Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 22 Dec 2013 11:04:51 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/22/t13877283534td5yqqcxmfnnpa.htm/, Retrieved Sun, 05 Dec 2021 17:36:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232540, Retrieved Sun, 05 Dec 2021 17:36:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact82
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Notched Boxplots] [werkloosheidscijf...] [2013-10-08 18:26:09] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD  [Harrell-Davis Quantiles] [consumtieprijs va...] [2013-12-21 15:50:38] [6a1a05b03d1c87a66b915fc3d5866cc8]
-   PD    [Harrell-Davis Quantiles] [] [2013-12-21 16:11:56] [6a1a05b03d1c87a66b915fc3d5866cc8]
- RMPD      [(Partial) Autocorrelation Function] [] [2013-12-21 18:23:11] [6a1a05b03d1c87a66b915fc3d5866cc8]
-    D          [(Partial) Autocorrelation Function] [] [2013-12-22 16:04:51] [4a7f7842fc88d649abcd00dd10ef7b6c] [Current]
Feedback Forum

Post a new message
Dataseries X:
125
123
117
114
111
112
144
150
149
134
123
116
117
111
105
102
95
93
124
130
124
115
106
105
105
101
95
93
84
87
116
120
117
109
105
107
109
109
108
107
99
103
131
137
135
124
118
121
121
118
113
107
100
102
130
136
133
120
112
109
110
106
102
98
92
92
120
127
124
114
108
106
111
110
104
100
96
98
122
134
133
125
118
116




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232540&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232540&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232540&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7375166.75940
20.3125912.86490.002634
30.0011620.01060.495766
4-0.10685-0.97930.165122
5-0.069176-0.6340.263899
6-0.028663-0.26270.396712
7-0.104763-0.96020.169862
8-0.19911-1.82490.035787
9-0.181004-1.65890.05043
100.0220050.20170.420329
110.3441513.15420.001117
120.5433324.97972e-06
130.3192182.92570.00221
14-0.035945-0.32940.37132
15-0.285456-2.61630.00527
16-0.366237-3.35660.000593
17-0.322804-2.95860.002007
18-0.283801-2.60110.00549
19-0.333901-3.06030.001484
20-0.399643-3.66280.000218
21-0.36319-3.32870.000648
22-0.167414-1.53440.064347
230.1335381.22390.112207
240.3290363.01570.001696
250.1825631.67320.049003
26-0.075267-0.68980.246099
27-0.249618-2.28780.012332
28-0.277069-2.53940.006474
29-0.197754-1.81240.036745
30-0.125931-1.15420.12585
31-0.12997-1.19120.118466
32-0.154232-1.41360.080593
33-0.104924-0.96160.169495
340.0677450.62090.268175
350.3167432.9030.00236
360.4798084.39751.6e-05
370.3655613.35040.000605
380.151251.38620.084673
39-0.005483-0.05030.480021
40-0.050579-0.46360.322079
41-0.013624-0.12490.450465
420.0165130.15130.440035
43-0.01951-0.17880.429259
44-0.065253-0.59810.275708
45-0.048592-0.44540.328604
460.0679260.62260.267632
470.2389962.19040.015632
480.3455513.1670.001074

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.737516 & 6.7594 & 0 \tabularnewline
2 & 0.312591 & 2.8649 & 0.002634 \tabularnewline
3 & 0.001162 & 0.0106 & 0.495766 \tabularnewline
4 & -0.10685 & -0.9793 & 0.165122 \tabularnewline
