## Free Statistics

of Irreproducible Research!

Author's title
Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationSun, 22 Dec 2013 15:33:39 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/Dec/22/t13877445255or6umnvynsn9si.htm/, Retrieved Tue, 18 Jan 2022 22:59:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=232573, Retrieved Tue, 18 Jan 2022 22:59:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact45
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2013-12-22 20:33:39] [20efb5145ec2a2ddd8dcd418764211fa] [Current]
Feedback Forum

Post a new message
Dataseries X:
19,4
19,4
19,4
19,5
19,5
19,5
28,7
28,7
28,7
21,8
21,8
21,8
20
20
20
22,6
22,6
22,6
22,4
22,4
22,4
18,6
18,6
18,6
16,2
16,2
16,2
13,8
13,8
13,8
24,1
24,1
24,1
19,9
19,9
19,9
22,3
22,3
22,3
20,9
20,9
20,9
23,5
23,5
23,5
23,1
23,1
23,1
25,7
25,7
25,7
19,7
19,7
19,7
23,1
23,1
23,1
20,7
20,7
20,7
18
18
18
16,9
16,9
16,9
24,4
24,4
24,4
15,5
15,5
15,5
18,4
18,4
18,4
16,2
16,2
16,2
20,6
20,6
20,6
19,8
19,8
19,8


 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 4 seconds R Server 'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232573&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232573&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232573&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 4 seconds R Server 'Gwilym Jenkins' @ jenkins.wessa.net

 Estimated Parameters of Exponential Smoothing Parameter Value alpha 1 beta 0 gamma FALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 1 \tabularnewline
beta & 0 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232573&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]1[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232573&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232573&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Estimated Parameters of Exponential Smoothing Parameter Value alpha 1 beta 0 gamma FALSE

 Interpolation Forecasts of Exponential Smoothing t Observed Fitted Residuals 3 19.4 19.4 0 4 19.5 19.4 0.100000000000001 5 19.5 19.5 0 6 19.5 19.5 0 7 28.7 19.5 9.2 8 28.7 28.7 0 9 28.7 28.7 0 10 21.8 28.7 -6.9 11 21.8 21.8 0 12 21.8 21.8 0 13 20 21.8 -1.8 14 20 20 0 15 20 20 0 16 22.6 20 2.6 17 22.6 22.6 0 18 22.6 22.6 0 19 22.4 22.6 -0.200000000000003 20 22.4 22.4 0 21 22.4 22.4 0 22 18.6 22.4 -3.8 23 18.6 18.6 0 24 18.6 18.6 0 25 16.2 18.6 -2.4 26 16.2 16.2 0 27 16.2 16.2 0 28 13.8 16.2 -2.4 29 13.8 13.8 0 30 13.8 13.8 0 31 24.1 13.8 10.3 32 24.1 24.1 0 33 24.1 24.1 0 34 19.9 24.1 -4.2 35 19.9 19.9 0 36 19.9 19.9 0 37 22.3 19.9 2.4 38 