Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationThu, 12 Dec 2013 04:50:26 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/12/t1386841864q9ki8gaenqnl3la.htm/, Retrieved Sun, 05 Dec 2021 17:25:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232238, Retrieved Sun, 05 Dec 2021 17:25:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact74
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2013-12-12 09:50:26] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
 15,13 
 15,25 
 15,33 
 15,36 
 15,40 
 15,40 
 15,41 
 15,47 
 15,54 
 15,55 
 15,59 
 15,65 
 15,75 
 15,86 
 15,89 
 15,94 
 15,93 
 15,95 
 15,99 
 15,99 
 16,06 
 16,08 
 16,07 
 16,11 
 16,15 
 16,18 
 16,30 
 16,42 
 16,49 
 16,50 
 16,58 
 16,64 
 16,66 
 16,81 
 16,91 
 16,92 
 16,95 
 17,11 
 17,16 
 17,16 
 17,27 
 17,34 
 17,39 
 17,43 
 17,45 
 17,50 
 17,56 
 17,65 
 17,62 
 17,70 
 17,72 
 17,71 
 17,74 
 17,75 
 17,78 
 17,80 
 17,86 
 17,88 
 17,89 
 17,94 
 17,98 
 18,10 
 18,14 
 18,19 
 18,23 
 18,24 
 18,27 
 18,30 
 18,34 
 18,36 
 18,36 
 18,40 
 18,43 
 18,47 
 18,56 
 18,58 
 18,61 
 18,61 
 18,69 
 18,74 
 18,75 
 18,81 
 18,85 
 18,88 




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232238&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232238&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232238&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
115.13NANA-0.0269444NA
215.25NANA0.0175694NA
315.33NANA0.0309028NA
415.36NANA0.0243056NA
515.4NANA0.0240278NA
615.4NANA-0.00104167NA
715.4115.448115.4492-0.00111111-0.0380556
815.4715.48915.5004-0.0113889-0.0190278
915.5415.539715.5492-0.009513890.000347222
1015.5515.587415.5967-0.00930556-0.0373611
1115.5915.622315.6429-0.020625-0.0322917
1215.6515.67115.6879-0.016875-0.0210417
1315.7515.708115.735-0.02694440.0419444
1415.8615.798415.78080.01756940.0615972
1515.8915.855115.82420.03090280.0349306
1615.9415.892215.86790.02430560.0477778
1715.9315.93415.910.0240278-0.00402778
1815.9515.948115.9492-0.001041670.001875
1915.9915.983915.985-0.001111110.00611111
2015.9916.003616.015-0.0113889-0.0136111
2116.0616.035916.0454-0.009513890.0240972
2216.0816.073216.0825-0.009305560.00680556
2316.0716.105216.1258-0.020625-0.0352083
2416.1116.155216.1721-0.016875-0.0452083
2516.1516.192616.2196-0.0269444-0.0426389
2616.1816.288816.27120.0175694-0.108819
2716.316.354216.32330.0309028-0.0542361
2816.4216.403116.37870.02430560.0169444
2916.4916.468216.44420.02402780.0218056
3016.516.511916.5129-0.00104167-0.011875
3116.5816.578916.58-0.001111110.00111111
3216.6416.640716.6521-0.0113889-0.000694444
3316.6616.717216.7267-0.00951389-0.0571528
3416.8116.78416.7933-0.009305560.0259722
3516.9116.83616.8567-0.0206250.0739583
3616.9216.907316.9242-0.0168750.0127083
