 0.011714 & 0.005857 \tabularnewline
118 & 0.994613 & 0.0107747 & 0.00538733 \tabularnewline
119 & 0.994734 & 0.0105324 & 0.00526622 \tabularnewline
120 & 0.993358 & 0.0132834 & 0.00664169 \tabularnewline
121 & 0.991623 & 0.0167542 & 0.00837709 \tabularnewline
122 & 0.989876 & 0.0202485 & 0.0101243 \tabularnewline
123 & 0.989321 & 0.0213572 & 0.0106786 \tabularnewline
124 & 0.986874 & 0.0262517 & 0.0131258 \tabularnewline
125 & 0.986678 & 0.0266441 & 0.013322 \tabularnewline
126 & 0.983846 & 0.0323076 & 0.0161538 \tabularnewline
127 & 0.991998 & 0.0160043 & 0.00800215 \tabularnewline
128 & 0.992335 & 0.0153299 & 0.00766496 \tabularnewline
129 & 0.990648 & 0.0187042 & 0.00935212 \tabularnewline
130 & 0.988717 & 0.0225667 & 0.0112834 \tabularnewline
131 & 0.98716 & 0.0256794 & 0.0128397 \tabularnewline
132 & 0.985163 & 0.0296736 & 0.0148368 \tabularnewline
133 & 0.981777 & 0.036445 & 0.0182225 \tabularnewline
134 & 0.97787 & 0.0442606 & 0.0221303 \tabularnewline
135 & 0.973546 & 0.0529076 & 0.0264538 \tabularnewline
136 & 0.971108 & 0.0577836 & 0.0288918 \tabularnewline
137 & 0.965833 & 0.0683348 & 0.0341674 \tabularnewline
138 & 0.959234 & 0.0815324 & 0.0407662 \tabularnewline
139 & 0.952343 & 0.0953144 & 0.0476572 \tabularnewline
140 & 0.958778 & 0.0824448 & 0.0412224 \tabularnewline
141 & 0.965853 & 0.0682948 & 0.0341474 \tabularnewline
142 & 0.961221 & 0.0775574 & 0.0387787 \tabularnewline
143 & 0.955202 & 0.0895959 & 0.0447979 \tabularnewline
144 & 0.946533 & 0.106933 & 0.0534667 \tabularnewline
145 & 0.938921 & 0.122157 & 0.0610787 \tabularnewline
146 & 0.929949 & 0.140102 & 0.0700511 \tabularnewline
147 & 0.939737 & 0.120525 & 0.0602626 \tabularnewline
148 & 0.930076 & 0.139848 & 0.0699242 \tabularnewline
149 & 0.9186 & 0.1628 & 0.0814 \tabularnewline
150 & 0.906261 & 0.187478 & 0.0937392 \tabularnewline
151 & 0.897251 & 0.205497 & 0.102749 \tabularnewline
152 & 0.909891 & 0.180219 & 0.0901094 \tabularnewline
153 & 0.895139 & 0.209723 & 0.104861 \tabularnewline
154 & 0.893471 & 0.213059 & 0.106529 \tabularnewline
155 & 0.884528 & 0.230944 & 0.115472 \tabularnewline
156 & 0.956889 & 0.0862213 & 0.0431106 \tabularnewline
157 & 0.954156 & 0.0916879 & 0.045844 \tabularnewline
158 & 0.948701 & 0.102597 & 0.0512987 \tabularnewline
159 & 0.938808 & 0.122385 & 0.0611924 \tabularnewline
160 & 0.942654 & 0.114693 & 0.0573463 \tabularnewline
161 & 0.931795 & 0.13641 & 0.0682051 \tabularnewline
162 & 0.927759 & 0.144482 & 0.0722409 \tabularnewline
163 & 0.923082 & 0.153837 & 0.0769183 \tabularnewline
164 & 0.917027 & 0.165947 & 0.0829734 \tabularnewline
165 & 0.917915 & 0.164171 & 0.0820853 \tabularnewline
166 & 0.914416 & 0.171169 & 0.0855845 \tabularnewline
167 & 0.90674 & 0.186521 & 0.0932603 \tabularnewline
168 & 0.892962 & 0.214076 & 0.107038 \tabularnewline
169 & 0.966359 & 0.0672825 & 0.0336413 \tabularnewline
170 & 0.959831 & 0.0803374 & 0.0401687 \tabularnewline
171 & 0.957463 & 0.0850738 & 0.0425369 \tabularnewline
172 & 0.94879 & 0.102419 & 0.0512097 \tabularnewline
173 & 0.940629 & 0.118742 & 0.0593709 \tabularnewline
174 & 0.932546 & 0.134907 & 0.0674537 \tabularnewline
175 & 0.933578 & 0.132844 & 0.0664219 \tabularnewline
176 & 0.921353 & 0.157293 & 0.0786467 \tabularnewline
177 & 0.916955 & 0.166089 & 0.0830447 \tabularnewline
178 & 0.91189 & 0.176219 & 0.0881095 \tabularnewline
179 & 0.898392 & 0.203217 & 0.101608 \tabularnewline
180 & 0.882805 & 0.234391 & 0.117195 \tabularnewline
181 & 0.88475 & 0.2305 & 0.11525 \tabularnewline
182 & 0.87077 & 0.25846 & 0.12923 \tabularnewline
183 & 0.868002 & 0.263995 & 0.131998 \tabularnewline
184 & 0.861012 & 0.277976 & 0.138988 \tabularnewline
185 & 0.866539 & 0.266922 & 0.133461 \tabularnewline
186 & 0.866175 & 0.267649 & 0.133825 \tabularnewline
187 & 0.868674 & 0.262652 & 0.131326 \tabularnewline
188 & 0.875015 & 0.24997 & 0.124985 \tabularnewline
189 & 0.859943 & 0.280113 & 0.140057 \tabularnewline
190 & 0.937459 & 0.125082 & 0.062541 \tabularnewline
191 & 0.927131 & 0.145738 & 0.0728688 \tabularnewline
192 & 0.924197 & 0.151606 & 0.0758028 \tabularnewline
193 & 0.939907 & 0.120186 & 0.0600932 \tabularnewline
194 & 0.948462 & 0.103076 & 0.051538 \tabularnewline
