Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 18 Sep 2020 05:30:15 +0200
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2020/Sep/18/t1600402207exy05ugio030ahi.htm/, Retrieved Sat, 20 Apr 2024 12:55:22 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Sat, 20 Apr 2024 12:55:22 +0200
QR Codes:

Original text written by user:ShThirteen
IsPrivate?No (this computation is public)
User-defined keywordsShThirteen
Estimated Impact0
Dataseries X:
955	1	895	801025	2	0	1	1	0
960	0.2	1269	1610361	2	0	27	0	0
1156	1	1187	1408969	2	0	14	1	0
1433	0.1	2010	4040100	3	0	27	0	1
769	0.3	1063	1129969	2	0	25	0	0
1310	0.2	1379	1901641	2	0	10	1	0
840	1	967	935089	2	1	14	0	0
1590	1	1302	1695204	3	0	2	1	0
716	0.3	1038	1077444	2	0	25	0	0
892	0.5	1006	1012036	3	0	15	0	0
1717	1	1615	2608225	2	0	25	1	0
930	0.5	955	912025	3	1	12	1	0
920	0.4	1231	1515361	3	1	15	0	0
838	0.2	901	811801	2	0	5	0	0
1310	1	1164	1354896	3	1	4	0	0
1275	0.5	1268	1607824	2	0	10	1	0
1780	0.4	1910	3648100	3	0	11	1	0
1148	0.2	1017	1034289	3	0	1	1	0
900	0.2	845	714025	2	0	4	1	0
839	0.3	812	659344	2	0	4	1	0
1975	0.2	3931	15452761	4	0	26	0	1
865	0.5	1001	1002001	3	0	15	0	0
1018	1	892	795664	2	0	4	1	0
1550	0.2	2383	5678689	3	0	28	0	1
1190	1	1378	1898884	2	1	13	0	0
1182	0.2	1510	2280100	2	0	11	1	1
1198	0.1	1020	1040400	2	0	0	1	0
783	0	856	732736	2	0	10	0	0
920	1	907	822649	2	0	1	1	0
788	1	844	712336	2	0	13	0	0
1193	1	1152	1327104	3	0	4	0	0




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
SP[t] = -437.526 + 112.392V[t] + 1.50667SQ[t] -0.000205937SQ2[t] + 43.4069BR[t] -71.6116PH[t] -10.2263AG[t] + 108.215C[t] -260.046TH[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
SP[t] =  -437.526 +  112.392V[t] +  1.50667SQ[t] -0.000205937SQ2[t] +  43.4069BR[t] -71.6116PH[t] -10.2263AG[t] +  108.215C[t] -260.046TH[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]SP[t] =  -437.526 +  112.392V[t] +  1.50667SQ[t] -0.000205937SQ2[t] +  43.4069BR[t] -71.6116PH[t] -10.2263AG[t] +  108.215C[t] -260.046TH[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
SP[t] = -437.526 + 112.392V[t] + 1.50667SQ[t] -0.000205937SQ2[t] + 43.4069BR[t] -71.6116PH[t] -10.2263AG[t] + 108.215C[t] -260.046TH[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-437.5 129.3-3.3830e+00 0.002678 0.001339
V+112.4 49.62+2.2650e+00 0.03371 0.01685
SQ+1.507 0.1468+1.0260e+01 7.536e-10 3.768e-10
SQ2-0.0002059 2.814e-05-7.3190e+00 2.503e-07 1.252e-07
BR+43.41 40.72+1.0660e+00 0.298 0.149
PH-71.61 48.88-1.4650e+00 0.1571 0.07854
AG-10.23 2.95-3.4670e+00 0.002192 0.001096
C+108.2 44.03+2.4580e+00 0.02234 0.01117
TH-260.1 77.72-3.3460e+00 0.002926 0.001463