3716.9516.96616.9929-0.0269444-0.0159722
3817.1117.077217.05960.01756940.0328472
3917.1617.156317.12540.03090280.00368056
4017.1617.211417.18710.0243056-0.0513889
4117.2717.266917.24290.02402780.00305556
4217.3417.299417.3004-0.001041670.040625
4317.3917.357617.3588-0.001111110.0323611
4417.4317.399917.4112-0.01138890.0301389
4517.4517.449717.4592-0.009513890.000347222
4617.517.496117.5054-0.009305560.00388889
4717.5617.527317.5479-0.0206250.0327083
4817.6517.567717.5846-0.0168750.0822917
4917.6217.59117.6179-0.02694440.0290278
5017.717.667217.64960.01756940.0328472
5117.7217.71317.68210.03090280.00701389
5217.7117.739317.7150.0243056-0.0293056
5317.7417.768617.74460.0240278-0.0286111
5417.7517.769417.7704-0.00104167-0.019375
5517.7817.796417.7975-0.00111111-0.0163889
5617.817.817817.8292-0.0113889-0.0177778
5717.8617.853817.8633-0.009513890.00618056
5817.8817.891517.9008-0.00930556-0.0115278
5917.8917.920617.9412-0.020625-0.030625
6017.9417.965217.9821-0.016875-0.0252083
6117.9817.99618.0229-0.0269444-0.0159722
6218.118.081718.06420.01756940.0182639
6318.1418.135918.1050.03090280.00409722
6418.1918.169318.1450.02430560.0206944
6518.2318.208618.18460.02402780.0213889
6618.2418.222318.2233-0.001041670.0177083
6718.2718.260118.2612-0.001111110.00986111
6818.318.28418.2954-0.01138890.0159722
6918.3418.318818.3283-0.009513890.0211806
7018.3618.352818.3621-0.009305560.00722222
7118.3618.373518.3942-0.020625-0.0135417
7218.418.408518.4254-0.016875-0.00854167
7318.4318.431418.4583-0.0269444-0.00138889
7418.4718.511718.49420.0175694-0.0417361
7518.5618.560518.52960.0309028-0.000486111
7618.5818.589718.56540.0243056-0.00972222
7718.6118.628618.60460.0240278-0.0186111
7818.6118.64418.645-0.00104167-0.0339583
7918.69NANA-0.00111111NA
8018.74NANA-0.0113889NA
8118.75NANA-0.00951389NA
8218.81NANA-0.00930556NA
8318.85NANA-0.020625NA
8418.88NANA-0.016875NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 15.13 & NA & NA & -0.0269444 & NA \tabularnewline
2 & 15.25 & NA & NA & 0.0175694 & NA \tabularnewline
3 & 15.33 & NA & NA & 0.0309028 & NA \tabularnewline
4 & 15.36 & NA & NA & 0.0243056 & NA \tabularnewline
5 & 15.4 & NA & NA & 0.0240278 & NA \tabularnewline
6 & 15.4 & NA & NA & -0.00104167 & NA \tabularnewline
7 & 15.41 & 15.4481 & 15.4492 & -0.00111111 & -0.0380556 \tabularnewline
8 & 15.47 & 15.489 & 15.5004 & -0.0113889 & -0.0190278 \tabularnewline
9 & 15.54 & 15.5397 & 15.5492 & -0.00951389 & 0.000347222 \tabularnewline
10 & 15.55 & 15.5874 & 15.5967 & -0.00930556 & -0.0373611 \tabularnewline
11 & 15.59 & 15.6223 & 15.6429 & -0.020625 & -0.0322917 \tabularnewline
12 & 15.65 & 15.671 & 15.6879 & -0.016875 & -0.0210417 \tabularnewline
13 & 15.75 & 15.7081 & 15.735 & -0.0269444 & 0.0419444 \tabularnewline