22.3 22.3 0 39 22.3 22.3 0 40 20.9 22.3 -1.4 41 20.9 20.9 0 42 20.9 20.9 0 43 23.5 20.9 2.6 44 23.5 23.5 0 45 23.5 23.5 0 46 23.1 23.5 -0.399999999999999 47 23.1 23.1 0 48 23.1 23.1 0 49 25.7 23.1 2.6 50 25.7 25.7 0 51 25.7 25.7 0 52 19.7 25.7 -6 53 19.7 19.7 0 54 19.7 19.7 0 55 23.1 19.7 3.4 56 23.1 23.1 0 57 23.1 23.1 0 58 20.7 23.1 -2.4 59 20.7 20.7 0 60 20.7 20.7 0 61 18 20.7 -2.7 62 18 18 0 63 18 18 0 64 16.9 18 -1.1 65 16.9 16.9 0 66 16.9 16.9 0 67 24.4 16.9 7.5 68 24.4 24.4 0 69 24.4 24.4 0 70 15.5 24.4 -8.9 71 15.5 15.5 0 72 15.5 15.5 0 73 18.4 15.5 2.9 74 18.4 18.4 0 75 18.4 18.4 0 76 16.2 18.4 -2.2 77 16.2 16.2 0 78 16.2 16.2 0 79 20.6 16.2 4.4 80 20.6 20.6 0 81 20.6 20.6 0 82 19.8 20.6 -0.800000000000001 83 19.8 19.8 0 84 19.8 19.8 0

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 19.4 & 19.4 & 0 \tabularnewline
4 & 19.5 & 19.4 & 0.100000000000001 \tabularnewline
5 & 19.5 & 19.5 & 0 \tabularnewline
6 & 19.5 & 19.5 & 0 \tabularnewline
7 & 28.7 & 19.5 & 9.2 \tabularnewline
8 & 28.7 & 28.7 & 0 \tabularnewline
9 & 28.7 & 28.7 & 0 \tabularnewline
10 & 21.8 & 28.7 & -6.9 \tabularnewline
11 & 21.8 & 21.8 & 0 \tabularnewline
12 & 21.8 & 21.8 & 0 \tabularnewline
13 & 20 & 21.8 & -1.8 \tabularnewline
14 & 20 & 20 & 0 \tabularnewline
15 & 20 & 20 & 0 \tabularnewline
16 & 22.6 & 20 & 2.6 \tabularnewline
17 & 22.6 & 22.6 & 0 \tabularnewline
18 & 22.6 & 22.6 & 0 \tabularnewline
19 & 22.4 & 22.6 & -0.200000000000003 \tabularnewline
20 & 22.4 & 22.4 & 0 \tabularnewline
21 & 22.4 & 22.4 & 0 \tabularnewline
22 & 18.6 & 22.4 & -3.8 \tabularnewline
23 & 18.6 & 18.6 & 0 \tabularnewline
24 & 18.6 & 18.6 & 0 \tabularnewline
25 & 16.2 & 18.6 & -2.4 \tabularnewline
26 & 16.2 & 16.2 & 0 \tabularnewline
27 & 16.2 & 16.2 & 0 \tabularnewline
28 & 13.8 & 16.2 & -2.4 \tabularnewline
29 & 13.8 & 13.8 & 0 \tabularnewline
30 & 13.8 & 13.8 & 0 \tabularnewline
31 & 24.1 & 13.8 & 10.3 \tabularnewline
32 & 24.1 & 24.1 & 0 \tabularnewline
33 & 24.1 & 24.1 & 0 \tabularnewline
34 & 19.9 & 24.1 & -4.2 \tabularnewline
35 & 19.9 & 19.9 & 0 \tabularnewline
36 & 19.9 & 19.9 & 0 \tabularnewline
37 & 22.3 & 19.9 & 2.4 \tabularnewline
38 & 22.3 & 22.3 & 0 \tabularnewline
39 & 22.3 & 22.3 & 0 \tabularnewline
40 & 20.9 & 22.3 & -1.4 \tabularnewline
41 & 20.9 & 20.9 & 0 \tabularnewline
42 & 20.9 & 20.9 & 0 \tabularnewline
43 & 23.5 & 20.9 & 2.6 \tabularnewline
44 & 23.5 & 23.5 & 0 \tabularnewline
45 & 23.5 & 23.5 & 0 \tabularnewline
46 & 23.1 & 23.5 & -0.399999999999999 \tabularnewline
47 & 23.1 & 23.1 & 0 \tabularnewline
48 & 23.1 & 23.1 & 0 \tabularnewline