195 & 0.938443 & 0.123115 & 0.0615575 \tabularnewline
196 & 0.927051 & 0.145897 & 0.0729487 \tabularnewline
197 & 0.929092 & 0.141816 & 0.0709079 \tabularnewline
198 & 0.947536 & 0.104927 & 0.0524636 \tabularnewline
199 & 0.942419 & 0.115161 & 0.0575807 \tabularnewline
200 & 0.932654 & 0.134692 & 0.0673458 \tabularnewline
201 & 0.922154 & 0.155692 & 0.0778459 \tabularnewline
202 & 0.931379 & 0.137242 & 0.068621 \tabularnewline
203 & 0.917389 & 0.165222 & 0.0826112 \tabularnewline
204 & 0.909169 & 0.181662 & 0.0908309 \tabularnewline
205 & 0.894547 & 0.210905 & 0.105453 \tabularnewline
206 & 0.879718 & 0.240565 & 0.120282 \tabularnewline
207 & 0.860979 & 0.278042 & 0.139021 \tabularnewline
208 & 0.853 & 0.293999 & 0.147 \tabularnewline
209 & 0.831418 & 0.337165 & 0.168582 \tabularnewline
210 & 0.807673 & 0.384655 & 0.192327 \tabularnewline
211 & 0.790601 & 0.418799 & 0.209399 \tabularnewline
212 & 0.776889 & 0.446222 & 0.223111 \tabularnewline
213 & 0.770491 & 0.459018 & 0.229509 \tabularnewline
214 & 0.744572 & 0.510855 & 0.255428 \tabularnewline
215 & 0.729936 & 0.540129 & 0.270064 \tabularnewline
216 & 0.713055 & 0.57389 & 0.286945 \tabularnewline
217 & 0.707386 & 0.585228 & 0.292614 \tabularnewline
218 & 0.669962 & 0.660076 & 0.330038 \tabularnewline
219 & 0.637659 & 0.724681 & 0.362341 \tabularnewline
220 & 0.595771 & 0.808457 & 0.404229 \tabularnewline
221 & 0.552661 & 0.894678 & 0.447339 \tabularnewline
222 & 0.510919 & 0.978162 & 0.489081 \tabularnewline
223 & 0.484425 & 0.968851 & 0.515575 \tabularnewline
224 & 0.502315 & 0.99537 & 0.497685 \tabularnewline
225 & 0.4873 & 0.974601 & 0.5127 \tabularnewline
226 & 0.457761 & 0.915522 & 0.542239 \tabularnewline
227 & 0.453576 & 0.907152 & 0.546424 \tabularnewline
228 & 0.443913 & 0.887827 & 0.556087 \tabularnewline
229 & 0.42025 & 0.840499 & 0.57975 \tabularnewline
230 & 0.3774 & 0.754799 & 0.6226 \tabularnewline
231 & 0.365497 & 0.730994 & 0.634503 \tabularnewline
232 & 0.395958 & 0.791916 & 0.604042 \tabularnewline
233 & 0.383693 & 0.767386 & 0.616307 \tabularnewline
234 & 0.341882 & 0.683764 & 0.658118 \tabularnewline
235 & 0.443269 & 0.886539 & 0.556731 \tabularnewline
236 & 0.71331 & 0.57338 & 0.28669 \tabularnewline
237 & 0.710903 & 0.578194 & 0.289097 \tabularnewline
238 & 0.677372 & 0.645256 & 0.322628 \tabularnewline
239 & 0.681803 & 0.636394 & 0.318197 \tabularnewline
240 & 0.683028 & 0.633945 & 0.316972 \tabularnewline
241 & 0.660676 & 0.678648 & 0.339324 \tabularnewline
242 & 0.647321 & 0.705358 & 0.352679 \tabularnewline
243 & 0.724051 & 0.551898 & 0.275949 \tabularnewline
244 & 0.68178 & 0.636439 & 0.31822 \tabularnewline
245 & 0.639525 & 0.72095 & 0.360475 \tabularnewline
246 & 0.622779 & 0.754442 & 0.377221 \tabularnewline
247 & 0.572838 & 0.854325 & 0.427162 \tabularnewline
248 & 0.530372 & 0.939256 & 0.469628 \tabularnewline
249 & 0.485814 & 0.971627 & 0.514186 \tabularnewline
250 & 0.426395 & 0.85279 & 0.573605 \tabularnewline
251 & 0.367853 & 0.735706 & 0.632147 \tabularnewline
252 & 0.524923 & 0.950153 & 0.475077 \tabularnewline
253 & 0.464646 & 0.929292 & 0.535354 \tabularnewline
254 & 0.436168 & 0.872335 & 0.563832 \tabularnewline
255 & 0.409951 & 0.819901 & 0.590049 \tabularnewline
256 & 0.442044 & 0.884087 & 0.557956 \tabularnewline
257 & 0.406956 & 0.813912 & 0.593044 \tabularnewline
258 & 0.387582 & 0.775164 & 0.612418 \tabularnewline
259 & 0.331143 & 0.662285 & 0.668857 \tabularnewline
260 & 0.26481 & 0.52962 & 0.73519 \tabularnewline
261 & 0.256297 & 0.512593 & 0.743703 \tabularnewline
262 & 0.197099 & 0.394198 & 0.802901 \tabularnewline
263 & 0.28162 & 0.563241 & 0.71838 \tabularnewline
264 & 0.390098 & 0.780197 & 0.609902 \tabularnewline
265 & 0.35005 & 0.7001 & 0.64995 \tabularnewline
266 & 0.451789 & 0.903578 & 0.548211 \tabularnewline
267 & 0.818686 & 0.362629 & 0.181314 \tabularnewline
268 & 0.979553 & 0.0408933 & 0.0204466 \tabularnewline
269 & 0.95497 & 0.0900604 & 0.0450302 \tabularnewline
270 & 0.879931 & 0.240137 & 0.120069 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.885703[/C][C]0.228594[/C][C]0.114297[/C][/ROW]
[ROW][C]17[/C][C]0.796581[/C][C]0.406837[/C][C]0.203419[/C][/ROW]
