Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 08 Dec 2008 14:39:23 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/08/t1228772425s814iopv1ff7fkq.htm/, Retrieved Fri, 01 Nov 2024 00:11:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=31078, Retrieved Fri, 01 Nov 2024 00:11:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact201
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Paper - Multiple ...] [2008-12-05 17:06:35] [fce9014b1ad8484790f3b34d6ba09f7b]
-         [Multiple Regression] [Paper - Multiple ...] [2008-12-08 21:39:23] [7957bb37a64ed417bbed8444b0b0ea8a] [Current]
Feedback Forum

Post a new message
Dataseries X:
0	0
9	0
1	0
4	0
6	0
21	0
24	0
23	0
22	0
21	0
20	0
16	0
18	0
18	0
24	0
16	0
15	0
24	0
18	0
15	0
4	0
3	0
6	0
5	0
12	0
12	0
12	0
14	0
12	0
17	0
12	0
20	0
21	0
15	0
22	0
19	0
19	0
26	0
25	0
19	0
20	0
30	0
31	0
35	0
33	0
26	0
25	0
17	0
14	0
8	0
12	0
7	0
4	0
10	0
8	0
16	1
14	1
20	1
9	1
10	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 11.2673684210526 -7.65263157894737D[t] -1.21122807017544M1[t] + 0.687017543859648M2[t] + 0.785263157894733M3[t] -2.11649122807018M4[t] -2.81824561403509M5[t] + 6.08M6[t] + 4.17824561403508M7[t] + 8.80701754385965M8[t] + 5.70526315789473M9[t] + 3.80350877192982M10[t] + 3.10175438596491M11[t] + 0.101754385964912t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  11.2673684210526 -7.65263157894737D[t] -1.21122807017544M1[t] +  0.687017543859648M2[t] +  0.785263157894733M3[t] -2.11649122807018M4[t] -2.81824561403509M5[t] +  6.08M6[t] +  4.17824561403508M7[t] +  8.80701754385965M8[t] +  5.70526315789473M9[t] +  3.80350877192982M10[t] +  3.10175438596491M11[t] +  0.101754385964912t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  11.2673684210526 -7.65263157894737D[t] -1.21122807017544M1[t] +  0.687017543859648M2[t] +  0.785263157894733M3[t] -2.11649122807018M4[t] -2.81824561403509M5[t] +  6.08M6[t] +  4.17824561403508M7[t] +  8.80701754385965M8[t] +  5.70526315789473M9[t] +  3.80350877192982M10[t] +  3.10175438596491M11[t] +  0.101754385964912t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 11.2673684210526 -7.65263157894737D[t] -1.21122807017544M1[t] + 0.687017543859648M2[t] + 0.785263157894733M3[t] -2.11649122807018M4[t] -2.81824561403509M5[t] + 6.08M6[t] + 4.17824561403508M7[t] + 8.80701754385965M8[t] + 5.70526315789473M9[t] + 3.80350877192982M10[t] + 3.10175438596491M11[t] + 0.101754385964912t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)11.26736842105264.2087512.67710.0102580.005129
D-7.652631578947374.503635-1.69920.0960330.048017
M1-1.211228070175445.143066-0.23550.8148610.40743
M20.6870175438596485.1389560.13370.8942320.447116
M30.7852631578947335.1357570.15290.8791450.439572
M4-2.116491228070185.133471-0.41230.682040.34102
M5-2.818245614035095.132099-0.54910.5855650.292782
M66.085.1316421.18480.242180.12109
M74.178245614035085.1320990.81410.419760.20988
M88.807017543859655.0760791.7350.0894360.044718
M95.705263157894735.0728411.12470.2665640.133282
M103.803508771929825.0705270.75010.4570020.228501
M113.101754385964915.0691380.61190.5436230.271812
t0.1017543859649120.0685211.4850.144360.07218

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 11.2673684210526 & 4.208751 & 2.6771 & 0.010258 & 0.005129 \tabularnewline
D & -7.65263157894737 & 4.503635 & -1.6992 & 0.096033 & 0.048017 \tabularnewline
M1 & -1.21122807017544 & 5.143066 & -0.2355 & 0.814861 & 0.40743 \tabularnewline
M2 & 0.687017543859648 & 5.138956 & 0.1337 & 0.894232 & 0.447116 \tabularnewline
M3 & 0.785263157894733 & 5.135757 & 0.1529 & 0.879145 & 0.439572 \tabularnewline
