Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationSun, 22 Dec 2013 14:57:14 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/22/t1387742250gvy33z7esm5tvcl.htm/, Retrieved Sun, 05 Dec 2021 18:33:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232571, Retrieved Sun, 05 Dec 2021 18:33:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact46
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [] [2013-12-22 19:57:14] [818da16b08b21220aa14002c9e16e6e1] [Current]
Feedback Forum

Post a new message
Dataseries X:
85,73
85,73
85,74
86,32
87,59
87,81
87,87
87,94
87,96
88,01
88,01
88,01
88,01
88,01
88,59
89,43
89,63
89,73
89,88
89,89
89,9
89,91
89,86
90,07
90,17
90,17
90,28
90,87
92,05
92,1
92,16
92,22
92,25
92,29
92,29
92,29
92,29
92,29
91,95
91,82
92,16
92,31
92,33
92,4
92,54
92,49
92,54
92,58
92,58
92,39
92,33
93,59
95,51
95,99
96,22
97,2
98,54
99,64
100,23
100,17




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232571&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232571&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232571&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Variability - Ungrouped Data
Absolute range14.5
Relative range (unbiased)4.29975196730901
Relative range (biased)4.33603743733968
Variance (unbiased)11.3723232768362
Variance (biased)11.1827845555556
Standard Deviation (unbiased)3.37228754361726
Standard Deviation (biased)3.34406706804088
Coefficient of Variation (unbiased)0.036917062763332
Coefficient of Variation (biased)0.0366081279365744
Mean Squared Error (MSE versus 0)8355.57899
Mean Squared Error (MSE versus Mean)11.1827845555556
Mean Absolute Deviation from Mean (MAD Mean)2.55382222222222
Mean Absolute Deviation from Median (MAD Median)2.518
Median Absolute Deviation from Mean1.45266666666667
Median Absolute Deviation from Median2.095
Mean Squared Deviation from Mean11.1827845555556
Mean Squared Deviation from Median11.6083233333333
Interquartile Difference (Weighted Average at Xnp)3.8
Interquartile Difference (Weighted Average at X(n+1)p)3.59750000000001
Interquartile Difference (Empirical Distribution Function)3.8
Interquartile Difference (Empirical Distribution Function - Averaging)3.38500000000001
Interquartile Difference (Empirical Distribution Function - Interpolation)3.1725
Interquartile Difference (Closest Observation)3.8
Interquartile Difference (True Basic - Statistics Graphics Toolkit)3.17250000000001
Interquartile Difference (MS Excel (old versions))3.81
Semi Interquartile Difference (Weighted Average at Xnp)1.9
Semi Interquartile Difference (Weighted Average at X(n+1)p)1.79875000000001
Semi Interquartile Difference (Empirical Distribution Function)1.9
Semi Interquartile Difference (Empirical Distribution Function - Averaging)1.6925
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)1.58625
Semi Interquartile Difference (Closest Observation)1.9
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)1.58625000000001
Semi Interquartile Difference (MS Excel (old versions))1.905
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0209967952259918
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0198540266835912
Coefficient of Quartile Variation (Empirical Distribution Function)0.0209967952259918
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0186599046332792
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0174685112533554
Coefficient of Quartile Variation (Closest Observation)0.0209967952259918
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0174685112533554
Coefficient of Quartile Variation (MS Excel (old versions))0.0210508867893254
Number of all Pairs of Observations1770
Squared Differences between all Pairs of Observations22.7446465536724
Mean Absolute Differences between all Pairs of Observations3.64881355932204
Gini Mean Difference3.64881355932204
Leik Measure of Dispersion0.508839049568925
Index of Diversity0.98331099741615
Index of Qualitative Variation0.999977285507949
Coefficient of Dispersion0.0277589371980676
Observations60

