Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_bootstrapplot1.wasp
Title produced by softwareBootstrap Plot - Central Tendency
Date of computationWed, 26 Oct 2016 14:47:11 +0200
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Oct/26/t1477486319tbp64ytluj0mb6u.htm/, Retrieved Thu, 07 Jul 2022 14:28:59 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=296688, Retrieved Thu, 07 Jul 2022 14:28:59 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Bootstrap Plot - Central Tendency] [Bootstrap] [2016-10-26 12:47:11] [325a18647724c80085378f2a448a1737] [Current]
Feedback Forum

Post a new message
Dataseries X:
21
22
22
18
23
12
20
22
21
19
22
15
20
19
18
15
20
21
21
15
16
23
21
18
25
9
30
20
23
16
16
19
25
18
23
21
10
14
22
26
23
23
24
24
18
23
15
19
16
25
23
17
19
21
18
27
21
13
8
29
28
23
21
19
19
20
18
19
17
19
25
19
22
23
14
16
24
20
12
24
22
12
22
20
10
23
17
22
24
18
21
20
20
22
19
20
26
23
24
21
21
19
8
17
20
11
8
15
18
18
19
19
23
22
21
25
30
17
27
23
23
18
18
23
19
15
20
16
24
25
25
19
19
16
19
19
23
21
22
19
20
20
3
23
23
20
15
16
7
24
17
24
24
19
25
20
28
23
27
18
28
21
19
23
27
22
28
25
21
22
28
20
29
25
25
20
20
16
20
20
23
18
25
18
19
25
25
25
24
19
26
10
17
13
17
30
25
4
16
21
23
22
17
20
20
22
16
23
0
18
25
23
12
18
24
11
18
23
24
29
18
15
29
16
19
22
16
23
23
19
4
20
24
20
4
24
22
16
3
15
24
17
20
27
26
23
17
20
22
19
24
19
23
15
27
26
22
22
18
15
22
27
10
20
17
23
19
13
27
23
16
25
2
26
20
23
22
24




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=296688&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=296688&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=296688&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Estimation Results of Bootstrap
statisticP0.5P2.5Q1EstimateQ3P97.5P99.5S.D.IQR
mean19.26919.48119.80419.99620.17420.55420.7240.284610.3696
median202020202121210.446061
midrange14.514.515151616.513170.614721
mode19192023232323.0051.7233
mode k.dens18.46418.91619.36319.57422.3623.123.4051.56222.9967

\begin{tabular}{lllllllll}
\hline
Estimation Results of Bootstrap \tabularnewline
statistic & P0.5 & P2.5 & Q1 & Estimate & Q3 & P97.5 & P99.5 & S.D. & IQR \tabularnewline
mean & 19.269 & 19.481 & 19.804 & 19.996 & 20.174 & 20.554 & 20.724 & 0.28461 & 0.3696 \tabularnewline
median & 20 & 20 & 20 & 20 & 21 & 21 & 21 & 0.44606 & 1 \tabularnewline
midrange & 14.5 & 14.5 & 15 & 15 & 16 & 16.513 & 17 & 0.61472 & 1 \tabularnewline
mode & 19 & 19 & 20 & 23 & 23 & 23 & 23.005 & 1.723 & 3 \tabularnewline
mode k.dens & 18.464 & 18.916 & 19.363 & 19.574 & 22.36 & 23.1 & 23.405 & 1.5622 & 2.9967 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=296688&T=1

