| Multiple Linear Regression - Estimated Regression Equation |
| TVSUM[t] = + 7.63641 + 0.508377SK1[t] + 1.10968SK2[t] + 0.393957SK4[t] + e[t] |
| Multiple Linear Regression - Ordinary Least Squares | |||||
| Variable | Parameter | S.D. | T-STAT H0: parameter = 0 | 2-tail p-value | 1-tail p-value |
| (Intercept) | +7.636 | 1.011 | +7.5540e+00 | 2.989e-12 | 1.494e-12 |
| SK1 | +0.5084 | 0.1573 | +3.2320e+00 | 0.00149 | 0.0007449 |
| SK2 | +1.11 | 0.1895 | +5.8560e+00 | 2.591e-08 | 1.295e-08 |
| SK4 | +0.394 | 0.2027 | +1.9440e+00 | 0.05366 | 0.02683 |
| Multiple Linear Regression - Regression Statistics | |
| Multiple R | 0.5525 |
| R-squared | 0.3052 |
| Adjusted R-squared | 0.2923 |
| F-TEST (value) | 23.58 |
| F-TEST (DF numerator) | 3 |
| F-TEST (DF denominator) | 161 |
| p-value | 1.056e-12 |
| Multiple Linear Regression - Residual Statistics | |
| Residual Standard Deviation | 1.395 |
| Sum Squared Residuals | 313.4 |
| Multiple Linear Regression - Actuals, Interpolation, and Residuals | |||
| Time or Index | Actuals | Interpolation Forecast | Residuals Prediction Error |
| 1 | 13 | 13.07 | -0.07114 |
| 2 | 16 | 15.08 | 0.9168 |
| 3 | 17 | 15.68 | 1.316 |
| 4 | 15 | 14.78 | 0.2179 |
| 5 | 16 | 15.68 | 0.3155 |
| 6 | 16 | 15.18 | 0.8239 |
| 7 | 17 | 14.78 | 2.218 |
| 8 | 16 | 15.18 | 0.8239 |
| 9 | 17 | 16.79 | 0.2059 |
| 10 | 17 | 16.79 | 0.2059 |
| 11 | 17 | 15.68 | 1.316 |
| 12 | 15 | 15.29 | -0.2905 |
| 13 | 16 | 15.29 | 0.7095 |
| 14 | 14 | 14.07 | -0.0664 |
| 15 | 16 | 15.68 | 0.3155 |
| 16 | 17 | 15.18 | 1.824 |
| 17 | 16 | 15.18 | 0.8239 |
| 18 | 15 | 16.91 | -1.909 |
| 19 | 17 | 15.68 | 1.316 |
| 20 | 16 | 14.78 | 1.218 |
| 21 | 15 | 15.68 | -0.6845 |
| 22 | 16 | 15.68 | 0.3155 |
| 23 | 15 | 15.68 | -0.6845 |
| 24 | 17 | 15.68 | 1.316 |
| 25 | 15 | 15.18 | -0.1761 |
| 26 | 16 | 14.78 | 1.218 |
| 27 | 15 | 15.68 | -0.6845 |
| 28 | 16 | 14.67 | 1.332 |
| 29 | 16 | 16.19 | -0.1928 |
| 30 | 13 | 14.57 | -1.575 |
| 31 | 15 | 16.79 | -1.794 |
| 32 | 17 | 16.19 | 0.8072 |
| 33 | 15 | 14.57 | 0.4252 |
| 34 | 13 | 13.56 | -0.558 |
| 35 | 17 | 16.79 | 0.2059 |
| 36 | 15 | 15.18 | -0.1761 |
| 37 | 14 | 14.18 | -0.1808 |
| 38 | 14 | 14.57 | -0.5748 |
| 39 | 18 | 15.68 | 2.316 |
| 40 | 15 | 16.19 | -1.193 |
| 41 | 17 | 16.79 | 0.2059 |
| 42 | 13 | 14.07 | -1.066 |
| 43 | 16 | 16.91 | -0.9085 |
| 44 | 15 | 15.8 | -0.7989 |
| 45 | 15 | 15.29 | -0.2905 |
| 46 | 16 | 15.68 | 0.3155 |
| 47 | 15 | 15.89 | -0.8918 |
| 48 | 13 | 15.68 | -2.684 |