M4 & -2.11649122807018 & 5.133471 & -0.4123 & 0.68204 & 0.34102 \tabularnewline
M5 & -2.81824561403509 & 5.132099 & -0.5491 & 0.585565 & 0.292782 \tabularnewline
M6 & 6.08 & 5.131642 & 1.1848 & 0.24218 & 0.12109 \tabularnewline
M7 & 4.17824561403508 & 5.132099 & 0.8141 & 0.41976 & 0.20988 \tabularnewline
M8 & 8.80701754385965 & 5.076079 & 1.735 & 0.089436 & 0.044718 \tabularnewline
M9 & 5.70526315789473 & 5.072841 & 1.1247 & 0.266564 & 0.133282 \tabularnewline
M10 & 3.80350877192982 & 5.070527 & 0.7501 & 0.457002 & 0.228501 \tabularnewline
M11 & 3.10175438596491 & 5.069138 & 0.6119 & 0.543623 & 0.271812 \tabularnewline
t & 0.101754385964912 & 0.068521 & 1.485 & 0.14436 & 0.07218 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]11.2673684210526[/C][C]4.208751[/C][C]2.6771[/C][C]0.010258[/C][C]0.005129[/C][/ROW]
[ROW][C]D[/C][C]-7.65263157894737[/C][C]4.503635[/C][C]-1.6992[/C][C]0.096033[/C][C]0.048017[/C][/ROW]
[ROW][C]M1[/C][C]-1.21122807017544[/C][C]5.143066[/C][C]-0.2355[/C][C]0.814861[/C][C]0.40743[/C][/ROW]
[ROW][C]M2[/C][C]0.687017543859648[/C][C]5.138956[/C][C]0.1337[/C][C]0.894232[/C][C]0.447116[/C][/ROW]
[ROW][C]M3[/C][C]0.785263157894733[/C][C]5.135757[/C][C]0.1529[/C][C]0.879145[/C][C]0.439572[/C][/ROW]
[ROW][C]M4[/C][C]-2.11649122807018[/C][C]5.133471[/C][C]-0.4123[/C][C]0.68204[/C][C]0.34102[/C][/ROW]
[ROW][C]M5[/C][C]-2.81824561403509[/C][C]5.132099[/C][C]-0.5491[/C][C]0.585565[/C][C]0.292782[/C][/ROW]
[ROW][C]M6[/C][C]6.08[/C][C]5.131642[/C][C]1.1848[/C][C]0.24218[/C][C]0.12109[/C][/ROW]
[ROW][C]M7[/C][C]4.17824561403508[/C][C]5.132099[/C][C]0.8141[/C][C]0.41976[/C][C]0.20988[/C][/ROW]
[ROW][C]M8[/C][C]8.80701754385965[/C][C]5.076079[/C][C]1.735[/C][C]0.089436[/C][C]0.044718[/C][/ROW]
[ROW][C]M9[/C][C]5.70526315789473[/C][C]5.072841[/C][C]1.1247[/C][C]0.266564[/C][C]0.133282[/C][/ROW]
[ROW][C]M10[/C][C]3.80350877192982[/C][C]5.070527[/C][C]0.7501[/C][C]0.457002[/C][C]0.228501[/C][/ROW]
[ROW][C]M11[/C][C]3.10175438596491[/C][C]5.069138[/C][C]0.6119[/C][C]0.543623[/C][C]0.271812[/C][/ROW]
[ROW][C]t[/C][C]0.101754385964912[/C][C]0.068521[/C][C]1.485[/C][C]0.14436[/C][C]0.07218[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)11.26736842105264.2087512.67710.0102580.005129
D-7.652631578947374.503635-1.69920.0960330.048017
M1-1.211228070175445.143066-0.23550.8148610.40743
M20.6870175438596485.1389560.13370.8942320.447116
M30.7852631578947335.1357570.15290.8791450.439572
M4-2.116491228070185.133471-0.41230.682040.34102
M5-2.818245614035095.132099-0.54910.5855650.292782
M66.085.1316421.18480.242180.12109
M74.178245614035085.1320990.81410.419760.20988
M88.807017543859655.0760791.7350.0894360.044718
M95.705263157894735.0728411.12470.2665640.133282
M103.803508771929825.0705270.75010.4570020.228501
M113.101754385964915.0691380.61190.5436230.271812
t0.1017543859649120.0685211.4850.144360.07218







Multiple Linear Regression - Regression Statistics
Multiple R0.475773157308377
R-squared0.226360097215181
Adjusted R-squared0.00772273338468932
F-TEST (value)1.03532211168937
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value0.436074132482178
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation8.01427787673871
Sum Squared Residuals2954.51789473684

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.475773157308377 \tabularnewline
R-squared & 0.226360097215181 \tabularnewline
Adjusted R-squared & 0.00772273338468932 \tabularnewline
F-TEST (value) & 1.03532211168937 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 46 \tabularnewline