14 & 15.86 & 15.7984 & 15.7808 & 0.0175694 & 0.0615972 \tabularnewline
15 & 15.89 & 15.8551 & 15.8242 & 0.0309028 & 0.0349306 \tabularnewline
16 & 15.94 & 15.8922 & 15.8679 & 0.0243056 & 0.0477778 \tabularnewline
17 & 15.93 & 15.934 & 15.91 & 0.0240278 & -0.00402778 \tabularnewline
18 & 15.95 & 15.9481 & 15.9492 & -0.00104167 & 0.001875 \tabularnewline
19 & 15.99 & 15.9839 & 15.985 & -0.00111111 & 0.00611111 \tabularnewline
20 & 15.99 & 16.0036 & 16.015 & -0.0113889 & -0.0136111 \tabularnewline
21 & 16.06 & 16.0359 & 16.0454 & -0.00951389 & 0.0240972 \tabularnewline
22 & 16.08 & 16.0732 & 16.0825 & -0.00930556 & 0.00680556 \tabularnewline
23 & 16.07 & 16.1052 & 16.1258 & -0.020625 & -0.0352083 \tabularnewline
24 & 16.11 & 16.1552 & 16.1721 & -0.016875 & -0.0452083 \tabularnewline
25 & 16.15 & 16.1926 & 16.2196 & -0.0269444 & -0.0426389 \tabularnewline
26 & 16.18 & 16.2888 & 16.2712 & 0.0175694 & -0.108819 \tabularnewline
27 & 16.3 & 16.3542 & 16.3233 & 0.0309028 & -0.0542361 \tabularnewline
28 & 16.42 & 16.4031 & 16.3787 & 0.0243056 & 0.0169444 \tabularnewline
29 & 16.49 & 16.4682 & 16.4442 & 0.0240278 & 0.0218056 \tabularnewline
30 & 16.5 & 16.5119 & 16.5129 & -0.00104167 & -0.011875 \tabularnewline
31 & 16.58 & 16.5789 & 16.58 & -0.00111111 & 0.00111111 \tabularnewline
32 & 16.64 & 16.6407 & 16.6521 & -0.0113889 & -0.000694444 \tabularnewline
33 & 16.66 & 16.7172 & 16.7267 & -0.00951389 & -0.0571528 \tabularnewline
34 & 16.81 & 16.784 & 16.7933 & -0.00930556 & 0.0259722 \tabularnewline
35 & 16.91 & 16.836 & 16.8567 & -0.020625 & 0.0739583 \tabularnewline
36 & 16.92 & 16.9073 & 16.9242 & -0.016875 & 0.0127083 \tabularnewline
37 & 16.95 & 16.966 & 16.9929 & -0.0269444 & -0.0159722 \tabularnewline
38 & 17.11 & 17.0772 & 17.0596 & 0.0175694 & 0.0328472 \tabularnewline
39 & 17.16 & 17.1563 & 17.1254 & 0.0309028 & 0.00368056 \tabularnewline
40 & 17.16 & 17.2114 & 17.1871 & 0.0243056 & -0.0513889 \tabularnewline
41 & 17.27 & 17.2669 & 17.2429 & 0.0240278 & 0.00305556 \tabularnewline
42 & 17.34 & 17.2994 & 17.3004 & -0.00104167 & 0.040625 \tabularnewline
43 & 17.39 & 17.3576 & 17.3588 & -0.00111111 & 0.0323611 \tabularnewline
44 & 17.43 & 17.3999 & 17.4112 & -0.0113889 & 0.0301389 \tabularnewline
45 & 17.45 & 17.4497 & 17.4592 & -0.00951389 & 0.000347222 \tabularnewline
46 & 17.5 & 17.4961 & 17.5054 & -0.00930556 & 0.00388889 \tabularnewline
47 & 17.56 & 17.5273 & 17.5479 & -0.020625 & 0.0327083 \tabularnewline
48 & 17.65 & 17.5677 & 17.5846 & -0.016875 & 0.0822917 \tabularnewline
49 & 17.62 & 17.591 & 17.6179 & -0.0269444 & 0.0290278 \tabularnewline
50 & 17.7 & 17.6672 & 17.6496 & 0.0175694 & 0.0328472 \tabularnewline
51 & 17.72 & 17.713 & 17.6821 & 0.0309028 & 0.00701389 \tabularnewline