| 49 | 17 | 16.79 | 0.2059 |
| 50 | 17 | 17.3 | -0.3025 |
| 51 | 17 | 17.3 | -0.3025 |
| 52 | 11 | 14.57 | -3.575 |
| 53 | 14 | 14.18 | -0.1808 |
| 54 | 13 | 15.68 | -2.684 |
| 55 | 15 | 14.78 | 0.2179 |
| 56 | 17 | 15.18 | 1.824 |
| 57 | 16 | 15.29 | 0.7095 |
| 58 | 15 | 15.68 | -0.6845 |
| 59 | 17 | 17.3 | -0.3025 |
| 60 | 16 | 14.67 | 1.332 |
| 61 | 16 | 15.68 | 0.3155 |
| 62 | 16 | 15.18 | 0.8239 |
| 63 | 15 | 15.68 | -0.6845 |
| 64 | 12 | 13.47 | -1.465 |
| 65 | 17 | 15.29 | 1.71 |
| 66 | 14 | 15.29 | -1.29 |
| 67 | 14 | 15.8 | -1.799 |
| 68 | 16 | 14.78 | 1.218 |
| 69 | 15 | 14.78 | 0.2179 |
| 70 | 15 | 17.19 | -2.188 |
| 71 | 13 | 15.68 | -2.684 |
| 72 | 13 | 15.68 | -2.684 |
| 73 | 17 | 16.08 | 0.9216 |
| 74 | 15 | 15.18 | -0.1761 |
| 75 | 16 | 15.68 | 0.3155 |
| 76 | 14 | 14.78 | -0.7821 |
| 77 | 15 | 14.07 | 0.9336 |
| 78 | 17 | 14.57 | 2.425 |
| 79 | 16 | 15.68 | 0.3155 |
| 80 | 12 | 14.07 | -2.066 |
| 81 | 16 | 15.68 | 0.3155 |
| 82 | 17 | 15.68 | 1.316 |
| 83 | 17 | 15.68 | 1.316 |
| 84 | 20 | 16.19 | 3.807 |
| 85 | 17 | 16.59 | 0.4132 |
| 86 | 18 | 15.68 | 2.316 |
| 87 | 15 | 15.18 | -0.1761 |
| 88 | 17 | 15.18 | 1.824 |
| 89 | 14 | 13.07 | 0.9289 |
| 90 | 15 | 15.68 | -0.6845 |
| 91 | 17 | 15.68 | 1.316 |
| 92 | 16 | 15.68 | 0.3155 |
| 93 | 17 | 16.79 | 0.2059 |
| 94 | 15 | 14.78 | 0.2179 |
| 95 | 16 | 15.68 | 0.3155 |
| 96 | 18 | 16.19 | 1.807 |
| 97 | 18 | 16.59 | 1.413 |
| 98 | 16 | 16.79 | -0.7941 |
| 99 | 17 | 15.08 | 1.917 |
| 100 | 15 | 15.68 | -0.6845 |
| 101 | 13 | 16.19 | -3.193 |
| 102 | 15 | 14.78 | 0.2179 |
| 103 | 17 | 16.59 | 0.4132 |
| 104 | 16 | 15.29 | 0.7095 |
| 105 | 16 | 15.29 | 0.7095 |
| 106 | 15 | 15.68 | -0.6845 |
| 107 | 16 | 15.68 | 0.3155 |
| 108 | 16 | 15.18 | 0.8239 |
| 109 | 13 | 15.68 | -2.684 |
| 110 | 15 | 15.29 | -0.2905 |
| 111 | 12 | 13.67 | -1.672 |
| 112 | 19 | 15.29 | 3.71 |
| 113 | 16 | 15.18 | 0.8239 |
| 114 | 16 | 15.68 | 0.3155 |
| 115 | 17 | 16.59 | 0.4132 |
| 116 | 16 | 16.19 | -0.1928 |
| 117 | 14 | 15.68 | -1.684 |
| 118 | 15 | 15.29 | -0.2905 |
| 119 | 14 | 14.78 | -0.7821 |
| 120 | 16 | 15.68 | 0.3155 |
| 121 | 15 | 15.68 | -0.6845 |
| 122 | 17 | 16.79 | 0.2059 |
| 123 | 15 | 15.18 | -0.1761 |
| 124 | 16 | 15.29 | 0.7095 |
| 125 | 16 | 15.68 | 0.3155 |
| 126 | 15 | 14.78 | 0.2179 |
| 127 | 15 | 15.29 | -0.2905 |
| 128 | 11 | 12.17 | -1.169 |
| 129 | 16 | 15.29 | 0.7095 |
| 130 | 18 | 15.8 | 2.201 |
| 131 | 13 | 14.27 | -1.274 |
| 132 | 11 | 14.07 | -3.066 |
| 133 | 16 | 15.29 | 0.7095 |