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -437.5 &  129.3 & -3.3830e+00 &  0.002678 &  0.001339 \tabularnewline
V & +112.4 &  49.62 & +2.2650e+00 &  0.03371 &  0.01685 \tabularnewline
SQ & +1.507 &  0.1468 & +1.0260e+01 &  7.536e-10 &  3.768e-10 \tabularnewline
SQ2 & -0.0002059 &  2.814e-05 & -7.3190e+00 &  2.503e-07 &  1.252e-07 \tabularnewline
BR & +43.41 &  40.72 & +1.0660e+00 &  0.298 &  0.149 \tabularnewline
PH & -71.61 &  48.88 & -1.4650e+00 &  0.1571 &  0.07854 \tabularnewline
AG & -10.23 &  2.95 & -3.4670e+00 &  0.002192 &  0.001096 \tabularnewline
C & +108.2 &  44.03 & +2.4580e+00 &  0.02234 &  0.01117 \tabularnewline
TH & -260.1 &  77.72 & -3.3460e+00 &  0.002926 &  0.001463 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-437.5[/C][C] 129.3[/C][C]-3.3830e+00[/C][C] 0.002678[/C][C] 0.001339[/C][/ROW]
[ROW][C]V[/C][C]+112.4[/C][C] 49.62[/C][C]+2.2650e+00[/C][C] 0.03371[/C][C] 0.01685[/C][/ROW]
[ROW][C]SQ[/C][C]+1.507[/C][C] 0.1468[/C][C]+1.0260e+01[/C][C] 7.536e-10[/C][C] 3.768e-10[/C][/ROW]
[ROW][C]SQ2[/C][C]-0.0002059[/C][C] 2.814e-05[/C][C]-7.3190e+00[/C][C] 2.503e-07[/C][C] 1.252e-07[/C][/ROW]
[ROW][C]BR[/C][C]+43.41[/C][C] 40.72[/C][C]+1.0660e+00[/C][C] 0.298[/C][C] 0.149[/C][/ROW]
[ROW][C]PH[/C][C]-71.61[/C][C] 48.88[/C][C]-1.4650e+00[/C][C] 0.1571[/C][C] 0.07854[/C][/ROW]
[ROW][C]AG[/C][C]-10.23[/C][C] 2.95[/C][C]-3.4670e+00[/C][C] 0.002192[/C][C] 0.001096[/C][/ROW]
[ROW][C]C[/C][C]+108.2[/C][C] 44.03[/C][C]+2.4580e+00[/C][C] 0.02234[/C][C] 0.01117[/C][/ROW]
[ROW][C]TH[/C][C]-260.1[/C][C] 77.72[/C][C]-3.3460e+00[/C][C] 0.002926[/C][C] 0.001463[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-437.5 129.3-3.3830e+00 0.002678 0.001339
V+112.4 49.62+2.2650e+00 0.03371 0.01685
SQ+1.507 0.1468+1.0260e+01 7.536e-10 3.768e-10
SQ2-0.0002059 2.814e-05-7.3190e+00 2.503e-07 1.252e-07
BR+43.41 40.72+1.0660e+00 0.298 0.149
PH-71.61 48.88-1.4650e+00 0.1571 0.07854
AG-10.23 2.95-3.4670e+00 0.002192 0.001096
C+108.2 44.03+2.4580e+00 0.02234 0.01117
TH-260.1 77.72-3.3460e+00 0.002926 0.001463







Multiple Linear Regression - Regression Statistics
Multiple R 0.9733
R-squared 0.9472
Adjusted R-squared 0.928
F-TEST (value) 49.35
F-TEST (DF numerator)8
F-TEST (DF denominator)22
p-value 2.779e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 88.11
Sum Squared Residuals 1.708e+05

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.9733 \tabularnewline
R-squared &  0.9472 \tabularnewline
Adjusted R-squared &  0.928 \tabularnewline
F-TEST (value) &  49.35 \tabularnewline
F-TEST (DF numerator) & 8 \tabularnewline
F-TEST (DF denominator) & 22 \tabularnewline
p-value &  2.779e-12 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  88.11 \tabularnewline
Sum Squared Residuals &  1.708e+05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.9733[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.9472[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.928[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 49.35[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]8[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]22[/C][/ROW]
[ROW][C]p-value[/C][C] 2.779e-12[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 88.11[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1.708e+05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.9733
R-squared 0.9472
Adjusted R-squared 0.928
F-TEST (value) 49.35
F-TEST (DF numerator)8
F-TEST (DF denominator)22
p-value 2.779e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 88.11
Sum Squared Residuals 1.708e+05