5 & -0.069176 & -0.634 & 0.263899 \tabularnewline
6 & -0.028663 & -0.2627 & 0.396712 \tabularnewline
7 & -0.104763 & -0.9602 & 0.169862 \tabularnewline
8 & -0.19911 & -1.8249 & 0.035787 \tabularnewline
9 & -0.181004 & -1.6589 & 0.05043 \tabularnewline
10 & 0.022005 & 0.2017 & 0.420329 \tabularnewline
11 & 0.344151 & 3.1542 & 0.001117 \tabularnewline
12 & 0.543332 & 4.9797 & 2e-06 \tabularnewline
13 & 0.319218 & 2.9257 & 0.00221 \tabularnewline
14 & -0.035945 & -0.3294 & 0.37132 \tabularnewline
15 & -0.285456 & -2.6163 & 0.00527 \tabularnewline
16 & -0.366237 & -3.3566 & 0.000593 \tabularnewline
17 & -0.322804 & -2.9586 & 0.002007 \tabularnewline
18 & -0.283801 & -2.6011 & 0.00549 \tabularnewline
19 & -0.333901 & -3.0603 & 0.001484 \tabularnewline
20 & -0.399643 & -3.6628 & 0.000218 \tabularnewline
21 & -0.36319 & -3.3287 & 0.000648 \tabularnewline
22 & -0.167414 & -1.5344 & 0.064347 \tabularnewline
23 & 0.133538 & 1.2239 & 0.112207 \tabularnewline
24 & 0.329036 & 3.0157 & 0.001696 \tabularnewline
25 & 0.182563 & 1.6732 & 0.049003 \tabularnewline
26 & -0.075267 & -0.6898 & 0.246099 \tabularnewline
27 & -0.249618 & -2.2878 & 0.012332 \tabularnewline
28 & -0.277069 & -2.5394 & 0.006474 \tabularnewline
29 & -0.197754 & -1.8124 & 0.036745 \tabularnewline
30 & -0.125931 & -1.1542 & 0.12585 \tabularnewline
31 & -0.12997 & -1.1912 & 0.118466 \tabularnewline
32 & -0.154232 & -1.4136 & 0.080593 \tabularnewline
33 & -0.104924 & -0.9616 & 0.169495 \tabularnewline
34 & 0.067745 & 0.6209 & 0.268175 \tabularnewline
35 & 0.316743 & 2.903 & 0.00236 \tabularnewline
36 & 0.479808 & 4.3975 & 1.6e-05 \tabularnewline
37 & 0.365561 & 3.3504 & 0.000605 \tabularnewline
38 & 0.15125 & 1.3862 & 0.084673 \tabularnewline
39 & -0.005483 & -0.0503 & 0.480021 \tabularnewline
40 & -0.050579 & -0.4636 & 0.322079 \tabularnewline
41 & -0.013624 & -0.1249 & 0.450465 \tabularnewline
42 & 0.016513 & 0.1513 & 0.440035 \tabularnewline
43 & -0.01951 & -0.1788 & 0.429259 \tabularnewline
44 & -0.065253 & -0.5981 & 0.275708 \tabularnewline
45 & -0.048592 & -0.4454 & 0.328604 \tabularnewline
46 & 0.067926 & 0.6226 & 0.267632 \tabularnewline
47 & 0.238996 & 2.1904 & 0.015632 \tabularnewline
48 & 0.345551 & 3.167 & 0.001074 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232540&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.737516[/C][C]6.7594[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.312591[/C][C]2.8649[/C][C]0.002634[/C][/ROW]
[ROW][C]3[/C][C]0.001162[/C][C]0.0106[/C][C]0.495766[/C][/ROW]
[ROW][C]4[/C][C]-0.10685[/C][C]-0.9793[/C][C]0.165122[/C][/ROW]
[ROW][C]5[/C][C]-0.069176[/C][C]-0.634[/C][C]0.263899[/C][/ROW]
[ROW][C]6[/C][C]-0.028663[/C][C]-0.2627[/C][C]0.396712[/C][/ROW]
[ROW][C]7[/C][C]-0.104763[/C][C]-0.9602[/C][C]0.169862[/C][/ROW]
[ROW][C]8[/C][C]-0.19911[/C][C]-1.8249[/C][C]0.035787[/C][/ROW]
[ROW][C]9[/C][C]-0.181004[/C][C]-1.6589[/C][C]0.05043[/C][/ROW]
[ROW][C]10[/C][C]0.022005[/C][C]0.2017[/C][C]0.420329[/C][/ROW]
[ROW][C]11[/C][C]0.344151[/C][C]3.1542[/C][C]0.001117[/C][/ROW]