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 14.5 \tabularnewline
Relative range (unbiased) & 4.29975196730901 \tabularnewline
Relative range (biased) & 4.33603743733968 \tabularnewline
Variance (unbiased) & 11.3723232768362 \tabularnewline
Variance (biased) & 11.1827845555556 \tabularnewline
Standard Deviation (unbiased) & 3.37228754361726 \tabularnewline
Standard Deviation (biased) & 3.34406706804088 \tabularnewline
Coefficient of Variation (unbiased) & 0.036917062763332 \tabularnewline
Coefficient of Variation (biased) & 0.0366081279365744 \tabularnewline
Mean Squared Error (MSE versus 0) & 8355.57899 \tabularnewline
Mean Squared Error (MSE versus Mean) & 11.1827845555556 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 2.55382222222222 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 2.518 \tabularnewline
Median Absolute Deviation from Mean & 1.45266666666667 \tabularnewline
Median Absolute Deviation from Median & 2.095 \tabularnewline
Mean Squared Deviation from Mean & 11.1827845555556 \tabularnewline
Mean Squared Deviation from Median & 11.6083233333333 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 3.8 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 3.59750000000001 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 3.8 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 3.38500000000001 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 3.1725 \tabularnewline
Interquartile Difference (Closest Observation) & 3.8 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 3.17250000000001 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 3.81 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 1.9 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 1.79875000000001 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 1.9 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 1.6925 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 1.58625 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 1.9 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 1.58625000000001 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 1.905 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.0209967952259918 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.0198540266835912 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.0209967952259918 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.0186599046332792 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.0174685112533554 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.0209967952259918 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.0174685112533554 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.0210508867893254 \tabularnewline
Number of all Pairs of Observations & 1770 \tabularnewline
Squared Differences between all Pairs of Observations & 22.7446465536724 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 3.64881355932204 \tabularnewline
Gini Mean Difference & 3.64881355932204 \tabularnewline
Leik Measure of Dispersion & 0.508839049568925 \tabularnewline
Index of Diversity & 0.98331099741615 \tabularnewline
Index of Qualitative Variation & 0.999977285507949 \tabularnewline
Coefficient of Dispersion & 0.0277589371980676 \tabularnewline
Observations & 60 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232571&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]14.5[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]4.29975196730901[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]4.33603743733968[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]11.3723232768362[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]11.1827845555556[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]3.37228754361726[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]3.34406706804088[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.036917062763332[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.0366081279365744[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]8355.57899[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]11.1827845555556[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]2.55382222222222[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]2.518[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]1.45266666666667[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]2.095[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]11.1827845555556[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]11.6083233333333[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]3.8[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]3.59750000000001[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]3.8[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]3.38500000000001[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]3.1725[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]3.8[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]3.17250000000001[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]3.81[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]1.9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]1.79875000000001[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]1.9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]1.6925[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]1.58625[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]1.9[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]1.58625000000001[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]1.905[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.0209967952259918[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.0198540266835912[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.0209967952259918[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.0186599046332792[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.0174685112533554[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.0209967952259918[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.0174685112533554[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.0210508867893254[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]1770[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]22.7446465536724[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]3.64881355932204[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]3.64881355932204[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.508839049568925[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.98331099741615[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999977285507949[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.0277589371980676[/C][/ROW]
[ROW][C]Observations[/C][C]60[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232571&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232571&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range14.5
Relative range (unbiased)4.29975196730901
Relative range (biased)4.33603743733968
Variance (unbiased)11.3723232768362
Variance (biased)11.1827845555556
Standard Deviation (unbiased)3.37228754361726
Standard Deviation (biased)3.34406706804088
Coefficient of Variation (unbiased)0.036917062763332
Coefficient of Variation (biased)0.0366081279365744
Mean Squared Error (MSE versus 0)8355.57899
Mean Squared Error (MSE versus Mean)11.1827845555556
Mean Absolute Deviation from Mean (MAD Mean)2.55382222222222
Mean Absolute Deviation from Median (MAD Median)2.518
Median Absolute Deviation from Mean1.45266666666667
Median Absolute Deviation from Median2.095
Mean Squared Deviation from Mean11.1827845555556
Mean Squared Deviation from Median11.6083233333333
Interquartile Difference (Weighted Average at Xnp)3.8
Interquartile Difference (Weighted Average at X(n+1)p)3.59750000000001
Interquartile Difference (Empirical Distribution Function)3.8
Interquartile Difference (Empirical Distribution Function - Averaging)3.38500000000001
Interquartile Difference (Empirical Distribution Function - Interpolation)3.1725
Interquartile Difference (Closest Observation)3.8
Interquartile Difference (True Basic - Statistics Graphics Toolkit)3.17250000000001
Interquartile Difference (MS Excel (old versions))3.81
Semi Interquartile Difference (Weighted Average at Xnp)1.9
Semi Interquartile Difference (Weighted Average at X(n+1)p)1.79875000000001
Semi Interquartile Difference (Empirical Distribution Function)1.9
Semi Interquartile Difference (Empirical Distribution Function - Averaging)1.6925
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)1.58625
Semi Interquartile Difference (Closest Observation)1.9
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)1.58625000000001
Semi Interquartile Difference (MS Excel (old versions))1.905
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0209967952259918
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0198540266835912
Coefficient of Quartile Variation (Empirical Distribution Function)0.0209967952259918
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0186599046332792
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0174685112533554
Coefficient of Quartile Variation (Closest Observation)0.0209967952259918
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0174685112533554
Coefficient of Quartile Variation (MS Excel (old versions))0.0210508867893254
Number of all Pairs of Observations1770
Squared Differences between all Pairs of Observations22.7446465536724
Mean Absolute Differences between all Pairs of Observations3.64881355932204
Gini Mean Difference3.64881355932204
Leik Measure of Dispersion0.508839049568925
Index of Diversity0.98331099741615
Index of Qualitative Variation0.999977285507949
Coefficient of Dispersion0.0277589371980676
Observations60



Parameters (Session):
par1 = 12 ;
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')