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 955 1043-88.18
2 960 976-15.99
3 1156 1225-68.99
4 1433 1364 68.81
5 769 796.2-27.24
6 1310 1364-53.8
7 840 811.3 28.72
8 1590 1505 84.57
9 716 769.4-53.39
10 892 902.8-10.79
11 1717 1510 206.6
12 930 913.8 16.17
13 920 1055-135.3
14 838 811 27.03
15 1310 1167 142.7
16 1275 1291-15.79
17 1780 1860-79.85
18 1148 1132 15.55
19 900 865.2 34.83
20 839 838 1.048
21 1975 1973 1.902
22 865 897.3-32.33
23 1018 1009 8.913
24 1550 1590-39.75
25 1190 1242-52.27
26 1182 1213-30.97
27 1198 1091 106.7
28 783 685.8 97.16
29 920 1057-136.8
30 788 753.7 34.33
31 1193 1227-33.57

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  955 &  1043 & -88.18 \tabularnewline
2 &  960 &  976 & -15.99 \tabularnewline
3 &  1156 &  1225 & -68.99 \tabularnewline
4 &  1433 &  1364 &  68.81 \tabularnewline
5 &  769 &  796.2 & -27.24 \tabularnewline
6 &  1310 &  1364 & -53.8 \tabularnewline
7 &  840 &  811.3 &  28.72 \tabularnewline
8 &  1590 &  1505 &  84.57 \tabularnewline
9 &  716 &  769.4 & -53.39 \tabularnewline
10 &  892 &  902.8 & -10.79 \tabularnewline
11 &  1717 &  1510 &  206.6 \tabularnewline
12 &  930 &  913.8 &  16.17 \tabularnewline
13 &  920 &  1055 & -135.3 \tabularnewline
14 &  838 &  811 &  27.03 \tabularnewline
15 &  1310 &  1167 &  142.7 \tabularnewline
16 &  1275 &  1291 & -15.79 \tabularnewline
17 &  1780 &  1860 & -79.85 \tabularnewline
18 &  1148 &  1132 &  15.55 \tabularnewline
19 &  900 &  865.2 &  34.83 \tabularnewline
20 &  839 &  838 &  1.048 \tabularnewline
21 &  1975 &  1973 &  1.902 \tabularnewline
22 &  865 &  897.3 & -32.33 \tabularnewline
23 &  1018 &  1009 &  8.913 \tabularnewline
24 &  1550 &  1590 & -39.75 \tabularnewline
25 &  1190 &  1242 & -52.27 \tabularnewline
26 &  1182 &  1213 & -30.97 \tabularnewline
27 &  1198 &  1091 &  106.7 \tabularnewline
28 &  783 &  685.8 &  97.16 \tabularnewline
29 &  920 &  1057 & -136.8 \tabularnewline
30 &  788 &  753.7 &  34.33 \tabularnewline
31 &  1193 &  1227 & -33.57 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 955[/C][C] 1043[/C][C]-88.18[/C][/ROW]
[ROW][C]2[/C][C] 960[/C][C] 976[/C][C]-15.99[/C][/ROW]
[ROW][C]3[/C][C] 1156[/C][C] 1225[/C][C]-68.99[/C][/ROW]
[ROW][C]4[/C][C] 1433[/C][C] 1364[/C][C] 68.81[/C][/ROW]
[ROW][C]5[/C][C] 769[/C][C] 796.2[/C][C]-27.24[/C][/ROW]