52 & 17.71 & 17.7393 & 17.715 & 0.0243056 & -0.0293056 \tabularnewline
53 & 17.74 & 17.7686 & 17.7446 & 0.0240278 & -0.0286111 \tabularnewline
54 & 17.75 & 17.7694 & 17.7704 & -0.00104167 & -0.019375 \tabularnewline
55 & 17.78 & 17.7964 & 17.7975 & -0.00111111 & -0.0163889 \tabularnewline
56 & 17.8 & 17.8178 & 17.8292 & -0.0113889 & -0.0177778 \tabularnewline
57 & 17.86 & 17.8538 & 17.8633 & -0.00951389 & 0.00618056 \tabularnewline
58 & 17.88 & 17.8915 & 17.9008 & -0.00930556 & -0.0115278 \tabularnewline
59 & 17.89 & 17.9206 & 17.9412 & -0.020625 & -0.030625 \tabularnewline
60 & 17.94 & 17.9652 & 17.9821 & -0.016875 & -0.0252083 \tabularnewline
61 & 17.98 & 17.996 & 18.0229 & -0.0269444 & -0.0159722 \tabularnewline
62 & 18.1 & 18.0817 & 18.0642 & 0.0175694 & 0.0182639 \tabularnewline
63 & 18.14 & 18.1359 & 18.105 & 0.0309028 & 0.00409722 \tabularnewline
64 & 18.19 & 18.1693 & 18.145 & 0.0243056 & 0.0206944 \tabularnewline
65 & 18.23 & 18.2086 & 18.1846 & 0.0240278 & 0.0213889 \tabularnewline
66 & 18.24 & 18.2223 & 18.2233 & -0.00104167 & 0.0177083 \tabularnewline
67 & 18.27 & 18.2601 & 18.2612 & -0.00111111 & 0.00986111 \tabularnewline
68 & 18.3 & 18.284 & 18.2954 & -0.0113889 & 0.0159722 \tabularnewline
69 & 18.34 & 18.3188 & 18.3283 & -0.00951389 & 0.0211806 \tabularnewline
70 & 18.36 & 18.3528 & 18.3621 & -0.00930556 & 0.00722222 \tabularnewline
71 & 18.36 & 18.3735 & 18.3942 & -0.020625 & -0.0135417 \tabularnewline
72 & 18.4 & 18.4085 & 18.4254 & -0.016875 & -0.00854167 \tabularnewline
73 & 18.43 & 18.4314 & 18.4583 & -0.0269444 & -0.00138889 \tabularnewline
74 & 18.47 & 18.5117 & 18.4942 & 0.0175694 & -0.0417361 \tabularnewline
75 & 18.56 & 18.5605 & 18.5296 & 0.0309028 & -0.000486111 \tabularnewline
76 & 18.58 & 18.5897 & 18.5654 & 0.0243056 & -0.00972222 \tabularnewline
77 & 18.61 & 18.6286 & 18.6046 & 0.0240278 & -0.0186111 \tabularnewline
78 & 18.61 & 18.644 & 18.645 & -0.00104167 & -0.0339583 \tabularnewline
79 & 18.69 & NA & NA & -0.00111111 & NA \tabularnewline
80 & 18.74 & NA & NA & -0.0113889 & NA \tabularnewline
81 & 18.75 & NA & NA & -0.00951389 & NA \tabularnewline
82 & 18.81 & NA & NA & -0.00930556 & NA \tabularnewline
83 & 18.85 & NA & NA & -0.020625 & NA \tabularnewline
84 & 18.88 & NA & NA & -0.016875 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232238&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]15.13[/C][C]NA[/C][C]NA[/C][C]-0.0269444[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]15.25[/C][C]NA[/C][C]NA[/C][C]0.0175694[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]15.33[/C][C]NA[/C][C]NA[/C][C]0.0309028[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]15.36[/C][C]NA[/C][C]NA[/C][C]0.0243056[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]15.4[/C][C]NA[/C][C]NA[/C][C]0.0240278[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]15.4[/C][C]NA[/C][C]NA[/C][C]-0.00104167[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]15.41[/C][C]15.4481[/C][C]15.4492[/C][C]-0.00111111[/C][C]-0.0380556[/C][/ROW]