p-value & 0.436074132482178 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 8.01427787673871 \tabularnewline
Sum Squared Residuals & 2954.51789473684 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.475773157308377[/C][/ROW]
[ROW][C]R-squared[/C][C]0.226360097215181[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.00772273338468932[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.03532211168937[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]46[/C][/ROW]
[ROW][C]p-value[/C][C]0.436074132482178[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]8.01427787673871[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]2954.51789473684[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.475773157308377
R-squared0.226360097215181
Adjusted R-squared0.00772273338468932
F-TEST (value)1.03532211168937
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value0.436074132482178
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation8.01427787673871
Sum Squared Residuals2954.51789473684







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1010.1578947368421-10.1578947368421
2912.1578947368421-3.1578947368421
3112.3578947368421-11.3578947368421
449.5578947368421-5.55789473684211
568.9578947368421-2.9578947368421
62117.95789473684213.0421052631579
72416.15789473684217.8421052631579
82320.88842105263162.11157894736842
92217.88842105263164.11157894736842
102116.08842105263164.91157894736842
112015.48842105263164.51157894736842
121612.48842105263163.51157894736842
131811.37894736842106.62105263157895
141813.37894736842114.62105263157895
152413.578947368421010.4210526315790
161610.77894736842115.22105263157895
171510.17894736842114.82105263157895
182419.17894736842114.82105263157895
191817.37894736842100.62105263157895
201522.1094736842105-7.10947368421053
21419.1094736842105-15.1094736842105
22317.3094736842105-14.3094736842105
23616.7094736842105-10.7094736842105
24513.7094736842105-8.70947368421052
251212.6-0.599999999999996
261214.6-2.6
271214.8-2.8
2814122
291211.40.6
301720.4-3.4
311218.6-6.6
322023.3305263157895-3.33052631578947
332120.33052631578950.669473684210528
341518.5305263157895-3.53052631578947
352217.93052631578954.06947368421053
361914.93052631578954.06947368421052
371913.82105263157895.17894736842106
382615.821052631578910.1789473684211
392516.02105263157898.97894736842106
401913.22105263157895.77894736842106
412012.62105263157897.37894736842105
423021.62105263157898.37894736842105
433119.821052631579011.1789473684210
443524.551578947368410.4484210526316
453321.551578947368411.4484210526316
462619.75157894736846.24842105263158
472519.15157894736845.84842105263158
481716.15157894736840.848421052631577
491415.0421052631579-1.04210526315789
50817.0421052631579-9.0421052631579
511217.2421052631579-5.2421052631579
52714.4421052631579-7.4421052631579
53413.8421052631579-9.8421052631579
541022.8421052631579-12.8421052631579
55821.0421052631579-13.0421052631579
561618.12-2.12
571415.12-1.12000000000000
582013.326.68
59912.72-3.72
60109.720.279999999999998

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 0 & 10.1578947368421 & -10.1578947368421 \tabularnewline
2 & 9 & 12.1578947368421 & -3.1578947368421 \tabularnewline
3 & 1 & 12.3578947368421 & -11.3578947368421 \tabularnewline
4 & 4 & 9.5578947368421 & -5.55789473684211 \tabularnewline
5 & 6 & 8.9578947368421 & -2.9578947368421 \tabularnewline
6 & 21 & 17.9578947368421 & 3.0421052631579 \tabularnewline
7 & 24 & 16.1578947368421 & 7.8421052631579 \tabularnewline
8 & 23 & 20.8884210526316 & 2.11157894736842 \tabularnewline