| 134 | 18 | 17.3 | 0.6975 |
| 135 | 15 | 16.79 | -1.794 |
| 136 | 19 | 17.7 | 1.304 |
| 137 | 17 | 16.79 | 0.2059 |
| 138 | 13 | 15.29 | -2.29 |
| 139 | 14 | 15.18 | -1.176 |
| 140 | 16 | 15.68 | 0.3155 |
| 141 | 13 | 15.68 | -2.684 |
| 142 | 17 | 15.68 | 1.316 |
| 143 | 14 | 15.68 | -1.684 |
| 144 | 19 | 15.8 | 3.201 |
| 145 | 14 | 14.57 | -0.5748 |
| 146 | 16 | 15.68 | 0.3155 |
| 147 | 12 | 13.67 | -1.672 |
| 148 | 16 | 16.79 | -0.7941 |
| 149 | 16 | 15.29 | 0.7095 |
| 150 | 15 | 15.68 | -0.6845 |
| 151 | 12 | 14.78 | -2.782 |
| 152 | 15 | 15.68 | -0.6845 |
| 153 | 17 | 16.19 | 0.8072 |
| 154 | 13 | 15.68 | -2.684 |
| 155 | 15 | 13.56 | 1.442 |
| 156 | 18 | 15.68 | 2.316 |
| 157 | 15 | 14.18 | 0.8192 |
| 158 | 18 | 15.68 | 2.316 |
| 159 | 15 | 17.19 | -2.188 |
| 160 | 15 | 16.19 | -1.193 |
| 161 | 16 | 15.8 | 0.2011 |
| 162 | 13 | 14.07 | -1.066 |
| 163 | 16 | 15.68 | 0.3155 |
| 164 | 13 | 15.68 | -2.684 |
| 165 | 16 | 13.95 | 2.048 |
| Goldfeld-Quandt test for Heteroskedasticity | |||
| p-values | Alternative Hypothesis | ||
| breakpoint index | greater | 2-sided | less |
| 7 | 0.2862 | 0.5724 | 0.7138 |
| 8 | 0.1504 | 0.3008 | 0.8496 |
| 9 | 0.13 | 0.2601 | 0.87 |
| 10 | 0.07769 | 0.1554 | 0.9223 |
| 11 | 0.05117 | 0.1023 | 0.9488 |
| 12 | 0.03429 | 0.06858 | 0.9657 |
| 13 | 0.01881 | 0.03763 | 0.9812 |
| 14 | 0.01666 | 0.03333 | 0.9833 |
| 15 | 0.008611 | 0.01722 | 0.9914 |
| 16 | 0.008582 | 0.01716 | 0.9914 |
| 17 | 0.004281 | 0.008563 | 0.9957 |
| 18 | 0.01095 | 0.0219 | 0.9891 |
| 19 | 0.008141 | 0.01628 | 0.9919 |
| 20 | 0.005352 | 0.0107 | 0.9946 |
| 21 | 0.006326 | 0.01265 | 0.9937 |
| 22 | 0.003493 | 0.006987 | 0.9965 |
| 23 | 0.003614 | 0.007229 | 0.9964 |
| 24 | 0.003067 | 0.006134 | 0.9969 |
| 25 | 0.003455 | 0.00691 | 0.9965 |
| 26 | 0.002264 | 0.004527 | 0.9977 |
| 27 | 0.002124 | 0.004247 | 0.9979 |
| 28 | 0.001313 | 0.002626 | 0.9987 |
| 29 | 0.00072 | 0.00144 | 0.9993 |
| 30 | 0.002254 | 0.004509 | 0.9977 |
| 31 | 0.005583 | 0.01117 | 0.9944 |
| 32 | 0.00573 | 0.01146 | 0.9943 |
| 33 | 0.003591 | 0.007183 | 0.9964 |
| 34 | 0.006053 | 0.01211 | 0.9939 |
| 35 | 0.003847 | 0.007694 | 0.9962 |
| 36 | 0.002841 | 0.005682 | 0.9972 |
| 37 | 0.001872 | 0.003744 | 0.9981 |
| 38 | 0.001369 | 0.002737 | 0.9986 |
| 39 | 0.00395 | 0.0079 | 0.996 |
| 40 | 0.003537 | 0.007075 | 0.9965 |
| 41 | 0.002273 | 0.004546 | 0.9977 |
| 42 | 0.002835 | 0.00567 | 0.9972 |
| 43 | 0.002247 | 0.004494 | 0.9978 |
| 44 | 0.00159 | 0.00318 | 0.9984 |