[ROW][C]12[/C][C]0.543332[/C][C]4.9797[/C][C]2e-06[/C][/ROW]
[ROW][C]13[/C][C]0.319218[/C][C]2.9257[/C][C]0.00221[/C][/ROW]
[ROW][C]14[/C][C]-0.035945[/C][C]-0.3294[/C][C]0.37132[/C][/ROW]
[ROW][C]15[/C][C]-0.285456[/C][C]-2.6163[/C][C]0.00527[/C][/ROW]
[ROW][C]16[/C][C]-0.366237[/C][C]-3.3566[/C][C]0.000593[/C][/ROW]
[ROW][C]17[/C][C]-0.322804[/C][C]-2.9586[/C][C]0.002007[/C][/ROW]
[ROW][C]18[/C][C]-0.283801[/C][C]-2.6011[/C][C]0.00549[/C][/ROW]
[ROW][C]19[/C][C]-0.333901[/C][C]-3.0603[/C][C]0.001484[/C][/ROW]
[ROW][C]20[/C][C]-0.399643[/C][C]-3.6628[/C][C]0.000218[/C][/ROW]
[ROW][C]21[/C][C]-0.36319[/C][C]-3.3287[/C][C]0.000648[/C][/ROW]
[ROW][C]22[/C][C]-0.167414[/C][C]-1.5344[/C][C]0.064347[/C][/ROW]
[ROW][C]23[/C][C]0.133538[/C][C]1.2239[/C][C]0.112207[/C][/ROW]
[ROW][C]24[/C][C]0.329036[/C][C]3.0157[/C][C]0.001696[/C][/ROW]
[ROW][C]25[/C][C]0.182563[/C][C]1.6732[/C][C]0.049003[/C][/ROW]
[ROW][C]26[/C][C]-0.075267[/C][C]-0.6898[/C][C]0.246099[/C][/ROW]
[ROW][C]27[/C][C]-0.249618[/C][C]-2.2878[/C][C]0.012332[/C][/ROW]
[ROW][C]28[/C][C]-0.277069[/C][C]-2.5394[/C][C]0.006474[/C][/ROW]
[ROW][C]29[/C][C]-0.197754[/C][C]-1.8124[/C][C]0.036745[/C][/ROW]
[ROW][C]30[/C][C]-0.125931[/C][C]-1.1542[/C][C]0.12585[/C][/ROW]
[ROW][C]31[/C][C]-0.12997[/C][C]-1.1912[/C][C]0.118466[/C][/ROW]
[ROW][C]32[/C][C]-0.154232[/C][C]-1.4136[/C][C]0.080593[/C][/ROW]
[ROW][C]33[/C][C]-0.104924[/C][C]-0.9616[/C][C]0.169495[/C][/ROW]
[ROW][C]34[/C][C]0.067745[/C][C]0.6209[/C][C]0.268175[/C][/ROW]
[ROW][C]35[/C][C]0.316743[/C][C]2.903[/C][C]0.00236[/C][/ROW]
[ROW][C]36[/C][C]0.479808[/C][C]4.3975[/C][C]1.6e-05[/C][/ROW]
[ROW][C]37[/C][C]0.365561[/C][C]3.3504[/C][C]0.000605[/C][/ROW]
[ROW][C]38[/C][C]0.15125[/C][C]1.3862[/C][C]0.084673[/C][/ROW]
[ROW][C]39[/C][C]-0.005483[/C][C]-0.0503[/C][C]0.480021[/C][/ROW]
[ROW][C]40[/C][C]-0.050579[/C][C]-0.4636[/C][C]0.322079[/C][/ROW]
[ROW][C]41[/C][C]-0.013624[/C][C]-0.1249[/C][C]0.450465[/C][/ROW]
[ROW][C]42[/C][C]0.016513[/C][C]0.1513[/C][C]0.440035[/C][/ROW]
[ROW][C]43[/C][C]-0.01951[/C][C]-0.1788[/C][C]0.429259[/C][/ROW]
[ROW][C]44[/C][C]-0.065253[/C][C]-0.5981[/C][C]0.275708[/C][/ROW]
[ROW][C]45[/C][C]-0.048592[/C][C]-0.4454[/C][C]0.328604[/C][/ROW]
[ROW][C]46[/C][C]0.067926[/C][C]0.6226[/C][C]0.267632[/C][/ROW]
[ROW][C]47[/C][C]0.238996[/C][C]2.1904[/C][C]0.015632[/C][/ROW]
[ROW][C]48[/C][C]0.345551[/C][C]3.167[/C][C]0.001074[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232540&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232540&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.7375166.75940
20.3125912.86490.002634
30.0011620.01060.495766
4-0.10685-0.97930.165122
5-0.069176-0.6340.263899
6-0.028663-0.26270.396712
7-0.104763-0.96020.169862
8-0.19911-1.82490.035787
9-0.181004-1.65890.05043
100.0220050.20170.420329
110.3441513.15420.001117
120.5433324.97972e-06
130.3192182.92570.00221
14-0.035945-0.32940.37132
15-0.285456-2.61630.00527
16-0.366237-3.35660.000593
17-0.322804-2.95860.002007
18-0.283801-2.60110.00549
19-0.333901-3.06030.001484