[ROW][C]18[/C][C]0.693512[/C][C]0.612977[/C][C]0.306488[/C][/ROW]
[ROW][C]19[/C][C]0.648745[/C][C]0.70251[/C][C]0.351255[/C][/ROW]
[ROW][C]20[/C][C]0.665605[/C][C]0.668789[/C][C]0.334395[/C][/ROW]
[ROW][C]21[/C][C]0.57983[/C][C]0.840339[/C][C]0.42017[/C][/ROW]
[ROW][C]22[/C][C]0.548611[/C][C]0.902779[/C][C]0.451389[/C][/ROW]
[ROW][C]23[/C][C]0.467502[/C][C]0.935004[/C][C]0.532498[/C][/ROW]
[ROW][C]24[/C][C]0.384916[/C][C]0.769832[/C][C]0.615084[/C][/ROW]
[ROW][C]25[/C][C]0.424716[/C][C]0.849433[/C][C]0.575284[/C][/ROW]
[ROW][C]26[/C][C]0.393278[/C][C]0.786556[/C][C]0.606722[/C][/ROW]
[ROW][C]27[/C][C]0.331269[/C][C]0.662537[/C][C]0.668731[/C][/ROW]
[ROW][C]28[/C][C]0.264415[/C][C]0.528831[/C][C]0.735585[/C][/ROW]
[ROW][C]29[/C][C]0.302099[/C][C]0.604199[/C][C]0.697901[/C][/ROW]
[ROW][C]30[/C][C]0.257201[/C][C]0.514402[/C][C]0.742799[/C][/ROW]
[ROW][C]31[/C][C]0.20206[/C][C]0.40412[/C][C]0.79794[/C][/ROW]
[ROW][C]32[/C][C]0.211638[/C][C]0.423277[/C][C]0.788362[/C][/ROW]
[ROW][C]33[/C][C]0.167744[/C][C]0.335488[/C][C]0.832256[/C][/ROW]
[ROW][C]34[/C][C]0.135459[/C][C]0.270918[/C][C]0.864541[/C][/ROW]
[ROW][C]35[/C][C]0.153451[/C][C]0.306901[/C][C]0.846549[/C][/ROW]
[ROW][C]36[/C][C]0.627767[/C][C]0.744467[/C][C]0.372233[/C][/ROW]
[ROW][C]37[/C][C]0.572485[/C][C]0.855029[/C][C]0.427515[/C][/ROW]
[ROW][C]38[/C][C]0.596194[/C][C]0.807611[/C][C]0.403806[/C][/ROW]
[ROW][C]39[/C][C]0.54403[/C][C]0.911941[/C][C]0.45597[/C][/ROW]
[ROW][C]40[/C][C]0.498111[/C][C]0.996221[/C][C]0.501889[/C][/ROW]
[ROW][C]41[/C][C]0.494825[/C][C]0.989651[/C][C]0.505175[/C][/ROW]
[ROW][C]42[/C][C]0.445024[/C][C]0.890047[/C][C]0.554976[/C][/ROW]
[ROW][C]43[/C][C]0.547317[/C][C]0.905365[/C][C]0.452683[/C][/ROW]
[ROW][C]44[/C][C]0.531075[/C][C]0.93785[/C][C]0.468925[/C][/ROW]
[ROW][C]45[/C][C]0.55267[/C][C]0.89466[/C][C]0.44733[/C][/ROW]
[ROW][C]46[/C][C]0.522155[/C][C]0.95569[/C][C]0.477845[/C][/ROW]
[ROW][C]47[/C][C]0.490126[/C][C]0.980252[/C][C]0.509874[/C][/ROW]
[ROW][C]48[/C][C]0.442693[/C][C]0.885386[/C][C]0.557307[/C][/ROW]
[ROW][C]49[/C][C]0.468866[/C][C]0.937732[/C][C]0.531134[/C][/ROW]
[ROW][C]50[/C][C]0.47822[/C][C]0.956441[/C][C]0.52178[/C][/ROW]
[ROW][C]51[/C][C]0.588172[/C][C]0.823656[/C][C]0.411828[/C][/ROW]
[ROW][C]52[/C][C]0.619539[/C][C]0.760922[/C][C]0.380461[/C][/ROW]
[ROW][C]53[/C][C]0.577411[/C][C]0.845178[/C][C]0.422589[/C][/ROW]
[ROW][C]54[/C][C]0.652515[/C][C]0.694971[/C][C]0.347485[/C][/ROW]
[ROW][C]55[/C][C]0.6287[/C][C]0.742601[/C][C]0.3713[/C][/ROW]
[ROW][C]56[/C][C]0.638136[/C][C]0.723728[/C][C]0.361864[/C][/ROW]
[ROW][C]57[/C][C]0.718539[/C][C]0.562921[/C][C]0.281461[/C][/ROW]
[ROW][C]58[/C][C]0.679391[/C][C]0.641218[/C][C]0.320609[/C][/ROW]
[ROW][C]59[/C][C]0.85773[/C][C]0.28454[/C][C]0.14227[/C][/ROW]
[ROW][C]60[/C][C]0.904526[/C][C]0.190948[/C][C]0.0954741[/C][/ROW]
[ROW][C]61[/C][C]0.884298[/C][C]0.231404[/C][C]0.115702[/C][/ROW]
[ROW][C]62[/C][C]0.914331[/C][C]0.171339[/C][C]0.0856695[/C][/ROW]
[ROW][C]63[/C][C]0.902962[/C][C]0.194075[/C][C]0.0970377[/C][/ROW]
[ROW][C]64[/C][C]0.889593[/C][C]0.220815[/C][C]0.110407[/C][/ROW]
[ROW][C]65[/C][C]0.927622[/C][C]0.144756[/C][C]0.0723779[/C][/ROW]
[ROW][C]66[/C][C]0.952628[/C][C]0.0947444[/C][C]0.0473722[/C][/ROW]
[ROW][C]67[/C][C]0.951812[/C][C]0.0963759[/C][C]0.048188[/C][/ROW]
[ROW][C]68[/C][C]0.942668[/C][C]0.114664[/C][C]0.0573318[/C][/ROW]
[ROW][C]69[/C][C]0.930984[/C][C]0.138032[/C][C]0.0690161[/C][/ROW]
[ROW][C]70[/C][C]0.923559[/C][C]0.152881[/C][C]0.0764407[/C][/ROW]
[ROW][C]71[/C][C]0.927663[/C][C]0.144673[/C][C]0.0723365[/C][/ROW]
[ROW][C]72[/C][C]0.917747[/C][C]0.164507[/C][C]0.0822533[/C][/ROW]
[ROW][C]73[/C][C]0.904003[/C][C]0.191994[/C][C]0.095997[/C][/ROW]
[ROW][C]74[/C][C]0.88779[/C][C]0.22442[/C][C]0.11221[/C][/ROW]
[ROW][C]75[/C][C]0.871144[/C][C]0.257711[/C][C]0.128856[/C][/ROW]
[ROW][C]76[/C][C]0.891347[/C][C]0.217306[/C][C]0.108653[/C][/ROW]
[ROW][C]77[/C][C]0.920325[/C][C]0.159351[/C][C]0.0796755[/C][/ROW]
[ROW][C]78[/C][C]0.91997[/C][C]0.160061[/C][C]0.0800305[/C][/ROW]
[ROW][C]79[/C][C]0.922926[/C][C]0.154148[/C][C]0.0770742[/C][/ROW]
[ROW][C]80[/C][C]0.913328[/C][C]0.173344[/C][C]0.0866722[/C][/ROW]