| 45 | 0.001044 | 0.002088 | 0.999 |
| 46 | 0.0006588 | 0.001318 | 0.9993 |
| 47 | 0.0006996 | 0.001399 | 0.9993 |
| 48 | 0.004084 | 0.008168 | 0.9959 |
| 49 | 0.002749 | 0.005498 | 0.9973 |
| 50 | 0.001827 | 0.003654 | 0.9982 |
| 51 | 0.001199 | 0.002399 | 0.9988 |
| 52 | 0.01536 | 0.03072 | 0.9846 |
| 53 | 0.0111 | 0.0222 | 0.9889 |
| 54 | 0.02896 | 0.05793 | 0.971 |
| 55 | 0.02184 | 0.04369 | 0.9782 |
| 56 | 0.02526 | 0.05051 | 0.9747 |
| 57 | 0.02064 | 0.04127 | 0.9794 |
| 58 | 0.01633 | 0.03267 | 0.9837 |
| 59 | 0.01207 | 0.02413 | 0.9879 |
| 60 | 0.01074 | 0.02147 | 0.9893 |
| 61 | 0.007941 | 0.01588 | 0.9921 |
| 62 | 0.006222 | 0.01244 | 0.9938 |
| 63 | 0.004775 | 0.00955 | 0.9952 |
| 64 | 0.004702 | 0.009403 | 0.9953 |
| 65 | 0.006021 | 0.01204 | 0.994 |
| 66 | 0.006117 | 0.01223 | 0.9939 |
| 67 | 0.007261 | 0.01452 | 0.9927 |
| 68 | 0.006466 | 0.01293 | 0.9935 |
| 69 | 0.004825 | 0.009649 | 0.9952 |
| 70 | 0.008075 | 0.01615 | 0.9919 |
| 71 | 0.0192 | 0.0384 | 0.9808 |
| 72 | 0.04016 | 0.08032 | 0.9598 |
| 73 | 0.0393 | 0.0786 | 0.9607 |
| 74 | 0.03142 | 0.06285 | 0.9686 |
| 75 | 0.02494 | 0.04987 | 0.9751 |
| 76 | 0.02277 | 0.04554 | 0.9772 |
| 77 | 0.01968 | 0.03935 | 0.9803 |
| 78 | 0.03967 | 0.07935 | 0.9603 |
| 79 | 0.03159 | 0.06319 | 0.9684 |
| 80 | 0.04592 | 0.09184 | 0.9541 |
| 81 | 0.03684 | 0.07367 | 0.9632 |
| 82 | 0.03751 | 0.07503 | 0.9625 |
| 83 | 0.038 | 0.076 | 0.962 |
| 84 | 0.1701 | 0.3402 | 0.8299 |
| 85 | 0.1479 | 0.2958 | 0.8521 |
| 86 | 0.2006 | 0.4011 | 0.7994 |
| 87 | 0.1729 | 0.3458 | 0.8271 |
| 88 | 0.2017 | 0.4035 | 0.7983 |
| 89 | 0.1831 | 0.3662 | 0.8169 |
| 90 | 0.1606 | 0.3212 | 0.8394 |
| 91 | 0.159 | 0.318 | 0.841 |
| 92 | 0.1346 | 0.2692 | 0.8654 |
| 93 | 0.1128 | 0.2256 | 0.8872 |
| 94 | 0.09511 | 0.1902 | 0.9049 |
| 95 | 0.07836 | 0.1567 | 0.9216 |
| 96 | 0.08976 | 0.1795 | 0.9102 |
| 97 | 0.08974 | 0.1795 | 0.9103 |
| 98 | 0.07696 | 0.1539 | 0.923 |
| 99 | 0.09056 | 0.1811 | 0.9094 |
| 100 | 0.07665 | 0.1533 | 0.9233 |
| 101 | 0.1765 | 0.3531 | 0.8235 |
| 102 | 0.1514 | 0.3028 | 0.8486 |
| 103 | 0.1274 | 0.2548 | 0.8726 |
| 104 | 0.1104 | 0.2208 | 0.8896 |
| 105 | 0.09514 | 0.1903 | 0.9049 |
| 106 | 0.0804 | 0.1608 | 0.9196 |
| 107 | 0.06537 | 0.1307 | 0.9346 |
| 108 | 0.0605 | 0.121 | 0.9395 |
| 109 | 0.1038 | 0.2077 | 0.8962 |
| 110 | 0.0846 | 0.1692 | 0.9154 |
| 111 | 0.08858 | 0.1772 | 0.9114 |
| 112 | 0.2677 | 0.5353 | 0.7323 |
| 113 | 0.2592 | 0.5184 | 0.7408 |
| 114 | 0.2245 | 0.4489 | 0.7755 |