20-0.399643-3.66280.000218
21-0.36319-3.32870.000648
22-0.167414-1.53440.064347
230.1335381.22390.112207
240.3290363.01570.001696
250.1825631.67320.049003
26-0.075267-0.68980.246099
27-0.249618-2.28780.012332
28-0.277069-2.53940.006474
29-0.197754-1.81240.036745
30-0.125931-1.15420.12585
31-0.12997-1.19120.118466
32-0.154232-1.41360.080593
33-0.104924-0.96160.169495
340.0677450.62090.268175
350.3167432.9030.00236
360.4798084.39751.6e-05
370.3655613.35040.000605
380.151251.38620.084673
39-0.005483-0.05030.480021
40-0.050579-0.46360.322079
41-0.013624-0.12490.450465
420.0165130.15130.440035
43-0.01951-0.17880.429259
44-0.065253-0.59810.275708
45-0.048592-0.44540.328604
460.0679260.62260.267632
470.2389962.19040.015632
480.3455513.1670.001074







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7375166.75940
2-0.507244-4.6496e-06
30.0820170.75170.227167
40.0546320.50070.308942
50.0238140.21830.413878
6-0.107117-0.98170.164524
7-0.22253-2.03950.022271
80.0651060.59670.276153
90.1115241.02210.154825
100.2722682.49540.00727
110.3003222.75250.003623
12-0.006397-0.05860.476694
13-0.680845-6.240
140.259262.37620.009884
15-0.075837-0.69510.244469
16-0.229697-2.10520.01913
17-0.131939-1.20920.114982
18-0.116638-1.0690.144066
190.0967690.88690.188833
20-0.125239-1.14780.127147
210.001880.01720.493147
22-0.08127-0.74480.229221
23-0.028532-0.26150.397172
24-0.01174-0.10760.457285
25-0.011041-0.10120.459818
26-0.063592-0.58280.280784
27-0.125389-1.14920.126865
280.1307731.19860.117036
29-0.036109-0.33090.370755
300.0324490.29740.383448
31-0.027026-0.24770.402486
320.066960.61370.270536
330.0013730.01260.494997
34-0.020448-0.18740.425897
35-0.005351-0.0490.4805
360.0587130.53810.295962
370.0075610.06930.472459
38-0.040528-0.37140.355621
390.0440570.40380.343697
40-0.101602-0.93120.177209
410.0168630.15460.438773
42-0.008643-0.07920.468524
43-0.1042-0.9550.171156
440.0455190.41720.338804
45-0.062942-0.57690.282785
460.0199560.18290.427658
47-0.093488-0.85680.196987
480.0206710.18950.425097

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.737516 & 6.7594 & 0 \tabularnewline
2 & -0.507244 & -4.649 & 6e-06 \tabularnewline
3 & 0.082017 & 0.7517 & 0.227167 \tabularnewline
4 & 0.054632 & 0.5007 & 0.308942 \tabularnewline
5 & 0.023814 & 0.2183 & 0.413878 \tabularnewline
6 & -0.107117 & -0.9817 & 0.164524 \tabularnewline
7 & -0.22253 & -2.0395 & 0.022271 \tabularnewline
8 & 0.065106 & 0.5967 & 0.276153 \tabularnewline
9 & 0.111524 & 1.0221 & 0.154825 \tabularnewline
10 & 0.272268 & 2.4954 & 0.00727 \tabularnewline
11 & 0.300322 & 2.7525 & 0.003623 \tabularnewline
12 & -0.006397 & -0.0586 & 0.476694 \tabularnewline
13 & -0.680845 & -6.24 & 0 \tabularnewline
14 & 0.25926 & 2.3762 & 0.009884 \tabularnewline
15 & -0.075837 & -0.6951 & 0.244469 \tabularnewline
16 & -0.229697 & -2.1052 & 0.01913 \tabularnewline
17 & -0.131939 & -1.2092 & 0.114982 \tabularnewline
18 & -0.116638 & -1.069 & 0.144066 \tabularnewline
19 & 0.096769 & 0.8869 & 0.188833 \tabularnewline
20 & -0.125239 & -1.1478 & 0.127147 \tabularnewline