49 & 25.7 & 23.1 & 2.6 \tabularnewline
50 & 25.7 & 25.7 & 0 \tabularnewline
51 & 25.7 & 25.7 & 0 \tabularnewline
52 & 19.7 & 25.7 & -6 \tabularnewline
53 & 19.7 & 19.7 & 0 \tabularnewline
54 & 19.7 & 19.7 & 0 \tabularnewline
55 & 23.1 & 19.7 & 3.4 \tabularnewline
56 & 23.1 & 23.1 & 0 \tabularnewline
57 & 23.1 & 23.1 & 0 \tabularnewline
58 & 20.7 & 23.1 & -2.4 \tabularnewline
59 & 20.7 & 20.7 & 0 \tabularnewline
60 & 20.7 & 20.7 & 0 \tabularnewline
61 & 18 & 20.7 & -2.7 \tabularnewline
62 & 18 & 18 & 0 \tabularnewline
63 & 18 & 18 & 0 \tabularnewline
64 & 16.9 & 18 & -1.1 \tabularnewline
65 & 16.9 & 16.9 & 0 \tabularnewline
66 & 16.9 & 16.9 & 0 \tabularnewline
67 & 24.4 & 16.9 & 7.5 \tabularnewline
68 & 24.4 & 24.4 & 0 \tabularnewline
69 & 24.4 & 24.4 & 0 \tabularnewline
70 & 15.5 & 24.4 & -8.9 \tabularnewline
71 & 15.5 & 15.5 & 0 \tabularnewline
72 & 15.5 & 15.5 & 0 \tabularnewline
73 & 18.4 & 15.5 & 2.9 \tabularnewline
74 & 18.4 & 18.4 & 0 \tabularnewline
75 & 18.4 & 18.4 & 0 \tabularnewline
76 & 16.2 & 18.4 & -2.2 \tabularnewline
77 & 16.2 & 16.2 & 0 \tabularnewline
78 & 16.2 & 16.2 & 0 \tabularnewline
79 & 20.6 & 16.2 & 4.4 \tabularnewline
80 & 20.6 & 20.6 & 0 \tabularnewline
81 & 20.6 & 20.6 & 0 \tabularnewline
82 & 19.8 & 20.6 & -0.800000000000001 \tabularnewline
83 & 19.8 & 19.8 & 0 \tabularnewline
84 & 19.8 & 19.8 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232573&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]19.4[/C][C]19.4[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]19.5[/C][C]19.4[/C][C]0.100000000000001[/C][/ROW]
[ROW][C]5[/C][C]19.5[/C][C]19.5[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]19.5[/C][C]19.5[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]28.7[/C][C]19.5[/C][C]9.2[/C][/ROW]
[ROW][C]8[/C][C]28.7[/C][C]28.7[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]28.7[/C][C]28.7[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]21.8[/C][C]28.7[/C][C]-6.9[/C][/ROW]
[ROW][C]11[/C][C]21.8[/C][C]21.8[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]21.8[/C][C]21.8[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]20[/C][C]21.8[/C][C]-1.8[/C][/ROW]
[ROW][C]14[/C][C]20[/C][C]20[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]20[/C][C]20[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]22.6[/C][C]20[/C][C]2.6[/C][/ROW]
[ROW][C]17[/C][C]22.6[/C][C]22.6[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]22.6[/C][C]22.6[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]22.4[/C][C]22.6[/C][C]-0.200000000000003[/C][/ROW]