[ROW][C]81[/C][C]0.917555[/C][C]0.16489[/C][C]0.0824449[/C][/ROW]
[ROW][C]82[/C][C]0.905139[/C][C]0.189722[/C][C]0.0948608[/C][/ROW]
[ROW][C]83[/C][C]0.90389[/C][C]0.192221[/C][C]0.0961103[/C][/ROW]
[ROW][C]84[/C][C]0.888947[/C][C]0.222105[/C][C]0.111053[/C][/ROW]
[ROW][C]85[/C][C]0.902908[/C][C]0.194185[/C][C]0.0970924[/C][/ROW]
[ROW][C]86[/C][C]0.886313[/C][C]0.227375[/C][C]0.113687[/C][/ROW]
[ROW][C]87[/C][C]0.929503[/C][C]0.140995[/C][C]0.0704974[/C][/ROW]
[ROW][C]88[/C][C]0.925638[/C][C]0.148724[/C][C]0.0743619[/C][/ROW]
[ROW][C]89[/C][C]0.915242[/C][C]0.169516[/C][C]0.0847582[/C][/ROW]
[ROW][C]90[/C][C]0.904631[/C][C]0.190737[/C][C]0.0953687[/C][/ROW]
[ROW][C]91[/C][C]0.890785[/C][C]0.218429[/C][C]0.109215[/C][/ROW]
[ROW][C]92[/C][C]0.891481[/C][C]0.217039[/C][C]0.108519[/C][/ROW]
[ROW][C]93[/C][C]0.899915[/C][C]0.20017[/C][C]0.100085[/C][/ROW]
[ROW][C]94[/C][C]0.919646[/C][C]0.160708[/C][C]0.0803538[/C][/ROW]
[ROW][C]95[/C][C]0.961147[/C][C]0.0777052[/C][C]0.0388526[/C][/ROW]
[ROW][C]96[/C][C]0.952876[/C][C]0.0942475[/C][C]0.0471237[/C][/ROW]
[ROW][C]97[/C][C]0.945539[/C][C]0.108923[/C][C]0.0544614[/C][/ROW]
[ROW][C]98[/C][C]0.947885[/C][C]0.10423[/C][C]0.0521152[/C][/ROW]
[ROW][C]99[/C][C]0.94161[/C][C]0.116781[/C][C]0.0583904[/C][/ROW]
[ROW][C]100[/C][C]0.94407[/C][C]0.11186[/C][C]0.0559298[/C][/ROW]
[ROW][C]101[/C][C]0.938047[/C][C]0.123906[/C][C]0.061953[/C][/ROW]
[ROW][C]102[/C][C]0.960961[/C][C]0.0780781[/C][C]0.039039[/C][/ROW]
[ROW][C]103[/C][C]0.969399[/C][C]0.0612013[/C][C]0.0306006[/C][/ROW]
[ROW][C]104[/C][C]0.965833[/C][C]0.0683343[/C][C]0.0341672[/C][/ROW]
[ROW][C]105[/C][C]0.958875[/C][C]0.0822505[/C][C]0.0411252[/C][/ROW]
[ROW][C]106[/C][C]0.952955[/C][C]0.0940895[/C][C]0.0470448[/C][/ROW]
[ROW][C]107[/C][C]0.947428[/C][C]0.105144[/C][C]0.0525721[/C][/ROW]
[ROW][C]108[/C][C]0.968322[/C][C]0.0633551[/C][C]0.0316776[/C][/ROW]
[ROW][C]109[/C][C]0.964408[/C][C]0.0711842[/C][C]0.0355921[/C][/ROW]
[ROW][C]110[/C][C]0.973664[/C][C]0.0526711[/C][C]0.0263356[/C][/ROW]
[ROW][C]111[/C][C]0.983572[/C][C]0.0328566[/C][C]0.0164283[/C][/ROW]
[ROW][C]112[/C][C]0.985119[/C][C]0.0297615[/C][C]0.0148808[/C][/ROW]
[ROW][C]113[/C][C]0.982877[/C][C]0.0342459[/C][C]0.0171229[/C][/ROW]
[ROW][C]114[/C][C]0.979347[/C][C]0.0413055[/C][C]0.0206528[/C][/ROW]
[ROW][C]115[/C][C]0.975147[/C][C]0.049706[/C][C]0.024853[/C][/ROW]
[ROW][C]116[/C][C]0.984976[/C][C]0.0300481[/C][C]0.015024[/C][/ROW]
[ROW][C]117[/C][C]0.994143[/C][C]0.011714[/C][C]0.005857[/C][/ROW]
[ROW][C]118[/C][C]0.994613[/C][C]0.0107747[/C][C]0.00538733[/C][/ROW]
[ROW][C]119[/C][C]0.994734[/C][C]0.0105324[/C][C]0.00526622[/C][/ROW]
[ROW][C]120[/C][C]0.993358[/C][C]0.0132834[/C][C]0.00664169[/C][/ROW]
[ROW][C]121[/C][C]0.991623[/C][C]0.0167542[/C][C]0.00837709[/C][/ROW]
[ROW][C]122[/C][C]0.989876[/C][C]0.0202485[/C][C]0.0101243[/C][/ROW]
[ROW][C]123[/C][C]0.989321[/C][C]0.0213572[/C][C]0.0106786[/C][/ROW]
[ROW][C]124[/C][C]0.986874[/C][C]0.0262517[/C][C]0.0131258[/C][/ROW]
[ROW][C]125[/C][C]0.986678[/C][C]0.0266441[/C][C]0.013322[/C][/ROW]
[ROW][C]126[/C][C]0.983846[/C][C]0.0323076[/C][C]0.0161538[/C][/ROW]
[ROW][C]127[/C][C]0.991998[/C][C]0.0160043[/C][C]0.00800215[/C][/ROW]
[ROW][C]128[/C][C]0.992335[/C][C]0.0153299[/C][C]0.00766496[/C][/ROW]
[ROW][C]129[/C][C]0.990648[/C][C]0.0187042[/C][C]0.00935212[/C][/ROW]
[ROW][C]130[/C][C]0.988717[/C][C]0.0225667[/C][C]0.0112834[/C][/ROW]
[ROW][C]131[/C][C]0.98716[/C][C]0.0256794[/C][C]0.0128397[/C][/ROW]
[ROW][C]132[/C][C]0.985163[/C][C]0.0296736[/C][C]0.0148368[/C][/ROW]
[ROW][C]133[/C][C]0.981777[/C][C]0.036445[/C][C]0.0182225[/C][/ROW]
[ROW][C]134[/C][C]0.97787[/C][C]0.0442606[/C][C]0.0221303[/C][/ROW]
[ROW][C]135[/C][C]0.973546[/C][C]0.0529076[/C][C]0.0264538[/C][/ROW]
[ROW][C]136[/C][C]0.971108[/C][C]0.0577836[/C][C]0.0288918[/C][/ROW]
[ROW][C]137[/C][C]0.965833[/C][C]0.0683348[/C][C]0.0341674[/C][/ROW]
[ROW][C]138[/C][C]0.959234[/C][C]0.0815324[/C][C]0.0407662[/C][/ROW]
[ROW][C]139[/C][C]0.952343[/C][C]0.0953144[/C][C]0.0476572[/C][/ROW]
[ROW][C]140[/C][C]0.958778[/C][C]0.0824448[/C][C]0.0412224[/C][/ROW]
[ROW][C]141[/C][C]0.965853[/C][C]0.0682948[/C][C]0.0341474[/C][/ROW]
