Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_boxcoxnorm.wasp
Title produced by softwareBox-Cox Normality Plot
Date of computationTue, 12 May 2020 22:52:15 +0200
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2020/May/12/t15893186080inoab6zpitqsqy.htm/, Retrieved Wed, 21 Apr 2021 09:16:55 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Wed, 21 Apr 2021 09:16:55 +0200
QR Codes:

Original text written by user:
IsPrivate?This computation is private
User-defined keywords
Estimated Impact0
Dataseries X:
0
0
0
0
0
0
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Box-Cox Normality Plot
# observations x244
maximum correlation0.918703684794893
optimal lambda1.31
transformation formulafor all lambda <> 0 : T(Y) = (Y^lambda - 1) / lambda

\begin{tabular}{lllllllll}
\hline
Box-Cox Normality Plot \tabularnewline
# observations x & 244 \tabularnewline
maximum correlation & 0.918703684794893 \tabularnewline
optimal lambda & 1.31 \tabularnewline
transformation formula & for all lambda <> 0 : T(Y) = (Y^lambda - 1) / lambda \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Box-Cox Normality Plot[/C][/ROW]
[ROW][C]# observations x[/C][C]244[/C][/ROW]
[ROW][C]maximum correlation[/C][C]0.918703684794893[/C][/ROW]
[ROW][C]optimal lambda[/C][C]1.31[/C][/ROW]
[ROW][C]transformation formula[/C][C]for all lambda <> 0 : T(Y) = (Y^lambda - 1) / lambda[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Box-Cox Normality Plot
# observations x244
maximum correlation0.918703684794893
optimal lambda1.31
transformation formulafor all lambda <> 0 : T(Y) = (Y^lambda - 1) / lambda







Obs.OriginalTransformed
10.5-0.455480244571708
20.5-0.455480244571708
30.5-0.455480244571708
40.5-0.455480244571708
50.5-0.455480244571708
60.5-0.455480244571708
72.51.7719456538573
82.51.7719456538573
92.51.7719456538573
102.51.7719456538573
112.51.7719456538573
122.51.7719456538573
132.51.7719456538573
143.53.17629305189021
153.53.17629305189021
163.53.17629305189021
173.53.17629305189021
183.53.17629305189021
193.53.17629305189021
203.53.17629305189021
213.53.17629305189021
223.53.17629305189021
234.54.71230908542078
244.54.71230908542078
254.54.71230908542078
264.54.71230908542078
274.54.71230908542078
284.54.71230908542078
294.54.71230908542078
304.54.71230908542078
314.54.71230908542078
324.54.71230908542078
335.56.35867169479425
345.56.35867169479425
355.56.35867169479425
365.56.35867169479425
375.56.35867169479425
385.56.35867169479425
395.56.35867169479425
405.56.35867169479425
415.56.35867169479425
425.56.35867169479425
435.56.35867169479425
445.56.35867169479425
455.56.35867169479425
465.56.35867169479425
475.56.35867169479425
485.56.35867169479425
495.56.35867169479425
505.56.35867169479425
515.56.35867169479425
525.56.35867169479425
535.56.35867169479425
545.56.35867169479425
555.56.35867169479425
565.56.35867169479425
575.56.35867169479425
585.56.35867169479425
595.56.35867169479425
605.56.35867169479425
615.56.35867169479425
625.56.35867169479425
635.56.35867169479425
646.58.1009566481989
656.58.1009566481989
666.58.1009566481989
676.58.1009566481989
686.58.1009566481989
696.58.1009566481989
706.58.1009566481989
716.58.1009566481989
726.58.1009566481989
736.58.1009566481989
746.58.1009566481989
756.58.1009566481989
766.58.1009566481989
776.58.1009566481989
786.58.1009566481989
796.58.1009566481989
806.58.1009566481989
816.58.1009566481989
826.58.1009566481989
836.58.1009566481989
846.58.1009566481989
856.58.1009566481989
866.58.1009566481989
876.58.1009566481989
887.59.92864145040347
897.59.92864145040347
907.59.92864145040347
917.59.92864145040347
927.59.92864145040347
937.59.92864145040347
947.59.92864145040347
957.59.92864145040347
967.59.92864145040347
977.59.92864145040347
987.59.92864145040347
997.59.92864145040347
1007.59.92864145040347
1017.59.92864145040347
1027.59.92864145040347
1037.59.92864145040347
1047.59.92864145040347
1057.59.92864145040347
1067.59.92864145040347
1078.511.8336518859596
1088.511.8336518859596
1098.511.8336518859596
1108.511.8336518859596
1118.511.8336518859596
1128.511.8336518859596
1138.511.8336518859596
1148.511.8336518859596
1158.511.8336518859596
1168.511.8336518859596
1178.511.8336518859596
1188.511.8336518859596
1198.511.8336518859596
1208.511.8336518859596
1218.511.8336518859596
1228.511.8336518859596
1238.511.8336518859596
1248.511.8336518859596
1258.511.8336518859596
1268.511.8336518859596
1278.511.8336518859596
1289.513.8095627810995
1299.513.8095627810995
1309.513.8095627810995
1319.513.8095627810995
1329.513.8095627810995
1339.513.8095627810995
1349.513.8095627810995
1359.513.8095627810995
1369.513.8095627810995
1379.513.8095627810995
1389.513.8095627810995
1399.513.8095627810995
1409.513.8095627810995
14110.515.8511186523613
14210.515.8511186523613
14310.515.8511186523613
14410.515.8511186523613
14510.515.8511186523613
14610.515.8511186523613
14710.515.8511186523613
14810.515.8511186523613
14910.515.8511186523613
15010.515.8511186523613
15110.515.8511186523613
15210.515.8511186523613
15310.515.8511186523613
15410.515.8511186523613
15510.515.8511186523613
15610.515.8511186523613
15710.515.8511186523613
15810.515.8511186523613
15910.515.8511186523613
16010.515.8511186523613
16110.515.8511186523613
16210.515.8511186523613
16310.515.8511186523613
16410.515.8511186523613
16510.515.8511186523613
16610.515.8511186523613
16710.515.8511186523613
16810.515.8511186523613
16910.515.8511186523613