[TABLE]
[ROW][C]Estimation Results of Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]P0.5[/C][C]P2.5[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]P97.5[/C][C]P99.5[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]19.269[/C][C]19.481[/C][C]19.804[/C][C]19.996[/C][C]20.174[/C][C]20.554[/C][C]20.724[/C][C]0.28461[/C][C]0.3696[/C][/ROW]
[ROW][C]median[/C][C]20[/C][C]20[/C][C]20[/C][C]20[/C][C]21[/C][C]21[/C][C]21[/C][C]0.44606[/C][C]1[/C][/ROW]
[ROW][C]midrange[/C][C]14.5[/C][C]14.5[/C][C]15[/C][C]15[/C][C]16[/C][C]16.513[/C][C]17[/C][C]0.61472[/C][C]1[/C][/ROW]
[ROW][C]mode[/C][C]19[/C][C]19[/C][C]20[/C][C]23[/C][C]23[/C][C]23[/C][C]23.005[/C][C]1.723[/C][C]3[/C][/ROW]
[ROW][C]mode k.dens[/C][C]18.464[/C][C]18.916[/C][C]19.363[/C][C]19.574[/C][C]22.36[/C][C]23.1[/C][C]23.405[/C][C]1.5622[/C][C]2.9967[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=296688&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=296688&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Bootstrap
statisticP0.5P2.5Q1EstimateQ3P97.5P99.5S.D.IQR
mean19.26919.48119.80419.99620.17420.55420.7240.284610.3696
median202020202121210.446061
midrange14.514.515151616.513170.614721
mode19192023232323.0051.7233
mode k.dens18.46418.91619.36319.57422.3623.123.4051.56222.9967