9 & 22 & 17.8884210526316 & 4.11157894736842 \tabularnewline
10 & 21 & 16.0884210526316 & 4.91157894736842 \tabularnewline
11 & 20 & 15.4884210526316 & 4.51157894736842 \tabularnewline
12 & 16 & 12.4884210526316 & 3.51157894736842 \tabularnewline
13 & 18 & 11.3789473684210 & 6.62105263157895 \tabularnewline
14 & 18 & 13.3789473684211 & 4.62105263157895 \tabularnewline
15 & 24 & 13.5789473684210 & 10.4210526315790 \tabularnewline
16 & 16 & 10.7789473684211 & 5.22105263157895 \tabularnewline
17 & 15 & 10.1789473684211 & 4.82105263157895 \tabularnewline
18 & 24 & 19.1789473684211 & 4.82105263157895 \tabularnewline
19 & 18 & 17.3789473684210 & 0.62105263157895 \tabularnewline
20 & 15 & 22.1094736842105 & -7.10947368421053 \tabularnewline
21 & 4 & 19.1094736842105 & -15.1094736842105 \tabularnewline
22 & 3 & 17.3094736842105 & -14.3094736842105 \tabularnewline
23 & 6 & 16.7094736842105 & -10.7094736842105 \tabularnewline
24 & 5 & 13.7094736842105 & -8.70947368421052 \tabularnewline
25 & 12 & 12.6 & -0.599999999999996 \tabularnewline
26 & 12 & 14.6 & -2.6 \tabularnewline
27 & 12 & 14.8 & -2.8 \tabularnewline
28 & 14 & 12 & 2 \tabularnewline
29 & 12 & 11.4 & 0.6 \tabularnewline
30 & 17 & 20.4 & -3.4 \tabularnewline
31 & 12 & 18.6 & -6.6 \tabularnewline
32 & 20 & 23.3305263157895 & -3.33052631578947 \tabularnewline
33 & 21 & 20.3305263157895 & 0.669473684210528 \tabularnewline
34 & 15 & 18.5305263157895 & -3.53052631578947 \tabularnewline
35 & 22 & 17.9305263157895 & 4.06947368421053 \tabularnewline
36 & 19 & 14.9305263157895 & 4.06947368421052 \tabularnewline
37 & 19 & 13.8210526315789 & 5.17894736842106 \tabularnewline
38 & 26 & 15.8210526315789 & 10.1789473684211 \tabularnewline
39 & 25 & 16.0210526315789 & 8.97894736842106 \tabularnewline
40 & 19 & 13.2210526315789 & 5.77894736842106 \tabularnewline
41 & 20 & 12.6210526315789 & 7.37894736842105 \tabularnewline
42 & 30 & 21.6210526315789 & 8.37894736842105 \tabularnewline
43 & 31 & 19.8210526315790 & 11.1789473684210 \tabularnewline
44 & 35 & 24.5515789473684 & 10.4484210526316 \tabularnewline
45 & 33 & 21.5515789473684 & 11.4484210526316 \tabularnewline
46 & 26 & 19.7515789473684 & 6.24842105263158 \tabularnewline
47 & 25 & 19.1515789473684 & 5.84842105263158 \tabularnewline
48 & 17 & 16.1515789473684 & 0.848421052631577 \tabularnewline
49 & 14 & 15.0421052631579 & -1.04210526315789 \tabularnewline
50 & 8 & 17.0421052631579 & -9.0421052631579 \tabularnewline
51 & 12 & 17.2421052631579 & -5.2421052631579 \tabularnewline
52 & 7 & 14.4421052631579 & -7.4421052631579 \tabularnewline
53 & 4 & 13.8421052631579 & -9.8421052631579 \tabularnewline
54 & 10 & 22.8421052631579 & -12.8421052631579 \tabularnewline
55 & 8 & 21.0421052631579 & -13.0421052631579 \tabularnewline
56 & 16 & 18.12 & -2.12 \tabularnewline
57 & 14 & 15.12 & -1.12000000000000 \tabularnewline
58 & 20 & 13.32 & 6.68 \tabularnewline
59 & 9 & 12.72 & -3.72 \tabularnewline
60 & 10 & 9.72 & 0.279999999999998 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]0[/C][C]10.1578947368421[/C][C]-10.1578947368421[/C][/ROW]
[ROW][C]2[/C][C]9[/C][C]12.1578947368421[/C][C]-3.1578947368421[/C][/ROW]
[ROW][C]3[/C][C]1[/C][C]12.3578947368421[/C][C]-11.3578947368421[/C][/ROW]
[ROW][C]4[/C][C]4[/C][C]9.5578947368421[/C][C]-5.55789473684211[/C][/ROW]
[ROW][C]5[/C][C]6[/C][C]8.9578947368421[/C][C]-2.9578947368421[/C][/ROW]
[ROW][C]6[/C][C]21[/C][C]17.9578947368421[/C][C]3.0421052631579[/C][/ROW]
[ROW][C]7[/C][C]24[/C][C]16.1578947368421[/C][C]7.8421052631579[/C][/ROW]