17010.515.8511186523613
17110.515.8511186523613
17210.515.8511186523613
17310.515.8511186523613
17410.515.8511186523613
17510.515.8511186523613
17610.515.8511186523613
17710.515.8511186523613
17810.515.8511186523613
17910.515.8511186523613
18010.515.8511186523613
18110.515.8511186523613
18210.515.8511186523613
18310.515.8511186523613
18410.515.8511186523613
18510.515.8511186523613
18610.515.8511186523613
18710.515.8511186523613
18810.515.8511186523613
18910.515.8511186523613
19010.515.8511186523613
19110.515.8511186523613
19210.515.8511186523613
19310.515.8511186523613
19410.515.8511186523613
19510.515.8511186523613
19610.515.8511186523613
19710.515.8511186523613
19810.515.8511186523613
19910.515.8511186523613
20010.515.8511186523613
20110.515.8511186523613
20210.515.8511186523613
20310.515.8511186523613
20410.515.8511186523613
20510.515.8511186523613
20610.515.8511186523613
20710.515.8511186523613
20810.515.8511186523613
20910.515.8511186523613
21010.515.8511186523613
21110.515.8511186523613
21210.515.8511186523613
21310.515.8511186523613
21410.515.8511186523613
21510.515.8511186523613
21610.515.8511186523613
21710.515.8511186523613
21810.515.8511186523613
21910.515.8511186523613
22010.515.8511186523613
22110.515.8511186523613
22210.515.8511186523613
22310.515.8511186523613
22410.515.8511186523613
22510.515.8511186523613
22610.515.8511186523613
22710.515.8511186523613
22810.515.8511186523613
22910.515.8511186523613
23010.515.8511186523613
23110.515.8511186523613
23210.515.8511186523613
23310.515.8511186523613
23410.515.8511186523613
23510.515.8511186523613
23610.515.8511186523613
23710.515.8511186523613
23810.515.8511186523613
23910.515.8511186523613
24010.515.8511186523613
24110.515.8511186523613
24210.515.8511186523613
24310.515.8511186523613
24410.515.8511186523613

\begin{tabular}{lllllllll}
\hline
Obs. & Original & Transformed \tabularnewline
1 & 0.5 & -0.455480244571708 \tabularnewline
2 & 0.5 & -0.455480244571708 \tabularnewline
3 & 0.5 & -0.455480244571708 \tabularnewline
4 & 0.5 & -0.455480244571708 \tabularnewline
5 & 0.5 & -0.455480244571708 \tabularnewline
6 & 0.5 & -0.455480244571708 \tabularnewline
7 & 2.5 & 1.7719456538573 \tabularnewline
8 & 2.5 & 1.7719456538573 \tabularnewline
9 & 2.5 & 1.7719456538573 \tabularnewline
10 & 2.5 & 1.7719456538573 \tabularnewline
11 & 2.5 & 1.7719456538573 \tabularnewline
12 & 2.5 & 1.7719456538573 \tabularnewline
13 & 2.5 & 1.7719456538573 \tabularnewline
14 & 3.5 & 3.17629305189021 \tabularnewline
15 & 3.5 & 3.17629305189021 \tabularnewline
16 & 3.5 & 3.17629305189021 \tabularnewline
17 & 3.5 & 3.17629305189021 \tabularnewline
18 & 3.5 & 3.17629305189021 \tabularnewline
19 & 3.5 & 3.17629305189021 \tabularnewline
20 & 3.5 & 3.17629305189021 \tabularnewline
21 & 3.5 & 3.17629305189021 \tabularnewline
22 & 3.5 & 3.17629305189021 \tabularnewline
23 & 4.5 & 4.71230908542078 \tabularnewline
24 & 4.5 & 4.71230908542078 \tabularnewline
25 & 4.5 & 4.71230908542078 \tabularnewline
26 & 4.5 & 4.71230908542078 \tabularnewline
27 & 4.5 & 4.71230908542078 \tabularnewline
28 & 4.5 & 4.71230908542078 \tabularnewline
29 & 4.5 & 4.71230908542078 \tabularnewline
30 & 4.5 & 4.71230908542078 \tabularnewline
31 & 4.5 & 4.71230908542078 \tabularnewline
32 & 4.5 & 4.71230908542078 \tabularnewline
33 & 5.5 & 6.35867169479425 \tabularnewline
34 & 5.5 & 6.35867169479425 \tabularnewline
35 & 5.5 & 6.35867169479425 \tabularnewline
36 & 5.5 & 6.35867169479425 \tabularnewline
37 & 5.5 & 6.35867169479425 \tabularnewline
38 & 5.5 & 6.35867169479425 \tabularnewline
39 & 5.5 & 6.35867169479425 \tabularnewline
40 & 5.5 & 6.35867169479425 \tabularnewline
41 & 5.5 & 6.35867169479425 \tabularnewline
42 & 5.5 & 6.35867169479425 \tabularnewline
43 & 5.5 & 6.35867169479425 \tabularnewline
44 & 5.5 & 6.35867169479425 \tabularnewline
45 & 5.5 & 6.35867169479425 \tabularnewline
46 & 5.5 & 6.35867169479425 \tabularnewline
47 & 5.5 & 6.35867169479425 \tabularnewline
48 & 5.5 & 6.35867169479425 \tabularnewline
49 & 5.5 & 6.35867169479425 \tabularnewline
50 & 5.5 & 6.35867169479425 \tabularnewline
51 & 5.5 & 6.35867169479425 \tabularnewline
52 & 5.5 & 6.35867169479425 \tabularnewline
53 & 5.5 & 6.35867169479425 \tabularnewline
54 & 5.5 & 6.35867169479425 \tabularnewline
55 & 5.5 & 6.35867169479425 \tabularnewline
56 & 5.5 & 6.35867169479425 \tabularnewline
57 & 5.5 & 6.35867169479425 \tabularnewline
58 & 5.5 & 6.35867169479425 \tabularnewline
59 & 5.5 & 6.35867169479425 \tabularnewline
60 & 5.5 & 6.35867169479425 \tabularnewline
61 & 5.5 & 6.35867169479425 \tabularnewline
62 & 5.5 & 6.35867169479425 \tabularnewline
63 & 5.5 & 6.35867169479425 \tabularnewline
64 & 6.5 & 8.1009566481989 \tabularnewline
65 & 6.5 & 8.1009566481989 \tabularnewline
66 & 6.5 & 8.1009566481989 \tabularnewline
67 & 6.5 & 8.1009566481989 \tabularnewline
68 & 6.5 & 8.1009566481989 \tabularnewline
69 & 6.5 & 8.1009566481989 \tabularnewline
70 & 6.5 & 8.1009566481989 \tabularnewline
71 & 6.5 & 8.1009566481989 \tabularnewline
72 & 6.5 & 8.1009566481989 \tabularnewline
73 & 6.5 & 8.1009566481989 \tabularnewline
74 & 6.5 & 8.1009566481989 \tabularnewline
75 & 6.5 & 8.1009566481989 \tabularnewline
76 & 6.5 & 8.1009566481989 \tabularnewline
77 & 6.5 & 8.1009566481989 \tabularnewline
78 & 6.5 & 8.1009566481989 \tabularnewline
79 & 6.5 & 8.1009566481989 \tabularnewline
80 & 6.5 & 8.1009566481989 \tabularnewline
81 & 6.5 & 8.1009566481989 \tabularnewline