[ROW][C]20[/C][C]22.4[/C][C]22.4[/C][C]0[/C][/ROW]
[ROW][C]21[/C][C]22.4[/C][C]22.4[/C][C]0[/C][/ROW]
[ROW][C]22[/C][C]18.6[/C][C]22.4[/C][C]-3.8[/C][/ROW]
[ROW][C]23[/C][C]18.6[/C][C]18.6[/C][C]0[/C][/ROW]
[ROW][C]24[/C][C]18.6[/C][C]18.6[/C][C]0[/C][/ROW]
[ROW][C]25[/C][C]16.2[/C][C]18.6[/C][C]-2.4[/C][/ROW]
[ROW][C]26[/C][C]16.2[/C][C]16.2[/C][C]0[/C][/ROW]
[ROW][C]27[/C][C]16.2[/C][C]16.2[/C][C]0[/C][/ROW]
[ROW][C]28[/C][C]13.8[/C][C]16.2[/C][C]-2.4[/C][/ROW]
[ROW][C]29[/C][C]13.8[/C][C]13.8[/C][C]0[/C][/ROW]
[ROW][C]30[/C][C]13.8[/C][C]13.8[/C][C]0[/C][/ROW]
[ROW][C]31[/C][C]24.1[/C][C]13.8[/C][C]10.3[/C][/ROW]
[ROW][C]32[/C][C]24.1[/C][C]24.1[/C][C]0[/C][/ROW]
[ROW][C]33[/C][C]24.1[/C][C]24.1[/C][C]0[/C][/ROW]
[ROW][C]34[/C][C]19.9[/C][C]24.1[/C][C]-4.2[/C][/ROW]
[ROW][C]35[/C][C]19.9[/C][C]19.9[/C][C]0[/C][/ROW]
[ROW][C]36[/C][C]19.9[/C][C]19.9[/C][C]0[/C][/ROW]
[ROW][C]37[/C][C]22.3[/C][C]19.9[/C][C]2.4[/C][/ROW]
[ROW][C]38[/C][C]22.3[/C][C]22.3[/C][C]0[/C][/ROW]
[ROW][C]39[/C][C]22.3[/C][C]22.3[/C][C]0[/C][/ROW]
[ROW][C]40[/C][C]20.9[/C][C]22.3[/C][C]-1.4[/C][/ROW]
[ROW][C]41[/C][C]20.9[/C][C]20.9[/C][C]0[/C][/ROW]
[ROW][C]42[/C][C]20.9[/C][C]20.9[/C][C]0[/C][/ROW]
[ROW][C]43[/C][C]23.5[/C][C]20.9[/C][C]2.6[/C][/ROW]
[ROW][C]44[/C][C]23.5[/C][C]23.5[/C][C]0[/C][/ROW]
[ROW][C]45[/C][C]23.5[/C][C]23.5[/C][C]0[/C][/ROW]
[ROW][C]46[/C][C]23.1[/C][C]23.5[/C][C]-0.399999999999999[/C][/ROW]
[ROW][C]47[/C][C]23.1[/C][C]23.1[/C][C]0[/C][/ROW]
[ROW][C]48[/C][C]23.1[/C][C]23.1[/C][C]0[/C][/ROW]
[ROW][C]49[/C][C]25.7[/C][C]23.1[/C][C]2.6[/C][/ROW]
[ROW][C]50[/C][C]25.7[/C][C]25.7[/C][C]0[/C][/ROW]
[ROW][C]51[/C][C]25.7[/C][C]25.7[/C][C]0[/C][/ROW]
[ROW][C]52[/C][C]19.7[/C][C]25.7[/C][C]-6[/C][/ROW]
[ROW][C]53[/C][C]19.7[/C][C]19.7[/C][C]0[/C][/ROW]
[ROW][C]54[/C][C]19.7[/C][C]19.7[/C][C]0[/C][/ROW]
[ROW][C]55[/C][C]23.1[/C][C]19.7[/C][C]3.4[/C][/ROW]
[ROW][C]56[/C][C]23.1[/C][C]23.1[/C][C]0[/C][/ROW]
[ROW][C]57[/C][C]23.1[/C][C]23.1[/C][C]0[/C][/ROW]
[ROW][C]58[/C][C]20.7[/C][C]23.1[/C][C]-2.4[/C][/ROW]
[ROW][C]59[/C][C]20.7[/C][C]20.7[/C][C]0[/C][/ROW]
[ROW][C]60[/C][C]20.7[/C][C]20.7[/C][C]0[/C][/ROW]
[ROW][C]61[/C][C]18[/C][C]20.7[/C][C]-2.7[/C][/ROW]
[ROW][C]62[/C][C]18[/C][C]18[/C][C]0[/C][/ROW]
[ROW][C]63[/C][C]18[/C][C]18[/C][C]0[/C][/ROW]
[ROW][C]64[/C][C]16.9[/C][C]18[/C][C]-1.1[/C][/ROW]
[ROW][C]65[/C][C]16.9[/C][C]16.9[/C][C]0[/C][/ROW]
[ROW][C]66[/C][C]16.9[/C][C]16.9[/C][C]0[/C][/ROW]
[ROW][C]67[/C][C]24.4[/C][C]16.9[/C][C]7.5[/C][/ROW]
[ROW][C]68[/C][C]24.4[/C][C]24.4[/C][C]0[/C][/ROW]
[ROW][C]69[/C][C]24.4[/C][C]24.4[/C][C]0[/C][/ROW]