[ROW][C]8[/C][C]15.47[/C][C]15.489[/C][C]15.5004[/C][C]-0.0113889[/C][C]-0.0190278[/C][/ROW]
[ROW][C]9[/C][C]15.54[/C][C]15.5397[/C][C]15.5492[/C][C]-0.00951389[/C][C]0.000347222[/C][/ROW]
[ROW][C]10[/C][C]15.55[/C][C]15.5874[/C][C]15.5967[/C][C]-0.00930556[/C][C]-0.0373611[/C][/ROW]
[ROW][C]11[/C][C]15.59[/C][C]15.6223[/C][C]15.6429[/C][C]-0.020625[/C][C]-0.0322917[/C][/ROW]
[ROW][C]12[/C][C]15.65[/C][C]15.671[/C][C]15.6879[/C][C]-0.016875[/C][C]-0.0210417[/C][/ROW]
[ROW][C]13[/C][C]15.75[/C][C]15.7081[/C][C]15.735[/C][C]-0.0269444[/C][C]0.0419444[/C][/ROW]
[ROW][C]14[/C][C]15.86[/C][C]15.7984[/C][C]15.7808[/C][C]0.0175694[/C][C]0.0615972[/C][/ROW]
[ROW][C]15[/C][C]15.89[/C][C]15.8551[/C][C]15.8242[/C][C]0.0309028[/C][C]0.0349306[/C][/ROW]
[ROW][C]16[/C][C]15.94[/C][C]15.8922[/C][C]15.8679[/C][C]0.0243056[/C][C]0.0477778[/C][/ROW]
[ROW][C]17[/C][C]15.93[/C][C]15.934[/C][C]15.91[/C][C]0.0240278[/C][C]-0.00402778[/C][/ROW]
[ROW][C]18[/C][C]15.95[/C][C]15.9481[/C][C]15.9492[/C][C]-0.00104167[/C][C]0.001875[/C][/ROW]
[ROW][C]19[/C][C]15.99[/C][C]15.9839[/C][C]15.985[/C][C]-0.00111111[/C][C]0.00611111[/C][/ROW]
[ROW][C]20[/C][C]15.99[/C][C]16.0036[/C][C]16.015[/C][C]-0.0113889[/C][C]-0.0136111[/C][/ROW]
[ROW][C]21[/C][C]16.06[/C][C]16.0359[/C][C]16.0454[/C][C]-0.00951389[/C][C]0.0240972[/C][/ROW]
[ROW][C]22[/C][C]16.08[/C][C]16.0732[/C][C]16.0825[/C][C]-0.00930556[/C][C]0.00680556[/C][/ROW]
[ROW][C]23[/C][C]16.07[/C][C]16.1052[/C][C]16.1258[/C][C]-0.020625[/C][C]-0.0352083[/C][/ROW]
[ROW][C]24[/C][C]16.11[/C][C]16.1552[/C][C]16.1721[/C][C]-0.016875[/C][C]-0.0452083[/C][/ROW]
[ROW][C]25[/C][C]16.15[/C][C]16.1926[/C][C]16.2196[/C][C]-0.0269444[/C][C]-0.0426389[/C][/ROW]
[ROW][C]26[/C][C]16.18[/C][C]16.2888[/C][C]16.2712[/C][C]0.0175694[/C][C]-0.108819[/C][/ROW]
[ROW][C]27[/C][C]16.3[/C][C]16.3542[/C][C]16.3233[/C][C]0.0309028[/C][C]-0.0542361[/C][/ROW]
[ROW][C]28[/C][C]16.42[/C][C]16.4031[/C][C]16.3787[/C][C]0.0243056[/C][C]0.0169444[/C][/ROW]
[ROW][C]29[/C][C]16.49[/C][C]16.4682[/C][C]16.4442[/C][C]0.0240278[/C][C]0.0218056[/C][/ROW]
[ROW][C]30[/C][C]16.5[/C][C]16.5119[/C][C]16.5129[/C][C]-0.00104167[/C][C]-0.011875[/C][/ROW]
[ROW][C]31[/C][C]16.58[/C][C]16.5789[/C][C]16.58[/C][C]-0.00111111[/C][C]0.00111111[/C][/ROW]
[ROW][C]32[/C][C]16.64[/C][C]16.6407[/C][C]16.6521[/C][C]-0.0113889[/C][C]-0.000694444[/C][/ROW]
[ROW][C]33[/C][C]16.66[/C][C]16.7172[/C][C]16.7267[/C][C]-0.00951389[/C][C]-0.0571528[/C][/ROW]
