Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_sample.wasp
Title produced by softwareMinimum Sample Size - Testing Proportions
Date of computationThu, 02 Apr 2020 21:46:12 +0200
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2020/Apr/02/t1585856933zhvguwr9w5rvlv8.htm/, Retrieved Wed, 21 Apr 2021 10:09:51 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Wed, 21 Apr 2021 10:09:51 +0200
QR Codes:

Original text written by user:
IsPrivate?This computation is private
User-defined keywords
Estimated Impact0




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Minimum Sample Size
Population Size900
Margin of Error0.05
Confidence0.95
Power0.5
Response Distribution (Proportion)0.33
z(alpha/2) + z(beta)1.95996398454005
z(alpha) + z(beta)1.64485362695147
Minimum Sample Size (2 sided test)246.835572754175
Minimum Sample Size (1 sided test)189.189624151687

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size \tabularnewline
Population Size & 900 \tabularnewline
Margin of Error & 0.05 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.5 \tabularnewline
Response Distribution (Proportion) & 0.33 \tabularnewline
z(alpha/2) + z(beta) & 1.95996398454005 \tabularnewline
z(alpha) + z(beta) & 1.64485362695147 \tabularnewline
Minimum Sample Size (2 sided test) & 246.835572754175 \tabularnewline
Minimum Sample Size (1 sided test) & 189.189624151687 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Minimum Sample Size[/C][/ROW]
[ROW][C]Population Size[/C][C]900[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.05[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.5[/C][/ROW]
[ROW][C]Response Distribution (Proportion)[/C][C]0.33[/C][/ROW]
[ROW][C]z(alpha/2) + z(beta)[/C][C]1.95996398454005[/C][/ROW]
[ROW][C]z(alpha) + z(beta)[/C][C]1.64485362695147[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]246.835572754175[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]189.189624151687[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Minimum Sample Size
Population Size900
Margin of Error0.05
Confidence0.95
Power0.5
Response Distribution (Proportion)0.33
z(alpha/2) + z(beta)1.95996398454005
z(alpha) + z(beta)1.64485362695147
Minimum Sample Size (2 sided test)246.835572754175
Minimum Sample Size (1 sided test)189.189624151687







Minimum Sample Size (infinite population)
Population Sizeinfinite
Margin of Error0.05
Confidence0.95
Power0.5
Response Distribution (Proportion)0.33
z(alpha/2) + z(beta)1.95996398454005
z(alpha) + z(beta)1.64485362695147
Minimum Sample Size (2 sided test)339.738618102188
Minimum Sample Size (1 sided test)239.278263080198

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size (infinite population) \tabularnewline
Population Size & infinite \tabularnewline
Margin of Error & 0.05 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.5 \tabularnewline
Response Distribution (Proportion) & 0.33 \tabularnewline
z(alpha/2) + z(beta) & 1.95996398454005 \tabularnewline
z(alpha) + z(beta) & 1.64485362695147 \tabularnewline
Minimum Sample Size (2 sided test) & 339.738618102188 \tabularnewline
Minimum Sample Size (1 sided test) & 239.278263080198 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Minimum Sample Size (infinite population)[/C][/ROW]
[ROW][C]Population Size[/C][C]infinite[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.05[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.5[/C][/ROW]
[ROW][C]Response Distribution (Proportion)[/C][C]0.33[/C][/ROW]
[ROW][C]z(alpha/2) + z(beta)[/C][C]1.95996398454005[/C][/ROW]
[ROW][C]z(alpha) + z(beta)[/C][C]1.64485362695147[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]339.738618102188[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]239.278263080198[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Minimum Sample Size (infinite population)
Population Sizeinfinite
Margin of Error0.05
Confidence0.95
Power0.5
Response Distribution (Proportion)0.33
z(alpha/2) + z(beta)1.95996398454005
z(alpha) + z(beta)1.64485362695147
Minimum Sample Size (2 sided test)339.738618102188
Minimum Sample Size (1 sided test)239.278263080198



Parameters (Session):
Parameters (R input):
par1 = 900 ; par2 = 0.05 ; par3 = 0.95 ; par4 = 0.33 ; par5 = 0.50 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
(z <- abs(qnorm((1-par3)/2)) + abs(qnorm(1-par5)))
(z1 <- abs(qnorm(1-par3)) + abs(qnorm(1-par5)))
dum <- z*z * par4*(1-par4)
dum1 <- z1*z1 * par4*(1-par4)
par22 <- par2*par2
npop <- array(NA, 200)
ppop <- array(NA, 200)
for (i in 1:200)
{
ppop[i] <- i * 100
npop[i] <- ppop[i] * dum / (dum + (ppop[i]-1)*par22)
}
bitmap(file='pic1.png')
plot(ppop,npop, xlab='population size', ylab='sample size (2 sided test)', main = paste('Minimum Required Sample Size (Confidence =',round(par3*100,2),'%)'))
dumtext <- paste('Margin of error = ',par2)
dumtext <- paste(dumtext,' Response Rate = ')
dumtext <- paste(dumtext, par4)
mtext(dumtext)
grid()
dev.off()
(n <- par1 * dum / (dum + (par1-1)*par22))
(n1 <- par1 * dum1 / (dum1 + (par1-1)*par22))
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Size',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Margin of Error',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Power',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Response Distribution (Proportion)',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)
a<-table.element(a,z)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)
a<-table.element(a,z1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
a<-table.element(a,n1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
(n <- dum / par22)
(n1 <- dum1 / par22)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (infinite population)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Size',header=TRUE)
a<-table.element(a,'infinite')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Margin of Error',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Power',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Response Distribution (Proportion)',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)
a<-table.element(a,z)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)
a<-table.element(a,z1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
a<-table.element(a,n1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')