[ROW][C]142[/C][C]0.961221[/C][C]0.0775574[/C][C]0.0387787[/C][/ROW]
[ROW][C]143[/C][C]0.955202[/C][C]0.0895959[/C][C]0.0447979[/C][/ROW]
[ROW][C]144[/C][C]0.946533[/C][C]0.106933[/C][C]0.0534667[/C][/ROW]
[ROW][C]145[/C][C]0.938921[/C][C]0.122157[/C][C]0.0610787[/C][/ROW]
[ROW][C]146[/C][C]0.929949[/C][C]0.140102[/C][C]0.0700511[/C][/ROW]
[ROW][C]147[/C][C]0.939737[/C][C]0.120525[/C][C]0.0602626[/C][/ROW]
[ROW][C]148[/C][C]0.930076[/C][C]0.139848[/C][C]0.0699242[/C][/ROW]
[ROW][C]149[/C][C]0.9186[/C][C]0.1628[/C][C]0.0814[/C][/ROW]
[ROW][C]150[/C][C]0.906261[/C][C]0.187478[/C][C]0.0937392[/C][/ROW]
[ROW][C]151[/C][C]0.897251[/C][C]0.205497[/C][C]0.102749[/C][/ROW]
[ROW][C]152[/C][C]0.909891[/C][C]0.180219[/C][C]0.0901094[/C][/ROW]
[ROW][C]153[/C][C]0.895139[/C][C]0.209723[/C][C]0.104861[/C][/ROW]
[ROW][C]154[/C][C]0.893471[/C][C]0.213059[/C][C]0.106529[/C][/ROW]
[ROW][C]155[/C][C]0.884528[/C][C]0.230944[/C][C]0.115472[/C][/ROW]
[ROW][C]156[/C][C]0.956889[/C][C]0.0862213[/C][C]0.0431106[/C][/ROW]
[ROW][C]157[/C][C]0.954156[/C][C]0.0916879[/C][C]0.045844[/C][/ROW]
[ROW][C]158[/C][C]0.948701[/C][C]0.102597[/C][C]0.0512987[/C][/ROW]
[ROW][C]159[/C][C]0.938808[/C][C]0.122385[/C][C]0.0611924[/C][/ROW]
[ROW][C]160[/C][C]0.942654[/C][C]0.114693[/C][C]0.0573463[/C][/ROW]
[ROW][C]161[/C][C]0.931795[/C][C]0.13641[/C][C]0.0682051[/C][/ROW]
[ROW][C]162[/C][C]0.927759[/C][C]0.144482[/C][C]0.0722409[/C][/ROW]
[ROW][C]163[/C][C]0.923082[/C][C]0.153837[/C][C]0.0769183[/C][/ROW]
[ROW][C]164[/C][C]0.917027[/C][C]0.165947[/C][C]0.0829734[/C][/ROW]
[ROW][C]165[/C][C]0.917915[/C][C]0.164171[/C][C]0.0820853[/C][/ROW]
[ROW][C]166[/C][C]0.914416[/C][C]0.171169[/C][C]0.0855845[/C][/ROW]
[ROW][C]167[/C][C]0.90674[/C][C]0.186521[/C][C]0.0932603[/C][/ROW]
[ROW][C]168[/C][C]0.892962[/C][C]0.214076[/C][C]0.107038[/C][/ROW]
[ROW][C]169[/C][C]0.966359[/C][C]0.0672825[/C][C]0.0336413[/C][/ROW]
[ROW][C]170[/C][C]0.959831[/C][C]0.0803374[/C][C]0.0401687[/C][/ROW]
[ROW][C]171[/C][C]0.957463[/C][C]0.0850738[/C][C]0.0425369[/C][/ROW]
[ROW][C]172[/C][C]0.94879[/C][C]0.102419[/C][C]0.0512097[/C][/ROW]
[ROW][C]173[/C][C]0.940629[/C][C]0.118742[/C][C]0.0593709[/C][/ROW]
[ROW][C]174[/C][C]0.932546[/C][C]0.134907[/C][C]0.0674537[/C][/ROW]
[ROW][C]175[/C][C]0.933578[/C][C]0.132844[/C][C]0.0664219[/C][/ROW]
[ROW][C]176[/C][C]0.921353[/C][C]0.157293[/C][C]0.0786467[/C][/ROW]
[ROW][C]177[/C][C]0.916955[/C][C]0.166089[/C][C]0.0830447[/C][/ROW]
[ROW][C]178[/C][C]0.91189[/C][C]0.176219[/C][C]0.0881095[/C][/ROW]
[ROW][C]179[/C][C]0.898392[/C][C]0.203217[/C][C]0.101608[/C][/ROW]
[ROW][C]180[/C][C]0.882805[/C][C]0.234391[/C][C]0.117195[/C][/ROW]
[ROW][C]181[/C][C]0.88475[/C][C]0.2305[/C][C]0.11525[/C][/ROW]
[ROW][C]182[/C][C]0.87077[/C][C]0.25846[/C][C]0.12923[/C][/ROW]
[ROW][C]183[/C][C]0.868002[/C][C]0.263995[/C][C]0.131998[/C][/ROW]
[ROW][C]184[/C][C]0.861012[/C][C]0.277976[/C][C]0.138988[/C][/ROW]
[ROW][C]185[/C][C]0.866539[/C][C]0.266922[/C][C]0.133461[/C][/ROW]
[ROW][C]186[/C][C]0.866175[/C][C]0.267649[/C][C]0.133825[/C][/ROW]
[ROW][C]187[/C][C]0.868674[/C][C]0.262652[/C][C]0.131326[/C][/ROW]
[ROW][C]188[/C][C]0.875015[/C][C]0.24997[/C][C]0.124985[/C][/ROW]
[ROW][C]189[/C][C]0.859943[/C][C]0.280113[/C][C]0.140057[/C][/ROW]
[ROW][C]190[/C][C]0.937459[/C][C]0.125082[/C][C]0.062541[/C][/ROW]
[ROW][C]191[/C][C]0.927131[/C][C]0.145738[/C][C]0.0728688[/C][/ROW]
[ROW][C]192[/C][C]0.924197[/C][C]0.151606[/C][C]0.0758028[/C][/ROW]
[ROW][C]193[/C][C]0.939907[/C][C]0.120186[/C][C]0.0600932[/C][/ROW]
[ROW][C]194[/C][C]0.948462[/C][C]0.103076[/C][C]0.051538[/C][/ROW]
[ROW][C]195[/C][C]0.938443[/C][C]0.123115[/C][C]0.0615575[/C][/ROW]
[ROW][C]196[/C][C]0.927051[/C][C]0.145897[/C][C]0.0729487[/C][/ROW]
[ROW][C]197[/C][C]0.929092[/C][C]0.141816[/C][C]0.0709079[/C][/ROW]
[ROW][C]198[/C][C]0.947536[/C][C]0.104927[/C][C]0.0524636[/C][/ROW]
[ROW][C]199[/C][C]0.942419[/C][C]0.115161[/C][C]0.0575807[/C][/ROW]
[ROW][C]200[/C][C]0.932654[/C][C]0.134692[/C][C]0.0673458[/C][/ROW]
[ROW][C]201[/C][C]0.922154[/C][C]0.155692[/C][C]0.0778459[/C][/ROW]
[ROW][C]202[/C][C]0.931379[/C][C]0.137242[/C][C]0.068621[/C][/ROW]
[ROW][C]203[/C][C]0.917389[/C][C]0.165222[/C][C]0.0826112[/C][/ROW]