[ROW][C]8[/C][C]23[/C][C]20.8884210526316[/C][C]2.11157894736842[/C][/ROW]
[ROW][C]9[/C][C]22[/C][C]17.8884210526316[/C][C]4.11157894736842[/C][/ROW]
[ROW][C]10[/C][C]21[/C][C]16.0884210526316[/C][C]4.91157894736842[/C][/ROW]
[ROW][C]11[/C][C]20[/C][C]15.4884210526316[/C][C]4.51157894736842[/C][/ROW]
[ROW][C]12[/C][C]16[/C][C]12.4884210526316[/C][C]3.51157894736842[/C][/ROW]
[ROW][C]13[/C][C]18[/C][C]11.3789473684210[/C][C]6.62105263157895[/C][/ROW]
[ROW][C]14[/C][C]18[/C][C]13.3789473684211[/C][C]4.62105263157895[/C][/ROW]
[ROW][C]15[/C][C]24[/C][C]13.5789473684210[/C][C]10.4210526315790[/C][/ROW]
[ROW][C]16[/C][C]16[/C][C]10.7789473684211[/C][C]5.22105263157895[/C][/ROW]
[ROW][C]17[/C][C]15[/C][C]10.1789473684211[/C][C]4.82105263157895[/C][/ROW]
[ROW][C]18[/C][C]24[/C][C]19.1789473684211[/C][C]4.82105263157895[/C][/ROW]
[ROW][C]19[/C][C]18[/C][C]17.3789473684210[/C][C]0.62105263157895[/C][/ROW]
[ROW][C]20[/C][C]15[/C][C]22.1094736842105[/C][C]-7.10947368421053[/C][/ROW]
[ROW][C]21[/C][C]4[/C][C]19.1094736842105[/C][C]-15.1094736842105[/C][/ROW]
[ROW][C]22[/C][C]3[/C][C]17.3094736842105[/C][C]-14.3094736842105[/C][/ROW]
[ROW][C]23[/C][C]6[/C][C]16.7094736842105[/C][C]-10.7094736842105[/C][/ROW]
[ROW][C]24[/C][C]5[/C][C]13.7094736842105[/C][C]-8.70947368421052[/C][/ROW]
[ROW][C]25[/C][C]12[/C][C]12.6[/C][C]-0.599999999999996[/C][/ROW]
[ROW][C]26[/C][C]12[/C][C]14.6[/C][C]-2.6[/C][/ROW]
[ROW][C]27[/C][C]12[/C][C]14.8[/C][C]-2.8[/C][/ROW]
[ROW][C]28[/C][C]14[/C][C]12[/C][C]2[/C][/ROW]
[ROW][C]29[/C][C]12[/C][C]11.4[/C][C]0.6[/C][/ROW]
[ROW][C]30[/C][C]17[/C][C]20.4[/C][C]-3.4[/C][/ROW]
[ROW][C]31[/C][C]12[/C][C]18.6[/C][C]-6.6[/C][/ROW]
[ROW][C]32[/C][C]20[/C][C]23.3305263157895[/C][C]-3.33052631578947[/C][/ROW]
[ROW][C]33[/C][C]21[/C][C]20.3305263157895[/C][C]0.669473684210528[/C][/ROW]
[ROW][C]34[/C][C]15[/C][C]18.5305263157895[/C][C]-3.53052631578947[/C][/ROW]
[ROW][C]35[/C][C]22[/C][C]17.9305263157895[/C][C]4.06947368421053[/C][/ROW]
[ROW][C]36[/C][C]19[/C][C]14.9305263157895[/C][C]4.06947368421052[/C][/ROW]
[ROW][C]37[/C][C]19[/C][C]13.8210526315789[/C][C]5.17894736842106[/C][/ROW]
[ROW][C]38[/C][C]26[/C][C]15.8210526315789[/C][C]10.1789473684211[/C][/ROW]
[ROW][C]39[/C][C]25[/C][C]16.0210526315789[/C][C]8.97894736842106[/C][/ROW]
[ROW][C]40[/C][C]19[/C][C]13.2210526315789[/C][C]5.77894736842106[/C][/ROW]
[ROW][C]41[/C][C]20[/C][C]12.6210526315789[/C][C]7.37894736842105[/C][/ROW]
[ROW][C]42[/C][C]30[/C][C]21.6210526315789[/C][C]8.37894736842105[/C][/ROW]
[ROW][C]43[/C][C]31[/C][C]19.8210526315790[/C][C]11.1789473684210[/C][/ROW]
[ROW][C]44[/C][C]35[/C][C]24.5515789473684[/C][C]10.4484210526316[/C][/ROW]
[ROW][C]45[/C][C]33[/C][C]21.5515789473684[/C][C]11.4484210526316[/C][/ROW]
[ROW][C]46[/C][C]26[/C][C]19.7515789473684[/C][C]6.24842105263158[/C][/ROW]
[ROW][C]47[/C][C]25[/C][C]19.1515789473684[/C][C]5.84842105263158[/C][/ROW]
[ROW][C]48[/C][C]17[/C][C]16.1515789473684[/C][C]0.848421052631577[/C][/ROW]
[ROW][C]49[/C][C]14[/C][C]15.0421052631579[/C][C]-1.04210526315789[/C][/ROW]
[ROW][C]50[/C][C]8[/C][C]17.0421052631579[/C][C]-9.0421052631579[/C][/ROW]
[ROW][C]51[/C][C]12[/C][C]17.2421052631579[/C][C]-5.2421052631579[/C][/ROW]
[ROW][C]52[/C][C]7[/C][C]14.4421052631579[/C][C]-7.4421052631579[/C][/ROW]
[ROW][C]53[/C][C]4[/C][C]13.8421052631579[/C][C]-9.8421052631579[/C][/ROW]
[ROW][C]54[/C][C]10[/C][C]22.8421052631579[/C][C]-12.8421052631579[/C][/ROW]
[ROW][C]55[/C][C]8[/C][C]21.0421052631579[/C][C]-13.0421052631579[/C][/ROW]
[ROW][C]56[/C][C]16[/C][C]18.12[/C][C]-2.12[/C][/ROW]
[ROW][C]57[/C][C]14[/C][C]15.12[/C][C]-1.12000000000000[/C][/ROW]