82 & 6.5 & 8.1009566481989 \tabularnewline
83 & 6.5 & 8.1009566481989 \tabularnewline
84 & 6.5 & 8.1009566481989 \tabularnewline
85 & 6.5 & 8.1009566481989 \tabularnewline
86 & 6.5 & 8.1009566481989 \tabularnewline
87 & 6.5 & 8.1009566481989 \tabularnewline
88 & 7.5 & 9.92864145040347 \tabularnewline
89 & 7.5 & 9.92864145040347 \tabularnewline
90 & 7.5 & 9.92864145040347 \tabularnewline
91 & 7.5 & 9.92864145040347 \tabularnewline
92 & 7.5 & 9.92864145040347 \tabularnewline
93 & 7.5 & 9.92864145040347 \tabularnewline
94 & 7.5 & 9.92864145040347 \tabularnewline
95 & 7.5 & 9.92864145040347 \tabularnewline
96 & 7.5 & 9.92864145040347 \tabularnewline
97 & 7.5 & 9.92864145040347 \tabularnewline
98 & 7.5 & 9.92864145040347 \tabularnewline
99 & 7.5 & 9.92864145040347 \tabularnewline
100 & 7.5 & 9.92864145040347 \tabularnewline
101 & 7.5 & 9.92864145040347 \tabularnewline
102 & 7.5 & 9.92864145040347 \tabularnewline
103 & 7.5 & 9.92864145040347 \tabularnewline
104 & 7.5 & 9.92864145040347 \tabularnewline
105 & 7.5 & 9.92864145040347 \tabularnewline
106 & 7.5 & 9.92864145040347 \tabularnewline
107 & 8.5 & 11.8336518859596 \tabularnewline
108 & 8.5 & 11.8336518859596 \tabularnewline
109 & 8.5 & 11.8336518859596 \tabularnewline
110 & 8.5 & 11.8336518859596 \tabularnewline
111 & 8.5 & 11.8336518859596 \tabularnewline
112 & 8.5 & 11.8336518859596 \tabularnewline
113 & 8.5 & 11.8336518859596 \tabularnewline
114 & 8.5 & 11.8336518859596 \tabularnewline
115 & 8.5 & 11.8336518859596 \tabularnewline
116 & 8.5 & 11.8336518859596 \tabularnewline
117 & 8.5 & 11.8336518859596 \tabularnewline
118 & 8.5 & 11.8336518859596 \tabularnewline
119 & 8.5 & 11.8336518859596 \tabularnewline
120 & 8.5 & 11.8336518859596 \tabularnewline
121 & 8.5 & 11.8336518859596 \tabularnewline
122 & 8.5 & 11.8336518859596 \tabularnewline
123 & 8.5 & 11.8336518859596 \tabularnewline
124 & 8.5 & 11.8336518859596 \tabularnewline
125 & 8.5 & 11.8336518859596 \tabularnewline
126 & 8.5 & 11.8336518859596 \tabularnewline
127 & 8.5 & 11.8336518859596 \tabularnewline
128 & 9.5 & 13.8095627810995 \tabularnewline
129 & 9.5 & 13.8095627810995 \tabularnewline
130 & 9.5 & 13.8095627810995 \tabularnewline
131 & 9.5 & 13.8095627810995 \tabularnewline
132 & 9.5 & 13.8095627810995 \tabularnewline
133 & 9.5 & 13.8095627810995 \tabularnewline
134 & 9.5 & 13.8095627810995 \tabularnewline
135 & 9.5 & 13.8095627810995 \tabularnewline
136 & 9.5 & 13.8095627810995 \tabularnewline
137 & 9.5 & 13.8095627810995 \tabularnewline
138 & 9.5 & 13.8095627810995 \tabularnewline
139 & 9.5 & 13.8095627810995 \tabularnewline
140 & 9.5 & 13.8095627810995 \tabularnewline
141 & 10.5 & 15.8511186523613 \tabularnewline
142 & 10.5 & 15.8511186523613 \tabularnewline
143 & 10.5 & 15.8511186523613 \tabularnewline
144 & 10.5 & 15.8511186523613 \tabularnewline
145 & 10.5 & 15.8511186523613 \tabularnewline
146 & 10.5 & 15.8511186523613 \tabularnewline
147 & 10.5 & 15.8511186523613 \tabularnewline
148 & 10.5 & 15.8511186523613 \tabularnewline
149 & 10.5 & 15.8511186523613 \tabularnewline
150 & 10.5 & 15.8511186523613 \tabularnewline
151 & 10.5 & 15.8511186523613 \tabularnewline
152 & 10.5 & 15.8511186523613 \tabularnewline
153 & 10.5 & 15.8511186523613 \tabularnewline
154 & 10.5 & 15.8511186523613 \tabularnewline
155 & 10.5 & 15.8511186523613 \tabularnewline
156 & 10.5 & 15.8511186523613 \tabularnewline
157 & 10.5 & 15.8511186523613 \tabularnewline
158 & 10.5 & 15.8511186523613 \tabularnewline
159 & 10.5 & 15.8511186523613 \tabularnewline
160 & 10.5 & 15.8511186523613 \tabularnewline
161 & 10.5 & 15.8511186523613 \tabularnewline
162 & 10.5 & 15.8511186523613 \tabularnewline
163 & 10.5 & 15.8511186523613 \tabularnewline
164 & 10.5 & 15.8511186523613 \tabularnewline
165 & 10.5 & 15.8511186523613 \tabularnewline
166 & 10.5 & 15.8511186523613 \tabularnewline
167 & 10.5 & 15.8511186523613 \tabularnewline
168 & 10.5 & 15.8511186523613 \tabularnewline
169 & 10.5 & 15.8511186523613 \tabularnewline
170 & 10.5 & 15.8511186523613 \tabularnewline
171 & 10.5 & 15.8511186523613 \tabularnewline
172 & 10.5 & 15.8511186523613 \tabularnewline
173 & 10.5 & 15.8511186523613 \tabularnewline
174 & 10.5 & 15.8511186523613 \tabularnewline
175 & 10.5 & 15.8511186523613 \tabularnewline
176 & 10.5 & 15.8511186523613 \tabularnewline
177 & 10.5 & 15.8511186523613 \tabularnewline
178 & 10.5 & 15.8511186523613 \tabularnewline
179 & 10.5 & 15.8511186523613 \tabularnewline
180 & 10.5 & 15.8511186523613 \tabularnewline
181 & 10.5 & 15.8511186523613 \tabularnewline
182 & 10.5 & 15.8511186523613 \tabularnewline
183 & 10.5 & 15.8511186523613 \tabularnewline
184 & 10.5 & 15.8511186523613 \tabularnewline
185 & 10.5 & 15.8511186523613 \tabularnewline
186 & 10.5 & 15.8511186523613 \tabularnewline
187 & 10.5 & 15.8511186523613 \tabularnewline
188 & 10.5 & 15.8511186523613 \tabularnewline
189 & 10.5 & 15.8511186523613 \tabularnewline
190 & 10.5 & 15.8511186523613 \tabularnewline
191 & 10.5 & 15.8511186523613 \tabularnewline
192 & 10.5 & 15.8511186523613 \tabularnewline
193 & 10.5 & 15.8511186523613 \tabularnewline
194 & 10.5 & 15.8511186523613 \tabularnewline
195 & 10.5 & 15.8511186523613 \tabularnewline
196 & 10.5 & 15.8511186523613 \tabularnewline
197 & 10.5 & 15.8511186523613 \tabularnewline
198 & 10.5 & 15.8511186523613 \tabularnewline
199 & 10.5 & 15.8511186523613 \tabularnewline
200 & 10.5 & 15.8511186523613 \tabularnewline