21 & 0.00188 & 0.0172 & 0.493147 \tabularnewline
22 & -0.08127 & -0.7448 & 0.229221 \tabularnewline
23 & -0.028532 & -0.2615 & 0.397172 \tabularnewline
24 & -0.01174 & -0.1076 & 0.457285 \tabularnewline
25 & -0.011041 & -0.1012 & 0.459818 \tabularnewline
26 & -0.063592 & -0.5828 & 0.280784 \tabularnewline
27 & -0.125389 & -1.1492 & 0.126865 \tabularnewline
28 & 0.130773 & 1.1986 & 0.117036 \tabularnewline
29 & -0.036109 & -0.3309 & 0.370755 \tabularnewline
30 & 0.032449 & 0.2974 & 0.383448 \tabularnewline
31 & -0.027026 & -0.2477 & 0.402486 \tabularnewline
32 & 0.06696 & 0.6137 & 0.270536 \tabularnewline
33 & 0.001373 & 0.0126 & 0.494997 \tabularnewline
34 & -0.020448 & -0.1874 & 0.425897 \tabularnewline
35 & -0.005351 & -0.049 & 0.4805 \tabularnewline
36 & 0.058713 & 0.5381 & 0.295962 \tabularnewline
37 & 0.007561 & 0.0693 & 0.472459 \tabularnewline
38 & -0.040528 & -0.3714 & 0.355621 \tabularnewline
39 & 0.044057 & 0.4038 & 0.343697 \tabularnewline
40 & -0.101602 & -0.9312 & 0.177209 \tabularnewline
41 & 0.016863 & 0.1546 & 0.438773 \tabularnewline
42 & -0.008643 & -0.0792 & 0.468524 \tabularnewline
43 & -0.1042 & -0.955 & 0.171156 \tabularnewline
44 & 0.045519 & 0.4172 & 0.338804 \tabularnewline
45 & -0.062942 & -0.5769 & 0.282785 \tabularnewline
46 & 0.019956 & 0.1829 & 0.427658 \tabularnewline
47 & -0.093488 & -0.8568 & 0.196987 \tabularnewline
48 & 0.020671 & 0.1895 & 0.425097 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232540&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.737516[/C][C]6.7594[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.507244[/C][C]-4.649[/C][C]6e-06[/C][/ROW]
[ROW][C]3[/C][C]0.082017[/C][C]0.7517[/C][C]0.227167[/C][/ROW]
[ROW][C]4[/C][C]0.054632[/C][C]0.5007[/C][C]0.308942[/C][/ROW]
[ROW][C]5[/C][C]0.023814[/C][C]0.2183[/C][C]0.413878[/C][/ROW]
[ROW][C]6[/C][C]-0.107117[/C][C]-0.9817[/C][C]0.164524[/C][/ROW]
[ROW][C]7[/C][C]-0.22253[/C][C]-2.0395[/C][C]0.022271[/C][/ROW]
[ROW][C]8[/C][C]0.065106[/C][C]0.5967[/C][C]0.276153[/C][/ROW]
[ROW][C]9[/C][C]0.111524[/C][C]1.0221[/C][C]0.154825[/C][/ROW]
[ROW][C]10[/C][C]0.272268[/C][C]2.4954[/C][C]0.00727[/C][/ROW]
[ROW][C]11[/C][C]0.300322[/C][C]2.7525[/C][C]0.003623[/C][/ROW]
[ROW][C]12[/C][C]-0.006397[/C][C]-0.0586[/C][C]0.476694[/C][/ROW]
[ROW][C]13[/C][C]-0.680845[/C][C]-6.24[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.25926[/C][C]2.3762[/C][C]0.009884[/C][/ROW]
[ROW][C]15[/C][C]-0.075837[/C][C]-0.6951[/C][C]0.244469[/C][/ROW]
[ROW][C]16[/C][C]-0.229697[/C][C]-2.1052[/C][C]0.01913[/C][/ROW]
[ROW][C]17[/C][C]-0.131939[/C][C]-1.2092[/C][C]0.114982[/C][/ROW]
[ROW][C]18[/C][C]-0.116638[/C][C]-1.069[/C][C]0.144066[/C][/ROW]
[ROW][C]19[/C][C]0.096769[/C][C]0.8869[/C][C]0.188833[/C][/ROW]
[ROW][C]20[/C][C]-0.125239[/C][C]-1.1478[/C][C]0.127147[/C][/ROW]
[ROW][C]21[/C][C]0.00188[/C][C]0.0172[/C][C]0.493147[/C][/ROW]
[ROW][C]22[/C][C]-0.08127[/C][C]-0.7448[/C][C]0.229221[/C][/ROW]
[ROW][C]23[/C][C]-0.028532[/C][C]-0.2615[/C][C]0.397172[/C][/ROW]