[ROW][C]58[/C][C]20[/C][C]13.32[/C][C]6.68[/C][/ROW]
[ROW][C]59[/C][C]9[/C][C]12.72[/C][C]-3.72[/C][/ROW]
[ROW][C]60[/C][C]10[/C][C]9.72[/C][C]0.279999999999998[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1010.1578947368421-10.1578947368421
2912.1578947368421-3.1578947368421
3112.3578947368421-11.3578947368421
449.5578947368421-5.55789473684211
568.9578947368421-2.9578947368421
62117.95789473684213.0421052631579
72416.15789473684217.8421052631579
82320.88842105263162.11157894736842
92217.88842105263164.11157894736842
102116.08842105263164.91157894736842
112015.48842105263164.51157894736842
121612.48842105263163.51157894736842
131811.37894736842106.62105263157895
141813.37894736842114.62105263157895
152413.578947368421010.4210526315790
161610.77894736842115.22105263157895
171510.17894736842114.82105263157895
182419.17894736842114.82105263157895
191817.37894736842100.62105263157895
201522.1094736842105-7.10947368421053
21419.1094736842105-15.1094736842105
22317.3094736842105-14.3094736842105
23616.7094736842105-10.7094736842105
24513.7094736842105-8.70947368421052
251212.6-0.599999999999996
261214.6-2.6
271214.8-2.8
2814122
291211.40.6
301720.4-3.4
311218.6-6.6
322023.3305263157895-3.33052631578947
332120.33052631578950.669473684210528
341518.5305263157895-3.53052631578947
352217.93052631578954.06947368421053
361914.93052631578954.06947368421052
371913.82105263157895.17894736842106
382615.821052631578910.1789473684211
392516.02105263157898.97894736842106
401913.22105263157895.77894736842106
412012.62105263157897.37894736842105
423021.62105263157898.37894736842105
433119.821052631579011.1789473684210
443524.551578947368410.4484210526316
453321.551578947368411.4484210526316
462619.75157894736846.24842105263158
472519.15157894736845.84842105263158
481716.15157894736840.848421052631577
491415.0421052631579-1.04210526315789
50817.0421052631579-9.0421052631579
511217.2421052631579-5.2421052631579
52714.4421052631579-7.4421052631579
53413.8421052631579-9.8421052631579
541022.8421052631579-12.8421052631579
55821.0421052631579-13.0421052631579
561618.12-2.12
571415.12-1.12000000000000
582013.326.68
59912.72-3.72
60109.720.279999999999998







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1950132462270150.3900264924540300.804986753772985
180.2044782544078410.4089565088156820.795521745592159
190.3679858099316890.7359716198633770.632014190068311
200.4564016254016950.912803250803390.543598374598305
210.7243948576223720.5512102847552560.275605142377628
220.8492259387436660.3015481225126670.150774061256334
230.8773246909710690.2453506180578620.122675309028931
240.881978901797190.2360421964056220.118021098202811
250.8303583298225310.3392833403549370.169641670177469
260.7699856007436120.4600287985127760.230014399256388
270.7126160527035750.5747678945928490.287383947296425
280.6266157352217860.7467685295564290.373384264778214
290.531925131427510.9361497371449810.468074868572491
300.4697934198541510.9395868397083030.530206580145849
310.4949840049760930.9899680099521860.505015995023907
320.5186880248398850.962623950320230.481311975160115
330.5683564427000370.8632871145999270.431643557299963
340.8363567233238990.3272865533522020.163643276676101
350.8916098138176460.2167803723647070.108390186182354
360.9708852670155790.0582294659688420.029114732984421
370.9854483711404130.02910325771917380.0145516288595869
380.972872902290220.05425419541955830.0271270977097791
390.957150342857930.08569931428413820.0428496571420691
400.9453045306428850.109390938714230.054695469357115