201 & 10.5 & 15.8511186523613 \tabularnewline
202 & 10.5 & 15.8511186523613 \tabularnewline
203 & 10.5 & 15.8511186523613 \tabularnewline
204 & 10.5 & 15.8511186523613 \tabularnewline
205 & 10.5 & 15.8511186523613 \tabularnewline
206 & 10.5 & 15.8511186523613 \tabularnewline
207 & 10.5 & 15.8511186523613 \tabularnewline
208 & 10.5 & 15.8511186523613 \tabularnewline
209 & 10.5 & 15.8511186523613 \tabularnewline
210 & 10.5 & 15.8511186523613 \tabularnewline
211 & 10.5 & 15.8511186523613 \tabularnewline
212 & 10.5 & 15.8511186523613 \tabularnewline
213 & 10.5 & 15.8511186523613 \tabularnewline
214 & 10.5 & 15.8511186523613 \tabularnewline
215 & 10.5 & 15.8511186523613 \tabularnewline
216 & 10.5 & 15.8511186523613 \tabularnewline
217 & 10.5 & 15.8511186523613 \tabularnewline
218 & 10.5 & 15.8511186523613 \tabularnewline
219 & 10.5 & 15.8511186523613 \tabularnewline
220 & 10.5 & 15.8511186523613 \tabularnewline
221 & 10.5 & 15.8511186523613 \tabularnewline
222 & 10.5 & 15.8511186523613 \tabularnewline
223 & 10.5 & 15.8511186523613 \tabularnewline
224 & 10.5 & 15.8511186523613 \tabularnewline
225 & 10.5 & 15.8511186523613 \tabularnewline
226 & 10.5 & 15.8511186523613 \tabularnewline
227 & 10.5 & 15.8511186523613 \tabularnewline
228 & 10.5 & 15.8511186523613 \tabularnewline
229 & 10.5 & 15.8511186523613 \tabularnewline
230 & 10.5 & 15.8511186523613 \tabularnewline
231 & 10.5 & 15.8511186523613 \tabularnewline
232 & 10.5 & 15.8511186523613 \tabularnewline
233 & 10.5 & 15.8511186523613 \tabularnewline
234 & 10.5 & 15.8511186523613 \tabularnewline
235 & 10.5 & 15.8511186523613 \tabularnewline
236 & 10.5 & 15.8511186523613 \tabularnewline
237 & 10.5 & 15.8511186523613 \tabularnewline
238 & 10.5 & 15.8511186523613 \tabularnewline
239 & 10.5 & 15.8511186523613 \tabularnewline
240 & 10.5 & 15.8511186523613 \tabularnewline
241 & 10.5 & 15.8511186523613 \tabularnewline
242 & 10.5 & 15.8511186523613 \tabularnewline
243 & 10.5 & 15.8511186523613 \tabularnewline
244 & 10.5 & 15.8511186523613 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Obs.[/C][C]Original[/C][C]Transformed[/C][/ROW]
[ROW][C]1[/C][C]0.5[/C][C]-0.455480244571708[/C][/ROW]
[ROW][C]2[/C][C]0.5[/C][C]-0.455480244571708[/C][/ROW]
[ROW][C]3[/C][C]0.5[/C][C]-0.455480244571708[/C][/ROW]
[ROW][C]4[/C][C]0.5[/C][C]-0.455480244571708[/C][/ROW]
[ROW][C]5[/C][C]0.5[/C][C]-0.455480244571708[/C][/ROW]
[ROW][C]6[/C][C]0.5[/C][C]-0.455480244571708[/C][/ROW]
[ROW][C]7[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]8[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]9[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]10[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]11[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]12[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]13[/C][C]2.5[/C][C]1.7719456538573[/C][/ROW]
[ROW][C]14[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]15[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]16[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]17[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]18[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]19[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]20[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]21[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]22[/C][C]3.5[/C][C]3.17629305189021[/C][/ROW]
[ROW][C]23[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]24[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]25[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]26[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]27[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]28[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]29[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]30[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]31[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]32[/C][C]4.5[/C][C]4.71230908542078[/C][/ROW]
[ROW][C]33[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]34[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]35[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]36[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]37[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]38[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]39[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]40[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]41[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]42[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]43[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]44[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]45[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]46[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]47[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]48[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]49[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]50[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]51[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]52[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]53[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]54[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]55[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]56[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]57[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]58[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]59[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]60[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]61[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]62[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]63[/C][C]5.5[/C][C]6.35867169479425[/C][/ROW]