[ROW][C]70[/C][C]15.5[/C][C]24.4[/C][C]-8.9[/C][/ROW]
[ROW][C]71[/C][C]15.5[/C][C]15.5[/C][C]0[/C][/ROW]
[ROW][C]72[/C][C]15.5[/C][C]15.5[/C][C]0[/C][/ROW]
[ROW][C]73[/C][C]18.4[/C][C]15.5[/C][C]2.9[/C][/ROW]
[ROW][C]74[/C][C]18.4[/C][C]18.4[/C][C]0[/C][/ROW]
[ROW][C]75[/C][C]18.4[/C][C]18.4[/C][C]0[/C][/ROW]
[ROW][C]76[/C][C]16.2[/C][C]18.4[/C][C]-2.2[/C][/ROW]
[ROW][C]77[/C][C]16.2[/C][C]16.2[/C][C]0[/C][/ROW]
[ROW][C]78[/C][C]16.2[/C][C]16.2[/C][C]0[/C][/ROW]
[ROW][C]79[/C][C]20.6[/C][C]16.2[/C][C]4.4[/C][/ROW]
[ROW][C]80[/C][C]20.6[/C][C]20.6[/C][C]0[/C][/ROW]
[ROW][C]81[/C][C]20.6[/C][C]20.6[/C][C]0[/C][/ROW]
[ROW][C]82[/C][C]19.8[/C][C]20.6[/C][C]-0.800000000000001[/C][/ROW]
[ROW][C]83[/C][C]19.8[/C][C]19.8[/C][C]0[/C][/ROW]
[ROW][C]84[/C][C]19.8[/C][C]19.8[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232573&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232573&T=2

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Interpolation Forecasts of Exponential Smoothing t Observed Fitted Residuals 3 19.4 19.4 0 4 19.5 19.4 0.100000000000001 5 19.5 19.5 0 6 19.5 19.5 0 7 28.7 19.5 9.2 8 28.7 28.7 0 9 28.7 28.7 0 10 21.8 28.7 -6.9 11 21.8 21.8 0 12 21.8 21.8 0 13 20 21.8 -1.8 14 20 20 0 15 20 20 0 16 22.6 20 2.6 17 22.6 22.6 0 18 22.6 22.6 0 19 22.4 22.6 -0.200000000000003 20 22.4 22.4 0 21 22.4 22.4 0 22 18.6 22.4 -3.8 23 18.6 18.6 0 24 18.6 18.6 0 25 16.2 18.6 -2.4 26 16.2 16.2 0 27 16.2 16.2 0 28 13.8 16.2 -2.4 29 13.8 13.8 0 30 13.8 13.8 0 31 24.1 13.8 10.3 32 24.1 24.1 0 33 24.1 24.1 0 34 19.9 24.1 -4.2 35 19.9 19.9 0 36 19.9 19.9 0 37 22.3 19.9 2.4 38 22.3 22.3 0 39 22.3 22.3 0 40 20.9 22.3 -1.4 41 20.9 20.9 0 42 20.9 20.9 0 43 23.5 20.9 2.6 44 23.5 23.5 0 45 23.5 23.5 0 46 23.1 23.5 -0.399999999999999 47 23.1 23.1 0 48 23.1 23.1 0 49 25.7 23.1 2.6 50 25.7 25.7 0 51 25.7 25.7 0 52 19.7 25.7 -6 53 19.7 19.7 0 54 19.7 19.7 0 55 23.1 19.7 3.4 56 23.1 23.1 0 57 23.1 23.1 0 58 20.7 23.1 -2.4 59 20.7 20.7 0 60 20.7 20.7 0 61 18 20.7 -2.7 62 18 18 0 63 18 18 0 64 16.9 18 -1.1 65 16.9 16.9 0 66 16.9 16.9 0 67 24.4 16.9 7.5 68 24.4 24.4 0 69 24.4 24.4 0 70 15.5 24.4 -8.9 71 15.5 15.5 0 72 15.5 15.5 0 73 18.4 15.5 2.9 74 18.4 18.4 0 75 18.4 18.4 0 76 16.2 18.4 -2.2 77 16.2 16.2 0 78 16.2 16.2 0 79 20.6 16.2 4.4 80 20.6 20.6 0 81 20.6 20.6 0 82 19.8 20.6 -0.800000000000001 83 19.8 19.8 0 84 19.8 19.8 0