[ROW][C]204[/C][C]0.909169[/C][C]0.181662[/C][C]0.0908309[/C][/ROW]
[ROW][C]205[/C][C]0.894547[/C][C]0.210905[/C][C]0.105453[/C][/ROW]
[ROW][C]206[/C][C]0.879718[/C][C]0.240565[/C][C]0.120282[/C][/ROW]
[ROW][C]207[/C][C]0.860979[/C][C]0.278042[/C][C]0.139021[/C][/ROW]
[ROW][C]208[/C][C]0.853[/C][C]0.293999[/C][C]0.147[/C][/ROW]
[ROW][C]209[/C][C]0.831418[/C][C]0.337165[/C][C]0.168582[/C][/ROW]
[ROW][C]210[/C][C]0.807673[/C][C]0.384655[/C][C]0.192327[/C][/ROW]
[ROW][C]211[/C][C]0.790601[/C][C]0.418799[/C][C]0.209399[/C][/ROW]
[ROW][C]212[/C][C]0.776889[/C][C]0.446222[/C][C]0.223111[/C][/ROW]
[ROW][C]213[/C][C]0.770491[/C][C]0.459018[/C][C]0.229509[/C][/ROW]
[ROW][C]214[/C][C]0.744572[/C][C]0.510855[/C][C]0.255428[/C][/ROW]
[ROW][C]215[/C][C]0.729936[/C][C]0.540129[/C][C]0.270064[/C][/ROW]
[ROW][C]216[/C][C]0.713055[/C][C]0.57389[/C][C]0.286945[/C][/ROW]
[ROW][C]217[/C][C]0.707386[/C][C]0.585228[/C][C]0.292614[/C][/ROW]
[ROW][C]218[/C][C]0.669962[/C][C]0.660076[/C][C]0.330038[/C][/ROW]
[ROW][C]219[/C][C]0.637659[/C][C]0.724681[/C][C]0.362341[/C][/ROW]
[ROW][C]220[/C][C]0.595771[/C][C]0.808457[/C][C]0.404229[/C][/ROW]
[ROW][C]221[/C][C]0.552661[/C][C]0.894678[/C][C]0.447339[/C][/ROW]
[ROW][C]222[/C][C]0.510919[/C][C]0.978162[/C][C]0.489081[/C][/ROW]
[ROW][C]223[/C][C]0.484425[/C][C]0.968851[/C][C]0.515575[/C][/ROW]
[ROW][C]224[/C][C]0.502315[/C][C]0.99537[/C][C]0.497685[/C][/ROW]
[ROW][C]225[/C][C]0.4873[/C][C]0.974601[/C][C]0.5127[/C][/ROW]
[ROW][C]226[/C][C]0.457761[/C][C]0.915522[/C][C]0.542239[/C][/ROW]
[ROW][C]227[/C][C]0.453576[/C][C]0.907152[/C][C]0.546424[/C][/ROW]
[ROW][C]228[/C][C]0.443913[/C][C]0.887827[/C][C]0.556087[/C][/ROW]
[ROW][C]229[/C][C]0.42025[/C][C]0.840499[/C][C]0.57975[/C][/ROW]
[ROW][C]230[/C][C]0.3774[/C][C]0.754799[/C][C]0.6226[/C][/ROW]
[ROW][C]231[/C][C]0.365497[/C][C]0.730994[/C][C]0.634503[/C][/ROW]
[ROW][C]232[/C][C]0.395958[/C][C]0.791916[/C][C]0.604042[/C][/ROW]
[ROW][C]233[/C][C]0.383693[/C][C]0.767386[/C][C]0.616307[/C][/ROW]
[ROW][C]234[/C][C]0.341882[/C][C]0.683764[/C][C]0.658118[/C][/ROW]
[ROW][C]235[/C][C]0.443269[/C][C]0.886539[/C][C]0.556731[/C][/ROW]
[ROW][C]236[/C][C]0.71331[/C][C]0.57338[/C][C]0.28669[/C][/ROW]
[ROW][C]237[/C][C]0.710903[/C][C]0.578194[/C][C]0.289097[/C][/ROW]
[ROW][C]238[/C][C]0.677372[/C][C]0.645256[/C][C]0.322628[/C][/ROW]
[ROW][C]239[/C][C]0.681803[/C][C]0.636394[/C][C]0.318197[/C][/ROW]
[ROW][C]240[/C][C]0.683028[/C][C]0.633945[/C][C]0.316972[/C][/ROW]
[ROW][C]241[/C][C]0.660676[/C][C]0.678648[/C][C]0.339324[/C][/ROW]
[ROW][C]242[/C][C]0.647321[/C][C]0.705358[/C][C]0.352679[/C][/ROW]
[ROW][C]243[/C][C]0.724051[/C][C]0.551898[/C][C]0.275949[/C][/ROW]
[ROW][C]244[/C][C]0.68178[/C][C]0.636439[/C][C]0.31822[/C][/ROW]
[ROW][C]245[/C][C]0.639525[/C][C]0.72095[/C][C]0.360475[/C][/ROW]
[ROW][C]246[/C][C]0.622779[/C][C]0.754442[/C][C]0.377221[/C][/ROW]
[ROW][C]247[/C][C]0.572838[/C][C]0.854325[/C][C]0.427162[/C][/ROW]
[ROW][C]248[/C][C]0.530372[/C][C]0.939256[/C][C]0.469628[/C][/ROW]
[ROW][C]249[/C][C]0.485814[/C][C]0.971627[/C][C]0.514186[/C][/ROW]
[ROW][C]250[/C][C]0.426395[/C][C]0.85279[/C][C]0.573605[/C][/ROW]
[ROW][C]251[/C][C]0.367853[/C][C]0.735706[/C][C]0.632147[/C][/ROW]
[ROW][C]252[/C][C]0.524923[/C][C]0.950153[/C][C]0.475077[/C][/ROW]
[ROW][C]253[/C][C]0.464646[/C][C]0.929292[/C][C]0.535354[/C][/ROW]
[ROW][C]254[/C][C]0.436168[/C][C]0.872335[/C][C]0.563832[/C][/ROW]
[ROW][C]255[/C][C]0.409951[/C][C]0.819901[/C][C]0.590049[/C][/ROW]
[ROW][C]256[/C][C]0.442044[/C][C]0.884087[/C][C]0.557956[/C][/ROW]
[ROW][C]257[/C][C]0.406956[/C][C]0.813912[/C][C]0.593044[/C][/ROW]
[ROW][C]258[/C][C]0.387582[/C][C]0.775164[/C][C]0.612418[/C][/ROW]
[ROW][C]259[/C][C]0.331143[/C][C]0.662285[/C][C]0.668857[/C][/ROW]
[ROW][C]260[/C][C]0.26481[/C][C]0.52962[/C][C]0.73519[/C][/ROW]
[ROW][C]261[/C][C]0.256297[/C][C]0.512593[/C][C]0.743703[/C][/ROW]
[ROW][C]262[/C][C]0.197099[/C][C]0.394198[/C][C]0.802901[/C][/ROW]
[ROW][C]263[/C][C]0.28162[/C][C]0.563241[/C][C]0.71838[/C][/ROW]
[ROW][C]264[/C][C]0.390098[/C][C]0.780197[/C][C]0.609902[/C][/ROW]
[ROW][C]265[/C][C]0.35005[/C][C]0.7001[/C][C]0.64995[/C][/ROW]
[ROW][C]266[/C][C]0.451789[/C][C]0.903578[/C][C]0.548211[/C][/ROW]