[ROW][C]64[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]65[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]66[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]67[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]68[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]69[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]70[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]71[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]72[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]73[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]74[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]75[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]76[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]77[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]78[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]79[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]80[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]81[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]82[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]83[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]84[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]85[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]86[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]87[/C][C]6.5[/C][C]8.1009566481989[/C][/ROW]
[ROW][C]88[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]89[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]90[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]91[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]92[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]93[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]94[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]95[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]96[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]97[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]98[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]99[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]100[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]101[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]102[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]103[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]104[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]105[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]106[/C][C]7.5[/C][C]9.92864145040347[/C][/ROW]
[ROW][C]107[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]108[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]109[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]110[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]111[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]112[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]113[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]114[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]115[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]116[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]117[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]118[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]119[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]120[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]121[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]122[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]123[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]124[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]125[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]126[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]127[/C][C]8.5[/C][C]11.8336518859596[/C][/ROW]
[ROW][C]128[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]129[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]130[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]131[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]132[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]133[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]134[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]135[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]136[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]137[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]138[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]139[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]140[/C][C]9.5[/C][C]13.8095627810995[/C][/ROW]
[ROW][C]141[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]142[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]143[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]144[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]145[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]146[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]147[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]148[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]149[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]150[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]151[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]152[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]153[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]154[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]155[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]156[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]157[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]158[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]159[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]160[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]161[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]162[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]163[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]164[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]165[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]166[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]167[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]168[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]169[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]170[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]171[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]172[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]173[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]174[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]175[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]176[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]177[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]178[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]179[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]180[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]181[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]182[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]183[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]184[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]185[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]186[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]187[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]188[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]189[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]190[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]191[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]192[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]193[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]194[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]195[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]196[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]197[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]198[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]199[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]200[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]201[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]202[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]203[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]204[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]205[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]206[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]207[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]208[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]209[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]210[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]211[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]212[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]213[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]214[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]215[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]216[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]217[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]218[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]219[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]220[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]221[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]222[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]223[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]224[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]225[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]226[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]227[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]228[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]229[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]230[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]231[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]232[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]233[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]234[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]235[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]236[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]237[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]238[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]239[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]240[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]241[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]242[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]243[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[ROW][C]244[/C][C]10.5[/C][C]15.8511186523613[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Obs.OriginalTransformed
10.5-0.455480244571708
20.5-0.455480244571708