[ROW][C]34[/C][C]16.81[/C][C]16.784[/C][C]16.7933[/C][C]-0.00930556[/C][C]0.0259722[/C][/ROW]
[ROW][C]35[/C][C]16.91[/C][C]16.836[/C][C]16.8567[/C][C]-0.020625[/C][C]0.0739583[/C][/ROW]
[ROW][C]36[/C][C]16.92[/C][C]16.9073[/C][C]16.9242[/C][C]-0.016875[/C][C]0.0127083[/C][/ROW]
[ROW][C]37[/C][C]16.95[/C][C]16.966[/C][C]16.9929[/C][C]-0.0269444[/C][C]-0.0159722[/C][/ROW]
[ROW][C]38[/C][C]17.11[/C][C]17.0772[/C][C]17.0596[/C][C]0.0175694[/C][C]0.0328472[/C][/ROW]
[ROW][C]39[/C][C]17.16[/C][C]17.1563[/C][C]17.1254[/C][C]0.0309028[/C][C]0.00368056[/C][/ROW]
[ROW][C]40[/C][C]17.16[/C][C]17.2114[/C][C]17.1871[/C][C]0.0243056[/C][C]-0.0513889[/C][/ROW]
[ROW][C]41[/C][C]17.27[/C][C]17.2669[/C][C]17.2429[/C][C]0.0240278[/C][C]0.00305556[/C][/ROW]
[ROW][C]42[/C][C]17.34[/C][C]17.2994[/C][C]17.3004[/C][C]-0.00104167[/C][C]0.040625[/C][/ROW]
[ROW][C]43[/C][C]17.39[/C][C]17.3576[/C][C]17.3588[/C][C]-0.00111111[/C][C]0.0323611[/C][/ROW]
[ROW][C]44[/C][C]17.43[/C][C]17.3999[/C][C]17.4112[/C][C]-0.0113889[/C][C]0.0301389[/C][/ROW]
[ROW][C]45[/C][C]17.45[/C][C]17.4497[/C][C]17.4592[/C][C]-0.00951389[/C][C]0.000347222[/C][/ROW]
[ROW][C]46[/C][C]17.5[/C][C]17.4961[/C][C]17.5054[/C][C]-0.00930556[/C][C]0.00388889[/C][/ROW]
[ROW][C]47[/C][C]17.56[/C][C]17.5273[/C][C]17.5479[/C][C]-0.020625[/C][C]0.0327083[/C][/ROW]
[ROW][C]48[/C][C]17.65[/C][C]17.5677[/C][C]17.5846[/C][C]-0.016875[/C][C]0.0822917[/C][/ROW]
[ROW][C]49[/C][C]17.62[/C][C]17.591[/C][C]17.6179[/C][C]-0.0269444[/C][C]0.0290278[/C][/ROW]
[ROW][C]50[/C][C]17.7[/C][C]17.6672[/C][C]17.6496[/C][C]0.0175694[/C][C]0.0328472[/C][/ROW]
[ROW][C]51[/C][C]17.72[/C][C]17.713[/C][C]17.6821[/C][C]0.0309028[/C][C]0.00701389[/C][/ROW]
[ROW][C]52[/C][C]17.71[/C][C]17.7393[/C][C]17.715[/C][C]0.0243056[/C][C]-0.0293056[/C][/ROW]
[ROW][C]53[/C][C]17.74[/C][C]17.7686[/C][C]17.7446[/C][C]0.0240278[/C][C]-0.0286111[/C][/ROW]
[ROW][C]54[/C][C]17.75[/C][C]17.7694[/C][C]17.7704[/C][C]-0.00104167[/C][C]-0.019375[/C][/ROW]
[ROW][C]55[/C][C]17.78[/C][C]17.7964[/C][C]17.7975[/C][C]-0.00111111[/C][C]-0.0163889[/C][/ROW]
[ROW][C]56[/C][C]17.8[/C][C]17.8178[/C][C]17.8292[/C][C]-0.0113889[/C][C]-0.0177778[/C][/ROW]
[ROW][C]57[/C][C]17.86[/C][C]17.8538[/C][C]17.8633[/C][C]-0.00951389[/C][C]0.00618056[/C][/ROW]
[ROW][C]58[/C][C]17.88[/C][C]17.8915[/C][C]17.9008[/C][C]-0.00930556[/C][C]-0.0115278[/C][/ROW]
[ROW][C]59[/C][C]17.89[/C][C]17.9206[/C][C]17.9412[/C][C]-0.020625[/C][C]-0.030625[/C][/ROW]
[ROW][C]60[/C][C]17.94[/C][C]17.9652[/C][C]17.9821[/C][C]-0.016875[/C][C]-0.0252083[/C][/ROW]
[ROW][C]61[/C][C]17.98[/C][C]17.996[/C][C]18.0229[/C][C]-0.0269444[/C][C]-0.0159722[/C][/ROW]
[ROW][C]62[/C][C]18.1[/C][C]18.0817[/C][C]18.0642[/C][C]0.0175694[/C][C]0.0182639[/C][/ROW]