410.9086667837633950.1826664324732090.0913332162366046
420.8243770840417040.3512458319165930.175622915958296
430.6821565462941230.6356869074117540.317843453705877

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.195013246227015 & 0.390026492454030 & 0.804986753772985 \tabularnewline
18 & 0.204478254407841 & 0.408956508815682 & 0.795521745592159 \tabularnewline
19 & 0.367985809931689 & 0.735971619863377 & 0.632014190068311 \tabularnewline
20 & 0.456401625401695 & 0.91280325080339 & 0.543598374598305 \tabularnewline
21 & 0.724394857622372 & 0.551210284755256 & 0.275605142377628 \tabularnewline
22 & 0.849225938743666 & 0.301548122512667 & 0.150774061256334 \tabularnewline
23 & 0.877324690971069 & 0.245350618057862 & 0.122675309028931 \tabularnewline
24 & 0.88197890179719 & 0.236042196405622 & 0.118021098202811 \tabularnewline
25 & 0.830358329822531 & 0.339283340354937 & 0.169641670177469 \tabularnewline
26 & 0.769985600743612 & 0.460028798512776 & 0.230014399256388 \tabularnewline
27 & 0.712616052703575 & 0.574767894592849 & 0.287383947296425 \tabularnewline
28 & 0.626615735221786 & 0.746768529556429 & 0.373384264778214 \tabularnewline
29 & 0.53192513142751 & 0.936149737144981 & 0.468074868572491 \tabularnewline
30 & 0.469793419854151 & 0.939586839708303 & 0.530206580145849 \tabularnewline
31 & 0.494984004976093 & 0.989968009952186 & 0.505015995023907 \tabularnewline
32 & 0.518688024839885 & 0.96262395032023 & 0.481311975160115 \tabularnewline
33 & 0.568356442700037 & 0.863287114599927 & 0.431643557299963 \tabularnewline
34 & 0.836356723323899 & 0.327286553352202 & 0.163643276676101 \tabularnewline
35 & 0.891609813817646 & 0.216780372364707 & 0.108390186182354 \tabularnewline
36 & 0.970885267015579 & 0.058229465968842 & 0.029114732984421 \tabularnewline
37 & 0.985448371140413 & 0.0291032577191738 & 0.0145516288595869 \tabularnewline
38 & 0.97287290229022 & 0.0542541954195583 & 0.0271270977097791 \tabularnewline
39 & 0.95715034285793 & 0.0856993142841382 & 0.0428496571420691 \tabularnewline
40 & 0.945304530642885 & 0.10939093871423 & 0.054695469357115 \tabularnewline
41 & 0.908666783763395 & 0.182666432473209 & 0.0913332162366046 \tabularnewline
42 & 0.824377084041704 & 0.351245831916593 & 0.175622915958296 \tabularnewline
43 & 0.682156546294123 & 0.635686907411754 & 0.317843453705877 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.195013246227015[/C][C]0.390026492454030[/C][C]0.804986753772985[/C][/ROW]
[ROW][C]18[/C][C]0.204478254407841[/C][C]0.408956508815682[/C][C]0.795521745592159[/C][/ROW]
[ROW][C]19[/C][C]0.367985809931689[/C][C]0.735971619863377[/C][C]0.632014190068311[/C][/ROW]
[ROW][C]20[/C][C]0.456401625401695[/C][C]0.91280325080339[/C][C]0.543598374598305[/C][/ROW]
[ROW][C]21[/C][C]0.724394857622372[/C][C]0.551210284755256[/C][C]0.275605142377628[/C][/ROW]
[ROW][C]22[/C][C]0.849225938743666[/C][C]0.301548122512667[/C][C]0.150774061256334[/C][/ROW]
[ROW][C]23[/C][C]0.877324690971069[/C][C]0.245350618057862[/C][C]0.122675309028931[/C][/ROW]
[ROW][C]24[/C][C]0.88197890179719[/C][C]0.236042196405622[/C][C]0.118021098202811[/C][/ROW]
[ROW][C]25[/C][C]0.830358329822531[/C][C]0.339283340354937[/C][C]0.169641670177469[/C][/ROW]
[ROW][C]26[/C][C]0.769985600743612[/C][C]0.460028798512776[/C][C]0.230014399256388[/C][/ROW]
[ROW][C]27[/C][C]0.712616052703575[/C][C]0.574767894592849[/C][C]0.287383947296425[/C][/ROW]
[ROW][C]28[/C][C]0.626615735221786[/C][C]0.746768529556429[/C][C]0.373384264778214[/C][/ROW]
[ROW][C]29[/C][C]0.53192513142751[/C][C]0.936149737144981[/C][C]0.468074868572491[/C][/ROW]