30.5-0.455480244571708
40.5-0.455480244571708
50.5-0.455480244571708
60.5-0.455480244571708
72.51.7719456538573
82.51.7719456538573
92.51.7719456538573
102.51.7719456538573
112.51.7719456538573
122.51.7719456538573
132.51.7719456538573
143.53.17629305189021
153.53.17629305189021
163.53.17629305189021
173.53.17629305189021
183.53.17629305189021
193.53.17629305189021
203.53.17629305189021
213.53.17629305189021
223.53.17629305189021
234.54.71230908542078
244.54.71230908542078
254.54.71230908542078
264.54.71230908542078
274.54.71230908542078
284.54.71230908542078
294.54.71230908542078
304.54.71230908542078
314.54.71230908542078
324.54.71230908542078
335.56.35867169479425
345.56.35867169479425
355.56.35867169479425
365.56.35867169479425
375.56.35867169479425
385.56.35867169479425
395.56.35867169479425
405.56.35867169479425
415.56.35867169479425
425.56.35867169479425
435.56.35867169479425
445.56.35867169479425
455.56.35867169479425
465.56.35867169479425
475.56.35867169479425
485.56.35867169479425
495.56.35867169479425
505.56.35867169479425
515.56.35867169479425
525.56.35867169479425
535.56.35867169479425
545.56.35867169479425
555.56.35867169479425
565.56.35867169479425
575.56.35867169479425
585.56.35867169479425
595.56.35867169479425
605.56.35867169479425
615.56.35867169479425
625.56.35867169479425
635.56.35867169479425
646.58.1009566481989
656.58.1009566481989
666.58.1009566481989
676.58.1009566481989
686.58.1009566481989
696.58.1009566481989
706.58.1009566481989
716.58.1009566481989
726.58.1009566481989
736.58.1009566481989
746.58.1009566481989
756.58.1009566481989
766.58.1009566481989
776.58.1009566481989
786.58.1009566481989
796.58.1009566481989
806.58.1009566481989
816.58.1009566481989
826.58.1009566481989
836.58.1009566481989
846.58.1009566481989
856.58.1009566481989
866.58.1009566481989
876.58.1009566481989
887.59.92864145040347
897.59.92864145040347
907.59.92864145040347
917.59.92864145040347
927.59.92864145040347
937.59.92864145040347
947.59.92864145040347
957.59.92864145040347
967.59.92864145040347
977.59.92864145040347
987.59.92864145040347
997.59.92864145040347
1007.59.92864145040347
1017.59.92864145040347
1027.59.92864145040347
1037.59.92864145040347
1047.59.92864145040347
1057.59.92864145040347
1067.59.92864145040347
1078.511.8336518859596
1088.511.8336518859596
1098.511.8336518859596
1108.511.8336518859596
1118.511.8336518859596
1128.511.8336518859596
1138.511.8336518859596
1148.511.8336518859596
1158.511.8336518859596
1168.511.8336518859596
1178.511.8336518859596
1188.511.8336518859596
1198.511.8336518859596
1208.511.8336518859596
1218.511.8336518859596
1228.511.8336518859596
1238.511.8336518859596
1248.511.8336518859596
1258.511.8336518859596
1268.511.8336518859596
1278.511.8336518859596
1289.513.8095627810995
1299.513.8095627810995
1309.513.8095627810995
1319.513.8095627810995
1329.513.8095627810995
1339.513.8095627810995
1349.513.8095627810995
1359.513.8095627810995
1369.513.8095627810995
1379.513.8095627810995
1389.513.8095627810995
1399.513.8095627810995
1409.513.8095627810995
14110.515.8511186523613
14210.515.8511186523613
14310.515.8511186523613
14410.515.8511186523613
14510.515.8511186523613
14610.515.8511186523613
14710.515.8511186523613
14810.515.8511186523613
14910.515.8511186523613
15010.515.8511186523613
15110.515.8511186523613
15210.515.8511186523613
15310.515.8511186523613
15410.515.8511186523613
15510.515.8511186523613
15610.515.8511186523613
15710.515.8511186523613
15810.515.8511186523613
15910.515.8511186523613
16010.515.8511186523613
16110.515.8511186523613
16210.515.8511186523613
16310.515.8511186523613
16410.515.8511186523613
16510.515.8511186523613
16610.515.8511186523613
16710.515.8511186523613
16810.515.8511186523613
16910.515.8511186523613
17010.515.8511186523613
17110.515.8511186523613
17210.515.8511186523613
17310.515.8511186523613
17410.515.8511186523613
17510.515.8511186523613
17610.515.8511186523613
17710.515.8511186523613
17810.515.8511186523613
17910.515.8511186523613
18010.515.8511186523613
18110.515.8511186523613
18210.515.8511186523613
18310.515.8511186523613
18410.515.8511186523613
18510.515.8511186523613
18610.515.8511186523613
18710.515.8511186523613
18810.515.8511186523613
18910.515.8511186523613
19010.515.8511186523613
19110.515.8511186523613
19210.515.8511186523613
19310.515.8511186523613
19410.515.8511186523613
19510.515.8511186523613
19610.515.8511186523613
19710.515.8511186523613
19810.515.8511186523613
19910.515.8511186523613
20010.515.8511186523613
20110.515.8511186523613
20210.515.8511186523613
20310.515.8511186523613
20410.515.8511186523613
20510.515.8511186523613
20610.515.8511186523613
20710.515.8511186523613
20810.515.8511186523613
20910.515.8511186523613
21010.515.8511186523613
21110.515.8511186523613
21210.515.8511186523613
21310.515.8511186523613
21410.515.8511186523613
21510.515.8511186523613
21610.515.8511186523613
21710.515.8511186523613
21810.515.8511186523613
21910.515.8511186523613
22010.515.8511186523613
22110.515.8511186523613
22210.515.8511186523613
22310.515.8511186523613
22410.515.8511186523613
22510.515.8511186523613
22610.515.8511186523613
22710.515.8511186523613
22810.515.8511186523613
22910.515.8511186523613
23010.515.8511186523613
23110.515.8511186523613
23210.515.8511186523613
23310.515.8511186523613
23410.515.8511186523613
23510.515.8511186523613
23610.515.8511186523613
23710.515.8511186523613
23810.515.8511186523613