 Extrapolation Forecasts of Exponential Smoothing t Forecast 95% Lower Bound 95% Upper Bound 85 19.8 14.7210689539384 24.8789310460616 86 19.8 12.6173068323019 26.9826931676981 87 19.8 11.0030333800823 28.5969666199177 88 19.8 9.64213790787674 29.9578620921233 89 19.8 8.44316492797209 31.1568350720279 90 19.8 7.35921049836901 32.240789501631 91 19.8 6.3624115260758 33.2375884739242 92 19.8 5.43461366460375 34.1653863353962 93 19.8 4.56320686181512 35.0367931381849 94 19.8 3.7390098155037 35.8609901844963 95 19.8 2.95509138412632 36.6449086158737 96 19.8 2.20606676016463 37.3939332398354

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
85 & 19.8 & 14.7210689539384 & 24.8789310460616 \tabularnewline
86 & 19.8 & 12.6173068323019 & 26.9826931676981 \tabularnewline
87 & 19.8 & 11.0030333800823 & 28.5969666199177 \tabularnewline
88 & 19.8 & 9.64213790787674 & 29.9578620921233 \tabularnewline
89 & 19.8 & 8.44316492797209 & 31.1568350720279 \tabularnewline
90 & 19.8 & 7.35921049836901 & 32.240789501631 \tabularnewline
91 & 19.8 & 6.3624115260758 & 33.2375884739242 \tabularnewline
92 & 19.8 & 5.43461366460375 & 34.1653863353962 \tabularnewline
93 & 19.8 & 4.56320686181512 & 35.0367931381849 \tabularnewline
94 & 19.8 & 3.7390098155037 & 35.8609901844963 \tabularnewline
95 & 19.8 & 2.95509138412632 & 36.6449086158737 \tabularnewline
96 & 19.8 & 2.20606676016463 & 37.3939332398354 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=232573&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]85[/C][C]19.8[/C][C]14.7210689539384[/C][C]24.8789310460616[/C][/ROW]
[ROW][C]86[/C][C]19.8[/C][C]12.6173068323019[/C][C]26.9826931676981[/C][/ROW]
[ROW][C]87[/C][C]19.8[/C][C]11.0030333800823[/C][C]28.5969666199177[/C][/ROW]
[ROW][C]88[/C][C]19.8[/C][C]9.64213790787674[/C][C]29.9578620921233[/C][/ROW]
[ROW][C]89[/C][C]19.8[/C][C]8.44316492797209[/C][C]31.1568350720279[/C][/ROW]
[ROW][C]90[/C][C]19.8[/C][C]7.35921049836901[/C][C]32.240789501631[/C][/ROW]
[ROW][C]91[/C][C]19.8[/C][C]6.3624115260758[/C][C]33.2375884739242[/C][/ROW]
[ROW][C]92[/C][C]19.8[/C][C]5.43461366460375[/C][C]34.1653863353962[/C][/ROW]
[ROW][C]93[/C][C]19.8[/C][C]4.56320686181512[/C][C]35.0367931381849[/C][/ROW]
[ROW][C]94[/C][C]19.8[/C][C]3.7390098155037[/C][C]35.8609901844963[/C][/ROW]
[ROW][C]95[/C][C]19.8[/C][C]2.95509138412632[/C][C]36.6449086158737[/C][/ROW]
[ROW][C]96[/C][C]19.8[/C][C]2.20606676016463[/C][C]37.3939332398354[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=232573&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=232573&T=3