[ROW][C]24[/C][C]-0.01174[/C][C]-0.1076[/C][C]0.457285[/C][/ROW]
[ROW][C]25[/C][C]-0.011041[/C][C]-0.1012[/C][C]0.459818[/C][/ROW]
[ROW][C]26[/C][C]-0.063592[/C][C]-0.5828[/C][C]0.280784[/C][/ROW]
[ROW][C]27[/C][C]-0.125389[/C][C]-1.1492[/C][C]0.126865[/C][/ROW]
[ROW][C]28[/C][C]0.130773[/C][C]1.1986[/C][C]0.117036[/C][/ROW]
[ROW][C]29[/C][C]-0.036109[/C][C]-0.3309[/C][C]0.370755[/C][/ROW]
[ROW][C]30[/C][C]0.032449[/C][C]0.2974[/C][C]0.383448[/C][/ROW]
[ROW][C]31[/C][C]-0.027026[/C][C]-0.2477[/C][C]0.402486[/C][/ROW]
[ROW][C]32[/C][C]0.06696[/C][C]0.6137[/C][C]0.270536[/C][/ROW]
[ROW][C]33[/C][C]0.001373[/C][C]0.0126[/C][C]0.494997[/C][/ROW]
[ROW][C]34[/C][C]-0.020448[/C][C]-0.1874[/C][C]0.425897[/C][/ROW]
[ROW][C]35[/C][C]-0.005351[/C][C]-0.049[/C][C]0.4805[/C][/ROW]
[ROW][C]36[/C][C]0.058713[/C][C]0.5381[/C][C]0.295962[/C][/ROW]
[ROW][C]37[/C][C]0.007561[/C][C]0.0693[/C][C]0.472459[/C][/ROW]
[ROW][C]38[/C][C]-0.040528[/C][C]-0.3714[/C][C]0.355621[/C][/ROW]
[ROW][C]39[/C][C]0.044057[/C][C]0.4038[/C][C]0.343697[/C][/ROW]
[ROW][C]40[/C][C]-0.101602[/C][C]-0.9312[/C][C]0.177209[/C][/ROW]
[ROW][C]41[/C][C]0.016863[/C][C]0.1546[/C][C]0.438773[/C][/ROW]
[ROW][C]42[/C][C]-0.008643[/C][C]-0.0792[/C][C]0.468524[/C][/ROW]
[ROW][C]43[/C][C]-0.1042[/C][C]-0.955[/C][C]0.171156[/C][/ROW]
[ROW][C]44[/C][C]0.045519[/C][C]0.4172[/C][C]0.338804[/C][/ROW]
[ROW][C]45[/C][C]-0.062942[/C][C]-0.5769[/C][C]0.282785[/C][/ROW]
[ROW][C]46[/C][C]0.019956[/C][C]0.1829[/C][C]0.427658[/C][/ROW]
[ROW][C]47[/C][C]-0.093488[/C][C]-0.8568[/C][C]0.196987[/C][/ROW]
[ROW][C]48[/C][C]0.020671[/C][C]0.1895[/C][C]0.425097[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232540&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232540&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.7375166.75940
2-0.507244-4.6496e-06
30.0820170.75170.227167
40.0546320.50070.308942
50.0238140.21830.413878
6-0.107117-0.98170.164524
7-0.22253-2.03950.022271
80.0651060.59670.276153
90.1115241.02210.154825
100.2722682.49540.00727
110.3003222.75250.003623
12-0.006397-0.05860.476694
13-0.680845-6.240
140.259262.37620.009884
15-0.075837-0.69510.244469
16-0.229697-2.10520.01913
17-0.131939-1.20920.114982
18-0.116638-1.0690.144066
190.0967690.88690.188833
20-0.125239-1.14780.127147
210.001880.01720.493147
22-0.08127-0.74480.229221
23-0.028532-0.26150.397172
24-0.01174-0.10760.457285
25-0.011041-0.10120.459818
26-0.063592-0.58280.280784
27-0.125389-1.14920.126865
280.1307731.19860.117036
29-0.036109-0.33090.370755
300.0324490.29740.383448
31-0.027026-0.24770.402486
320.066960.61370.270536
330.0013730.01260.494997
34-0.020448-0.18740.425897
35-0.005351-0.0490.4805
360.0587130.53810.295962
370.0075610.06930.472459
38-0.040528-0.37140.355621
390.0440570.40380.343697
40-0.101602-0.93120.177209
410.0168630.15460.438773
42-0.008643-0.07920.468524
43-0.1042-0.9550.171156
440.0455190.41720.338804
45-0.062942-0.57690.282785
460.0199560.18290.427658
47-0.093488-0.85680.196987
480.0206710.18950.425097



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')