[ROW][C]267[/C][C]0.818686[/C][C]0.362629[/C][C]0.181314[/C][/ROW]
[ROW][C]268[/C][C]0.979553[/C][C]0.0408933[/C][C]0.0204466[/C][/ROW]
[ROW][C]269[/C][C]0.95497[/C][C]0.0900604[/C][C]0.0450302[/C][/ROW]
[ROW][C]270[/C][C]0.879931[/C][C]0.240137[/C][C]0.120069[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.8857030.2285940.114297
170.7965810.4068370.203419
180.6935120.6129770.306488
190.6487450.702510.351255
200.6656050.6687890.334395
210.579830.8403390.42017
220.5486110.9027790.451389
230.4675020.9350040.532498
240.3849160.7698320.615084
250.4247160.8494330.575284
260.3932780.7865560.606722
270.3312690.6625370.668731
280.2644150.5288310.735585
290.3020990.6041990.697901
300.2572010.5144020.742799
310.202060.404120.79794
320.2116380.4232770.788362
330.1677440.3354880.832256
340.1354590.2709180.864541
350.1534510.3069010.846549
360.6277670.7444670.372233
370.5724850.8550290.427515
380.5961940.8076110.403806
390.544030.9119410.45597
400.4981110.9962210.501889
410.4948250.9896510.505175
420.4450240.8900470.554976
430.5473170.9053650.452683
440.5310750.937850.468925
450.552670.894660.44733
460.5221550.955690.477845
470.4901260.9802520.509874
480.4426930.8853860.557307
490.4688660.9377320.531134
500.478220.9564410.52178
510.5881720.8236560.411828
520.6195390.7609220.380461
530.5774110.8451780.422589
540.6525150.6949710.347485
550.62870.7426010.3713
560.6381360.7237280.361864
570.7185390.5629210.281461
580.6793910.6412180.320609
590.857730.284540.14227
600.9045260.1909480.0954741
610.8842980.2314040.115702
620.9143310.1713390.0856695
630.9029620.1940750.0970377
640.8895930.2208150.110407
650.9276220.1447560.0723779
660.9526280.09474440.0473722
670.9518120.09637590.048188
680.9426680.1146640.0573318
690.9309840.1380320.0690161
700.9235590.1528810.0764407
710.9276630.1446730.0723365
720.9177470.1645070.0822533
730.9040030.1919940.095997
740.887790.224420.11221
750.8711440.2577110.128856
760.8913470.2173060.108653
770.9203250.1593510.0796755
780.919970.1600610.0800305
790.9229260.1541480.0770742
800.9133280.1733440.0866722
810.9175550.164890.0824449
820.9051390.1897220.0948608
830.903890.1922210.0961103
840.8889470.2221050.111053
850.9029080.1941850.0970924
860.8863130.2273750.113687
870.9295030.1409950.0704974
880.9256380.1487240.0743619
890.9152420.1695160.0847582
900.9046310.1907370.0953687
910.8907850.2184290.109215
920.8914810.2170390.108519
930.8999150.200170.100085
940.9196460.1607080.0803538
950.9611470.07770520.0388526
960.9528760.09424750.0471237
970.9455390.1089230.0544614
980.9478850.104230.0521152
990.941610.1167810.0583904
1000.944070.111860.0559298
1010.9380470.1239060.061953
1020.9609610.07807810.039039
1030.9693990.06120130.0306006
1040.9658330.06833430.0341672
1050.9588750.08225050.0411252
1060.9529550.09408950.0470448
1070.9474280.1051440.0525721
1080.9683220.06335510.0316776
1090.9644080.07118420.0355921
1100.9736640.05267110.0263356
1110.9835720.03285660.0164283
1120.9851190.02976150.0148808
1130.9828770.03424590.0171229
1140.9793470.04130550.0206528
1150.9751470.0497060.024853
1160.9849760.03004810.015024
1170.9941430.0117140.005857
1180.9946130.01077470.00538733
1190.9947340.01053240.00526622
1200.9933580.01328340.00664169
1210.9916230.01675420.00837709
1220.9898760.02024850.0101243
1230.9893210.02135720.0106786
1240.9868740.02625170.0131258
1250.9866780.02664410.013322
1260.9838460.03230760.0161538
1270.9919980.01600430.00800215
1280.9923350.01532990.00766496
1290.9906480.01870420.00935212
1300.9887170.02256670.0112834
1310.987160.02567940.0128397
1320.9851630.02967360.0148368
1330.9817770.0364450.0182225
1340.977870.04426060.0221303
1350.9735460.05290760.0264538
1360.9711080.05778360.0288918
1370.9658330.06833480.0341674
1380.9592340.08153240.0407662
1390.9523430.09531440.0476572
1400.9587780.08244480.0412224
1410.9658530.06829480.0341474
1420.9612210.07755740.0387787
1430.9552020.08959590.0447979
1440.9465330.1069330.0534667
1450.9389210.1221570.0610787
1460.9299490.1401020.0700511
1470.9397370.1205250.0602626
1480.9300760.1398480.0699242
1490.91860.16280.0814
1500.9062610.1874780.0937392
1510.8972510.2054970.102749
1520.9098910.1802190.0901094
1530.8951390.2097230.104861