[ROW][C]63[/C][C]18.14[/C][C]18.1359[/C][C]18.105[/C][C]0.0309028[/C][C]0.00409722[/C][/ROW]
[ROW][C]64[/C][C]18.19[/C][C]18.1693[/C][C]18.145[/C][C]0.0243056[/C][C]0.0206944[/C][/ROW]
[ROW][C]65[/C][C]18.23[/C][C]18.2086[/C][C]18.1846[/C][C]0.0240278[/C][C]0.0213889[/C][/ROW]
[ROW][C]66[/C][C]18.24[/C][C]18.2223[/C][C]18.2233[/C][C]-0.00104167[/C][C]0.0177083[/C][/ROW]
[ROW][C]67[/C][C]18.27[/C][C]18.2601[/C][C]18.2612[/C][C]-0.00111111[/C][C]0.00986111[/C][/ROW]
[ROW][C]68[/C][C]18.3[/C][C]18.284[/C][C]18.2954[/C][C]-0.0113889[/C][C]0.0159722[/C][/ROW]
[ROW][C]69[/C][C]18.34[/C][C]18.3188[/C][C]18.3283[/C][C]-0.00951389[/C][C]0.0211806[/C][/ROW]
[ROW][C]70[/C][C]18.36[/C][C]18.3528[/C][C]18.3621[/C][C]-0.00930556[/C][C]0.00722222[/C][/ROW]
[ROW][C]71[/C][C]18.36[/C][C]18.3735[/C][C]18.3942[/C][C]-0.020625[/C][C]-0.0135417[/C][/ROW]
[ROW][C]72[/C][C]18.4[/C][C]18.4085[/C][C]18.4254[/C][C]-0.016875[/C][C]-0.00854167[/C][/ROW]
[ROW][C]73[/C][C]18.43[/C][C]18.4314[/C][C]18.4583[/C][C]-0.0269444[/C][C]-0.00138889[/C][/ROW]
[ROW][C]74[/C][C]18.47[/C][C]18.5117[/C][C]18.4942[/C][C]0.0175694[/C][C]-0.0417361[/C][/ROW]
[ROW][C]75[/C][C]18.56[/C][C]18.5605[/C][C]18.5296[/C][C]0.0309028[/C][C]-0.000486111[/C][/ROW]
[ROW][C]76[/C][C]18.58[/C][C]18.5897[/C][C]18.5654[/C][C]0.0243056[/C][C]-0.00972222[/C][/ROW]
[ROW][C]77[/C][C]18.61[/C][C]18.6286[/C][C]18.6046[/C][C]0.0240278[/C][C]-0.0186111[/C][/ROW]
[ROW][C]78[/C][C]18.61[/C][C]18.644[/C][C]18.645[/C][C]-0.00104167[/C][C]-0.0339583[/C][/ROW]
[ROW][C]79[/C][C]18.69[/C][C]NA[/C][C]NA[/C][C]-0.00111111[/C][C]NA[/C][/ROW]
[ROW][C]80[/C][C]18.74[/C][C]NA[/C][C]NA[/C][C]-0.0113889[/C][C]NA[/C][/ROW]
[ROW][C]81[/C][C]18.75[/C][C]NA[/C][C]NA[/C][C]-0.00951389[/C][C]NA[/C][/ROW]
[ROW][C]82[/C][C]18.81[/C][C]NA[/C][C]NA[/C][C]-0.00930556[/C][C]NA[/C][/ROW]
[ROW][C]83[/C][C]18.85[/C][C]NA[/C][C]NA[/C][C]-0.020625[/C][C]NA[/C][/ROW]
[ROW][C]84[/C][C]18.88[/C][C]NA[/C][C]NA[/C][C]-0.016875[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232238&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232238&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
115.13NANA-0.0269444NA
215.25NANA0.0175694NA
315.33NANA0.0309028NA
415.36NANA0.0243056NA
515.4NANA0.0240278NA
615.4NANA-0.00104167NA
715.4115.448115.4492-0.00111111-0.0380556
815.4715.48915.5004-0.0113889-0.0190278
915.5415.539715.5492-0.009513890.000347222
1015.5515.587415.5967-0.00930556-0.0373611
1115.5915.622315.6429-0.020625-0.0322917
1215.6515.67115.6879-0.016875-0.0210417
1315.7515.708115.735-0.02694440.0419444
1415.8615.798415.78080.01756940.0615972
1515.8915.855115.82420.03090280.0349306
1615.9415.892215.86790.02430560.0477778
1715.9315.93415.910.0240278-0.00402778
1815.9515.948115.9492-0.001041670.001875