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Extrapolation Forecasts of Exponential Smoothing t Forecast 95% Lower Bound 95% Upper Bound 85 19.8 14.7210689539384 24.8789310460616 86 19.8 12.6173068323019 26.9826931676981 87 19.8 11.0030333800823 28.5969666199177 88 19.8 9.64213790787674 29.9578620921233 89 19.8 8.44316492797209 31.1568350720279 90 19.8 7.35921049836901 32.240789501631 91 19.8 6.3624115260758 33.2375884739242 92 19.8 5.43461366460375 34.1653863353962 93 19.8 4.56320686181512 35.0367931381849 94 19.8 3.7390098155037 35.8609901844963 95 19.8 2.95509138412632 36.6449086158737 96 19.8 2.20606676016463 37.3939332398354

par1 <- as.numeric(par1)if (par2 == 'Single') K <- 1if (par2 == 'Double') K <- 2if (par2 == 'Triple') K <- par1nx <- length(x)nxmK <- nx - Kx <- ts(x, frequency = par1)if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)fitmyresid <- x - fit$fitted[,'xhat']bitmap(file='test1.png')op <- par(mfrow=c(2,1))plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')par(op)dev.off()bitmap(file='test2.png')p <- predict(fit, par1, prediction.interval=TRUE)np <- length(p[,1])plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')dev.off()bitmap(file='test3.png')op <- par(mfrow = c(2,2))acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')spectrum(myresid,main='Residals Periodogram')cpgram(myresid,main='Residal Cumulative Periodogram')qqnorm(myresid,main='Residual Normal QQ Plot')qqline(myresid)par(op)dev.off()load(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Parameter',header=TRUE)a<-table.element(a,'Value',header=TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'alpha',header=TRUE)a<-table.element(a,fit$alpha)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'beta',header=TRUE)a<-table.element(a,fit$beta)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'gamma',header=TRUE)a<-table.element(a,fit$gamma)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'t',header=TRUE)a<-table.element(a,'Observed',header=TRUE)a<-table.element(a,'Fitted',header=TRUE)a<-table.element(a,'Residuals',header=TRUE)a<-table.row.end(a)for (i in 1:nxmK) {a<-table.row.start(a)a<-table.element(a,i+K,header=TRUE)a<-table.element(a,x[i+K])a<-table.element(a,fit\$fitted[i,'xhat'])a<-table.element(a,myresid[i])a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable1.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'t',header=TRUE)a<-table.element(a,'Forecast',header=TRUE)a<-table.element(a,'95% Lower Bound',header=TRUE)a<-table.element(a,'95% Upper Bound',header=TRUE)a<-table.row.end(a)for (i in 1:np) {a<-table.row.start(a)a<-table.element(a,nx+i,header=TRUE)a<-table.element(a,p[i,'fit'])a<-table.element(a,p[i,'lwr'])a<-table.element(a,p[i,'upr'])a<-table.row.end(a)}a<-table.end(a)table.save(a,file='mytable2.tab')