1540.8934710.2130590.106529
1550.8845280.2309440.115472
1560.9568890.08622130.0431106
1570.9541560.09168790.045844
1580.9487010.1025970.0512987
1590.9388080.1223850.0611924
1600.9426540.1146930.0573463
1610.9317950.136410.0682051
1620.9277590.1444820.0722409
1630.9230820.1538370.0769183
1640.9170270.1659470.0829734
1650.9179150.1641710.0820853
1660.9144160.1711690.0855845
1670.906740.1865210.0932603
1680.8929620.2140760.107038
1690.9663590.06728250.0336413
1700.9598310.08033740.0401687
1710.9574630.08507380.0425369
1720.948790.1024190.0512097
1730.9406290.1187420.0593709
1740.9325460.1349070.0674537
1750.9335780.1328440.0664219
1760.9213530.1572930.0786467
1770.9169550.1660890.0830447
1780.911890.1762190.0881095
1790.8983920.2032170.101608
1800.8828050.2343910.117195
1810.884750.23050.11525
1820.870770.258460.12923
1830.8680020.2639950.131998
1840.8610120.2779760.138988
1850.8665390.2669220.133461
1860.8661750.2676490.133825
1870.8686740.2626520.131326
1880.8750150.249970.124985
1890.8599430.2801130.140057
1900.9374590.1250820.062541
1910.9271310.1457380.0728688
1920.9241970.1516060.0758028
1930.9399070.1201860.0600932
1940.9484620.1030760.051538
1950.9384430.1231150.0615575
1960.9270510.1458970.0729487
1970.9290920.1418160.0709079
1980.9475360.1049270.0524636
1990.9424190.1151610.0575807
2000.9326540.1346920.0673458
2010.9221540.1556920.0778459
2020.9313790.1372420.068621
2030.9173890.1652220.0826112
2040.9091690.1816620.0908309
2050.8945470.2109050.105453
2060.8797180.2405650.120282
2070.8609790.2780420.139021
2080.8530.2939990.147
2090.8314180.3371650.168582
2100.8076730.3846550.192327
2110.7906010.4187990.209399
2120.7768890.4462220.223111
2130.7704910.4590180.229509
2140.7445720.5108550.255428
2150.7299360.5401290.270064
2160.7130550.573890.286945
2170.7073860.5852280.292614
2180.6699620.6600760.330038
2190.6376590.7246810.362341
2200.5957710.8084570.404229
2210.5526610.8946780.447339
2220.5109190.9781620.489081
2230.4844250.9688510.515575
2240.5023150.995370.497685
2250.48730.9746010.5127
2260.4577610.9155220.542239
2270.4535760.9071520.546424
2280.4439130.8878270.556087
2290.420250.8404990.57975
2300.37740.7547990.6226
2310.3654970.7309940.634503
2320.3959580.7919160.604042
2330.3836930.7673860.616307
2340.3418820.6837640.658118
2350.4432690.8865390.556731
2360.713310.573380.28669
2370.7109030.5781940.289097
2380.6773720.6452560.322628
2390.6818030.6363940.318197
2400.6830280.6339450.316972
2410.6606760.6786480.339324
2420.6473210.7053580.352679
2430.7240510.5518980.275949
2440.681780.6364390.31822
2450.6395250.720950.360475
2460.6227790.7544420.377221
2470.5728380.8543250.427162
2480.5303720.9392560.469628
2490.4858140.9716270.514186
2500.4263950.852790.573605
2510.3678530.7357060.632147
2520.5249230.9501530.475077
2530.4646460.9292920.535354
2540.4361680.8723350.563832
2550.4099510.8199010.590049
2560.4420440.8840870.557956
2570.4069560.8139120.593044
2580.3875820.7751640.612418
2590.3311430.6622850.668857
2600.264810.529620.73519
2610.2562970.5125930.743703
2620.1970990.3941980.802901
2630.281620.5632410.71838
2640.3900980.7801970.609902
2650.350050.70010.64995
2660.4517890.9035780.548211
2670.8186860.3626290.181314
2680.9795530.04089330.0204466
2690.954970.09006040.0450302
2700.8799310.2401370.120069







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level250.0980392NOK
10% type I error level520.203922NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 25 & 0.0980392 & NOK \tabularnewline
10% type I error level & 52 & 0.203922 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=264521&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]25[/C][C]0.0980392[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]52[/C][C]0.203922[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=264521&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=264521&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level250.0980392NOK
10% type I error level520.203922NOK



Parameters (Session):
par1 = 13 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 13 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '14'
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}