[ROW][C]30[/C][C]0.469793419854151[/C][C]0.939586839708303[/C][C]0.530206580145849[/C][/ROW]
[ROW][C]31[/C][C]0.494984004976093[/C][C]0.989968009952186[/C][C]0.505015995023907[/C][/ROW]
[ROW][C]32[/C][C]0.518688024839885[/C][C]0.96262395032023[/C][C]0.481311975160115[/C][/ROW]
[ROW][C]33[/C][C]0.568356442700037[/C][C]0.863287114599927[/C][C]0.431643557299963[/C][/ROW]
[ROW][C]34[/C][C]0.836356723323899[/C][C]0.327286553352202[/C][C]0.163643276676101[/C][/ROW]
[ROW][C]35[/C][C]0.891609813817646[/C][C]0.216780372364707[/C][C]0.108390186182354[/C][/ROW]
[ROW][C]36[/C][C]0.970885267015579[/C][C]0.058229465968842[/C][C]0.029114732984421[/C][/ROW]
[ROW][C]37[/C][C]0.985448371140413[/C][C]0.0291032577191738[/C][C]0.0145516288595869[/C][/ROW]
[ROW][C]38[/C][C]0.97287290229022[/C][C]0.0542541954195583[/C][C]0.0271270977097791[/C][/ROW]
[ROW][C]39[/C][C]0.95715034285793[/C][C]0.0856993142841382[/C][C]0.0428496571420691[/C][/ROW]
[ROW][C]40[/C][C]0.945304530642885[/C][C]0.10939093871423[/C][C]0.054695469357115[/C][/ROW]
[ROW][C]41[/C][C]0.908666783763395[/C][C]0.182666432473209[/C][C]0.0913332162366046[/C][/ROW]
[ROW][C]42[/C][C]0.824377084041704[/C][C]0.351245831916593[/C][C]0.175622915958296[/C][/ROW]
[ROW][C]43[/C][C]0.682156546294123[/C][C]0.635686907411754[/C][C]0.317843453705877[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.1950132462270150.3900264924540300.804986753772985
180.2044782544078410.4089565088156820.795521745592159
190.3679858099316890.7359716198633770.632014190068311
200.4564016254016950.912803250803390.543598374598305
210.7243948576223720.5512102847552560.275605142377628
220.8492259387436660.3015481225126670.150774061256334
230.8773246909710690.2453506180578620.122675309028931
240.881978901797190.2360421964056220.118021098202811
250.8303583298225310.3392833403549370.169641670177469
260.7699856007436120.4600287985127760.230014399256388
270.7126160527035750.5747678945928490.287383947296425
280.6266157352217860.7467685295564290.373384264778214
290.531925131427510.9361497371449810.468074868572491
300.4697934198541510.9395868397083030.530206580145849
310.4949840049760930.9899680099521860.505015995023907
320.5186880248398850.962623950320230.481311975160115
330.5683564427000370.8632871145999270.431643557299963
340.8363567233238990.3272865533522020.163643276676101
350.8916098138176460.2167803723647070.108390186182354
360.9708852670155790.0582294659688420.029114732984421
370.9854483711404130.02910325771917380.0145516288595869
380.972872902290220.05425419541955830.0271270977097791
390.957150342857930.08569931428413820.0428496571420691
400.9453045306428850.109390938714230.054695469357115
410.9086667837633950.1826664324732090.0913332162366046
420.8243770840417040.3512458319165930.175622915958296
430.6821565462941230.6356869074117540.317843453705877







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level10.037037037037037OK
10% type I error level40.148148148148148NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 1 & 0.037037037037037 & OK \tabularnewline
10% type I error level & 4 & 0.148148148148148 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31078&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]1[/C][C]0.037037037037037[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]4[/C][C]0.148148148148148[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31078&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31078&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level10.037037037037037OK
10% type I error level40.148148148148148NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}