1915.9915.983915.985-0.001111110.00611111
2015.9916.003616.015-0.0113889-0.0136111
2116.0616.035916.0454-0.009513890.0240972
2216.0816.073216.0825-0.009305560.00680556
2316.0716.105216.1258-0.020625-0.0352083
2416.1116.155216.1721-0.016875-0.0452083
2516.1516.192616.2196-0.0269444-0.0426389
2616.1816.288816.27120.0175694-0.108819
2716.316.354216.32330.0309028-0.0542361
2816.4216.403116.37870.02430560.0169444
2916.4916.468216.44420.02402780.0218056
3016.516.511916.5129-0.00104167-0.011875
3116.5816.578916.58-0.001111110.00111111
3216.6416.640716.6521-0.0113889-0.000694444
3316.6616.717216.7267-0.00951389-0.0571528
3416.8116.78416.7933-0.009305560.0259722
3516.9116.83616.8567-0.0206250.0739583
3616.9216.907316.9242-0.0168750.0127083
3716.9516.96616.9929-0.0269444-0.0159722
3817.1117.077217.05960.01756940.0328472
3917.1617.156317.12540.03090280.00368056
4017.1617.211417.18710.0243056-0.0513889
4117.2717.266917.24290.02402780.00305556
4217.3417.299417.3004-0.001041670.040625
4317.3917.357617.3588-0.001111110.0323611
4417.4317.399917.4112-0.01138890.0301389
4517.4517.449717.4592-0.009513890.000347222
4617.517.496117.5054-0.009305560.00388889
4717.5617.527317.5479-0.0206250.0327083
4817.6517.567717.5846-0.0168750.0822917
4917.6217.59117.6179-0.02694440.0290278
5017.717.667217.64960.01756940.0328472
5117.7217.71317.68210.03090280.00701389
5217.7117.739317.7150.0243056-0.0293056
5317.7417.768617.74460.0240278-0.0286111
5417.7517.769417.7704-0.00104167-0.019375
5517.7817.796417.7975-0.00111111-0.0163889
5617.817.817817.8292-0.0113889-0.0177778
5717.8617.853817.8633-0.009513890.00618056
5817.8817.891517.9008-0.00930556-0.0115278
5917.8917.920617.9412-0.020625-0.030625
6017.9417.965217.9821-0.016875-0.0252083
6117.9817.99618.0229-0.0269444-0.0159722
6218.118.081718.06420.01756940.0182639
6318.1418.135918.1050.03090280.00409722
6418.1918.169318.1450.02430560.0206944
6518.2318.208618.18460.02402780.0213889
6618.2418.222318.2233-0.001041670.0177083
6718.2718.260118.2612-0.001111110.00986111
6818.318.28418.2954-0.01138890.0159722
6918.3418.318818.3283-0.009513890.0211806
7018.3618.352818.3621-0.009305560.00722222
7118.3618.373518.3942-0.020625-0.0135417
7218.418.408518.4254-0.016875-0.00854167
7318.4318.431418.4583-0.0269444-0.00138889
7418.4718.511718.49420.0175694-0.0417361
7518.5618.560518.52960.0309028-0.000486111
7618.5818.589718.56540.0243056-0.00972222
7718.6118.628618.60460.0240278-0.0186111
7818.6118.64418.645-0.00104167-0.0339583
7918.69NANA-0.00111111NA
8018.74NANA-0.0113889NA
8118.75NANA-0.00951389NA
8218.81NANA-0.00930556NA
8318.85NANA-0.020625NA
8418.88NANA-0.016875NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- '12'
par1 <- 'additive'
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')