| 115 | 0.191 | 0.3821 | 0.809 |
| 116 | 0.1625 | 0.3251 | 0.8375 |
| 117 | 0.1719 | 0.3438 | 0.8281 |
| 118 | 0.1426 | 0.2852 | 0.8574 |
| 119 | 0.1204 | 0.2408 | 0.8796 |
| 120 | 0.09858 | 0.1972 | 0.9014 |
| 121 | 0.08191 | 0.1638 | 0.9181 |
| 122 | 0.0664 | 0.1328 | 0.9336 |
| 123 | 0.05328 | 0.1066 | 0.9467 |
| 124 | 0.04477 | 0.08953 | 0.9552 |
| 125 | 0.0346 | 0.0692 | 0.9654 |
| 126 | 0.02931 | 0.05861 | 0.9707 |
| 127 | 0.02166 | 0.04332 | 0.9783 |
| 128 | 0.01887 | 0.03773 | 0.9811 |
| 129 | 0.01538 | 0.03076 | 0.9846 |
| 130 | 0.02121 | 0.04242 | 0.9788 |
| 131 | 0.01744 | 0.03489 | 0.9826 |
| 132 | 0.04584 | 0.09168 | 0.9542 |
| 133 | 0.04135 | 0.08271 | 0.9586 |
| 134 | 0.03509 | 0.07018 | 0.9649 |
| 135 | 0.03069 | 0.06139 | 0.9693 |
| 136 | 0.02872 | 0.05743 | 0.9713 |
| 137 | 0.02677 | 0.05354 | 0.9732 |
| 138 | 0.03167 | 0.06335 | 0.9683 |
| 139 | 0.02394 | 0.04788 | 0.9761 |
| 140 | 0.01729 | 0.03457 | 0.9827 |
| 141 | 0.03151 | 0.06303 | 0.9685 |
| 142 | 0.03082 | 0.06165 | 0.9692 |
| 143 | 0.03014 | 0.06028 | 0.9699 |
| 144 | 0.1129 | 0.2257 | 0.8871 |
| 145 | 0.105 | 0.21 | 0.895 |
| 146 | 0.07923 | 0.1585 | 0.9208 |
| 147 | 0.09124 | 0.1825 | 0.9088 |
| 148 | 0.07733 | 0.1547 | 0.9227 |
| 149 | 0.0836 | 0.1672 | 0.9164 |
| 150 | 0.05734 | 0.1147 | 0.9427 |
| 151 | 0.06084 | 0.1217 | 0.9392 |
| 152 | 0.04003 | 0.08007 | 0.96 |
| 153 | 0.03527 | 0.07054 | 0.9647 |
| 154 | 0.07002 | 0.14 | 0.93 |
| 155 | 0.04465 | 0.08931 | 0.9553 |
| 156 | 0.08392 | 0.1678 | 0.9161 |
| 157 | 0.04548 | 0.09097 | 0.9545 |
| 158 | 0.1408 | 0.2816 | 0.8592 |
| Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity | |||
| Description | # significant tests | % significant tests | OK/NOK |
| 1% type I error level | 31 | 0.2039 | NOK |
| 5% type I error level | 67 | 0.440789 | NOK |
| 10% type I error level | 96 | 0.631579 | NOK |
| Ramsey RESET F-Test for powers (2 and 3) of fitted values |
> reset_test_fitted RESET test data: mylm RESET = 1.6335, df1 = 2, df2 = 159, p-value = 0.1985 |
| Ramsey RESET F-Test for powers (2 and 3) of regressors |
> reset_test_regressors RESET test data: mylm RESET = 1.877, df1 = 6, df2 = 155, p-value = 0.08805 |
| Ramsey RESET F-Test for powers (2 and 3) of principal components |
> reset_test_principal_components RESET test data: mylm RESET = 0.30827, df1 = 2, df2 = 159, p-value = 0.7352 |
| Variance Inflation Factors (Multicollinearity) |
> vif
SK1 SK2 SK4
1.090360 1.099743 1.050502
|