Parameters (Session):
par1 = 200 ; par2 = 5 ; par3 = 0 ; par4 = P0.5 P2.5 Q1 Q3 P97.5 P99.5 ;
Parameters (R input):
par1 = 200 ; par2 = 5 ; par3 = 0 ; par4 = P0.5 P2.5 Q1 Q3 P97.5 P99.5 ;
R code (references can be found in the software module):
par4 <- 'P1 P5 Q1 Q3 P95 P99'
par3 <- '0'
par2 <- '5'
par1 <- '200'
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par3 == '0') bw <- NULL
if (par3 != '0') bw <- as.numeric(par3)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
library(modeest)
library(lattice)
library(boot)
boot.stat <- function(s,i)
{
s.mean <- mean(s[i])
s.median <- median(s[i])
s.midrange <- (max(s[i]) + min(s[i])) / 2
s.mode <- mlv(s[i], method='mfv')$M
s.kernelmode <- mlv(s[i], method='kernel', bw=bw)$M
c(s.mean, s.median, s.midrange, s.mode, s.kernelmode)
}
x<-na.omit(x)
(r <- boot(x,boot.stat, R=par1, stype='i'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot7.png')
plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode')
grid()
dev.off()
bitmap(file='plot8.png')
plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
bitmap(file='plot9.png')
densityplot(~r$t[,4],col='black',main='Density Plot',xlab='mode')
dev.off()
bitmap(file='plot10.png')
densityplot(~r$t[,5],col='black',main='Density Plot',xlab='mode of kernel dens.')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5]))
colnames(z) <- list('mean','median','midrange','mode','mode k.dens')
bitmap(file='plot11.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Bootstrap',10,TRUE)
a<-table.row.end(a)
if (par4 == 'P1 P5 Q1 Q3 P95 P99') {
myq.1 <- 0.01
myq.2 <- 0.05
myq.3 <- 0.95
myq.4 <- 0.99
myl.1 <- 'P1'
myl.2 <- 'P5'
myl.3 <- 'P95'
myl.4 <- 'P99'
}
if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') {
myq.1 <- 0.005
myq.2 <- 0.025
myq.3 <- 0.975
myq.4 <- 0.995
myl.1 <- 'P0.5'
myl.2 <- 'P2.5'
myl.3 <- 'P97.5'
myl.4 <- 'P99.5'
}
if (par4 == 'P10 P20 Q1 Q3 P80 P90') {
myq.1 <- 0.10
myq.2 <- 0.20
myq.3 <- 0.80
myq.4 <- 0.90
myl.1 <- 'P10'
myl.2 <- 'P20'
myl.3 <- 'P80'
myl.4 <- 'P90'
}
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,myl.1,header=TRUE)
a<-table.element(a,myl.2,header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,myl.3,header=TRUE)
a<-table.element(a,myl.4,header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
p01 <- quantile(r$t[,1],myq.1)[[1]]
p05 <- quantile(r$t[,1],myq.2)[[1]]
p95 <- quantile(r$t[,1],myq.3)[[1]]
p99 <- quantile(r$t[,1],myq.4)[[1]]
a<-table.element(a,signif(p01,par2))
a<-table.element(a,signif(p05,par2))
a<-table.element(a,signif(q1,par2))
a<-table.element(a,signif(r$t0[1],par2))
a<-table.element(a,signif(q3,par2))
a<-table.element(a,signif(p95,par2))
a<-table.element(a,signif(p99,par2))
a<-table.element( a,signif( sqrt(var(r$t[,1])),par2 ) )
a<-table.element(a,signif(q3-q1,par2))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
p01 <- quantile(r$t[,2],myq.1)[[1]]
p05 <- quantile(r$t[,2],myq.2)[[1]]
p95 <- quantile(r$t[,2],myq.3)[[1]]
p99 <- quantile(r$t[,2],myq.4)[[1]]
a<-table.element(a,signif(p01,par2))
a<-table.element(a,signif(p05,par2))
a<-table.element(a,signif(q1,par2))
a<-table.element(a,signif(r$t0[2],par2))
a<-table.element(a,signif(q3,par2))
a<-table.element(a,signif(p95,par2))
a<-table.element(a,signif(p99,par2))
a<-table.element(a,signif(sqrt(var(r$t[,2])),par2))
a<-table.element(a,signif(q3-q1,par2))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
p01 <- quantile(r$t[,3],myq.1)[[1]]
p05 <- quantile(r$t[,3],myq.2)[[1]]
p95 <- quantile(r$t[,3],myq.3)[[1]]
p99 <- quantile(r$t[,3],myq.4)[[1]]
a<-table.element(a,signif(p01,par2))
a<-table.element(a,signif(p05,par2))
a<-table.element(a,signif(q1,par2))
a<-table.element(a,signif(r$t0[3],par2))
a<-table.element(a,signif(q3,par2))
a<-table.element(a,signif(p95,par2))
a<-table.element(a,signif(p99,par2))
a<-table.element(a,signif(sqrt(var(r$t[,3])),par2))
a<-table.element(a,signif(q3-q1,par2))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode',header=TRUE)
q1 <- quantile(r$t[,4],0.25)[[1]]
q3 <- quantile(r$t[,4],0.75)[[1]]
p01 <- quantile(r$t[,4],myq.1)[[1]]
p05 <- quantile(r$t[,4],myq.2)[[1]]
p95 <- quantile(r$t[,4],myq.3)[[1]]
p99 <- quantile(r$t[,4],myq.4)[[1]]
a<-table.element(a,signif(p01,par2))
a<-table.element(a,signif(p05,par2))
a<-table.element(a,signif(q1,par2))
a<-table.element(a,signif(r$t0[4],par2))
a<-table.element(a,signif(q3,par2))
a<-table.element(a,signif(p95,par2))
a<-table.element(a,signif(p99,par2))
a<-table.element(a,signif(sqrt(var(r$t[,4])),par2))
a<-table.element(a,signif(q3-q1,par2))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode k.dens',header=TRUE)
q1 <- quantile(r$t[,5],0.25)[[1]]
q3 <- quantile(r$t[,5],0.75)[[1]]
p01 <- quantile(r$t[,5],myq.1)[[1]]
p05 <- quantile(r$t[,5],myq.2)[[1]]
p95 <- quantile(r$t[,5],myq.3)[[1]]
p99 <- quantile(r$t[,5],myq.4)[[1]]
a<-table.element(a,signif(p01,par2))
a<-table.element(a,signif(p05,par2))
a<-table.element(a,signif(q1,par2))
a<-table.element(a,signif(r$t0[5],par2))
a<-table.element(a,signif(q3,par2))
a<-table.element(a,signif(p95,par2))
a<-table.element(a,signif(p99,par2))
a<-table.element(a,signif(sqrt(var(r$t[,5])),par2))
a<-table.element(a,signif(q3-q1,par2))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')