23910.515.8511186523613
24010.515.8511186523613
24110.515.8511186523613
24210.515.8511186523613
24310.515.8511186523613
24410.515.8511186523613







Maximum Likelihood Estimation of Lambda
> summary(mypT)
bcPower Transformation to Normality 
  Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
x    1.6192        1.62       1.2967       1.9417
Likelihood ratio test that transformation parameter is equal to 0
 (log transformation)
                          LRT df       pval
LR test, lambda = (0) 214.867  1 < 2.22e-16
Likelihood ratio test that no transformation is needed
                          LRT df       pval
LR test, lambda = (1) 18.0754  1 2.1233e-05

\begin{tabular}{lllllllll}
\hline
Maximum Likelihood Estimation of Lambda \tabularnewline
> summary(mypT)
bcPower Transformation to Normality 
  Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
x    1.6192        1.62       1.2967       1.9417
Likelihood ratio test that transformation parameter is equal to 0
 (log transformation)
                          LRT df       pval
LR test, lambda = (0) 214.867  1 < 2.22e-16
Likelihood ratio test that no transformation is needed
                          LRT df       pval
LR test, lambda = (1) 18.0754  1 2.1233e-05
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Maximum Likelihood Estimation of Lambda[/C][/ROW]
[ROW][C]
> summary(mypT)
bcPower Transformation to Normality 
  Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
x    1.6192        1.62       1.2967       1.9417
Likelihood ratio test that transformation parameter is equal to 0
 (log transformation)
                          LRT df       pval
LR test, lambda = (0) 214.867  1 < 2.22e-16
Likelihood ratio test that no transformation is needed
                          LRT df       pval
LR test, lambda = (1) 18.0754  1 2.1233e-05
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Maximum Likelihood Estimation of Lambda
> summary(mypT)
bcPower Transformation to Normality 
  Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
x    1.6192        1.62       1.2967       1.9417
Likelihood ratio test that transformation parameter is equal to 0
 (log transformation)
                          LRT df       pval
LR test, lambda = (0) 214.867  1 < 2.22e-16
Likelihood ratio test that no transformation is needed
                          LRT df       pval
LR test, lambda = (1) 18.0754  1 2.1233e-05



Parameters (Session):
par1 = Full Box-Cox transform ; par2 = -3 ; par3 = 3 ; par4 = 0.5 ; par5 = Yes ;
Parameters (R input):
par1 = Full Box-Cox transform ; par2 = -3 ; par3 = 3 ; par4 = 0.5 ; par5 = Yes ;
R code (references can be found in the software module):
par5 <- 'Yes'
par4 <- '0'
par3 <- '3'
par2 <- '-3'
par1 <- 'Full Box-Cox transform'
library(car)
par2 <- abs(as.numeric(par2)*100)
par3 <- as.numeric(par3)*100
if(par4=='') par4 <- 0
par4 <- as.numeric(par4)
numlam <- par2 + par3 + 1
x <- x + par4
n <- length(x)
c <- array(NA,dim=c(numlam))
l <- array(NA,dim=c(numlam))
mx <- -1
mxli <- -999
for (i in 1:numlam)
{
l[i] <- (i-par2-1)/100
if (l[i] != 0)
{
if (par1 == 'Full Box-Cox transform') x1 <- (x^l[i] - 1) / l[i]
if (par1 == 'Simple Box-Cox transform') x1 <- x^l[i]
} else {
x1 <- log(x)
}
c[i] <- cor(qnorm(ppoints(x), mean=0, sd=1),sort(x1))
if (mx < c[i])
{
mx <- c[i]
mxli <- l[i]
x1.best <- x1
}
}
print(c)
print(mx)
print(mxli)
print(x1.best)
if (mxli != 0)
{
if (par1 == 'Full Box-Cox transform') x1 <- (x^mxli - 1) / mxli
if (par1 == 'Simple Box-Cox transform') x1 <- x^mxli
} else {
x1 <- log(x)
}
mypT <- powerTransform(x)
summary(mypT)
bitmap(file='test1.png')
plot(l,c,main='Box-Cox Normality Plot', xlab='Lambda',ylab='correlation')
mtext(paste('Optimal Lambda =',mxli))
grid()
dev.off()
bitmap(file='test2.png')
hist(x,main='Histogram of Original Data',xlab='X',ylab='frequency')
grid()
dev.off()
bitmap(file='test3.png')
hist(x1,main='Histogram of Transformed Data', xlab='X',ylab='frequency')
grid()
dev.off()
bitmap(file='test4.png')
qqPlot(x)
grid()
mtext('Original Data')
dev.off()
bitmap(file='test5.png')
qqPlot(x1)
grid()
mtext('Transformed Data')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Box-Cox Normality Plot',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations x',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum correlation',header=TRUE)
a<-table.element(a,mx)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'optimal lambda',header=TRUE)
a<-table.element(a,mxli)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'transformation formula',header=TRUE)
if (par1 == 'Full Box-Cox transform') {
a<-table.element(a,'for all lambda <> 0 : T(Y) = (Y^lambda - 1) / lambda')
} else {
a<-table.element(a,'for all lambda <> 0 : T(Y) = Y^lambda')
}
a<-table.row.end(a)
if(mx<0) {
a<-table.row.start(a)
a<-table.element(a,'Warning: maximum correlation is negative! The Box-Cox transformation must not be used.',2)
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
if(par5=='Yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Obs.',header=T)
a<-table.element(a,'Original',header=T)
a<-table.element(a,'Transformed',header=T)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i)
a<-table.element(a,x[i])
a<-table.element(a,x1.best[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Maximum Likelihood Estimation of Lambda',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('summary(mypT)'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')