[ROW][C]6[/C][C] 1310[/C][C] 1364[/C][C]-53.8[/C][/ROW]
[ROW][C]7[/C][C] 840[/C][C] 811.3[/C][C] 28.72[/C][/ROW]
[ROW][C]8[/C][C] 1590[/C][C] 1505[/C][C] 84.57[/C][/ROW]
[ROW][C]9[/C][C] 716[/C][C] 769.4[/C][C]-53.39[/C][/ROW]
[ROW][C]10[/C][C] 892[/C][C] 902.8[/C][C]-10.79[/C][/ROW]
[ROW][C]11[/C][C] 1717[/C][C] 1510[/C][C] 206.6[/C][/ROW]
[ROW][C]12[/C][C] 930[/C][C] 913.8[/C][C] 16.17[/C][/ROW]
[ROW][C]13[/C][C] 920[/C][C] 1055[/C][C]-135.3[/C][/ROW]
[ROW][C]14[/C][C] 838[/C][C] 811[/C][C] 27.03[/C][/ROW]
[ROW][C]15[/C][C] 1310[/C][C] 1167[/C][C] 142.7[/C][/ROW]
[ROW][C]16[/C][C] 1275[/C][C] 1291[/C][C]-15.79[/C][/ROW]
[ROW][C]17[/C][C] 1780[/C][C] 1860[/C][C]-79.85[/C][/ROW]
[ROW][C]18[/C][C] 1148[/C][C] 1132[/C][C] 15.55[/C][/ROW]
[ROW][C]19[/C][C] 900[/C][C] 865.2[/C][C] 34.83[/C][/ROW]
[ROW][C]20[/C][C] 839[/C][C] 838[/C][C] 1.048[/C][/ROW]
[ROW][C]21[/C][C] 1975[/C][C] 1973[/C][C] 1.902[/C][/ROW]
[ROW][C]22[/C][C] 865[/C][C] 897.3[/C][C]-32.33[/C][/ROW]
[ROW][C]23[/C][C] 1018[/C][C] 1009[/C][C] 8.913[/C][/ROW]
[ROW][C]24[/C][C] 1550[/C][C] 1590[/C][C]-39.75[/C][/ROW]
[ROW][C]25[/C][C] 1190[/C][C] 1242[/C][C]-52.27[/C][/ROW]
[ROW][C]26[/C][C] 1182[/C][C] 1213[/C][C]-30.97[/C][/ROW]
[ROW][C]27[/C][C] 1198[/C][C] 1091[/C][C] 106.7[/C][/ROW]
[ROW][C]28[/C][C] 783[/C][C] 685.8[/C][C] 97.16[/C][/ROW]
[ROW][C]29[/C][C] 920[/C][C] 1057[/C][C]-136.8[/C][/ROW]
[ROW][C]30[/C][C] 788[/C][C] 753.7[/C][C] 34.33[/C][/ROW]
[ROW][C]31[/C][C] 1193[/C][C] 1227[/C][C]-33.57[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 955 1043-88.18
2 960 976-15.99
3 1156 1225-68.99
4 1433 1364 68.81
5 769 796.2-27.24
6 1310 1364-53.8
7 840 811.3 28.72
8 1590 1505 84.57
9 716 769.4-53.39
10 892 902.8-10.79
11 1717 1510 206.6
12 930 913.8 16.17
13 920 1055-135.3
14 838 811 27.03
15 1310 1167 142.7
16 1275 1291-15.79
17 1780 1860-79.85
18 1148 1132 15.55
19 900 865.2 34.83
20 839 838 1.048
21 1975 1973 1.902
22 865 897.3-32.33
23 1018 1009 8.913
24 1550 1590-39.75
25 1190 1242-52.27
26 1182 1213-30.97
27 1198 1091 106.7
28 783 685.8 97.16
29 920 1057-136.8
30 788 753.7 34.33
31 1193 1227-33.57







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
12 0.0944 0.1888 0.9056
13 0.7353 0.5294 0.2647
14 0.7101 0.5798 0.2899
15 0.8993 0.2014 0.1007
16 0.8186 0.3628 0.1814
17 0.8727 0.2547 0.1273
18 0.8009 0.3982 0.1991
19 0.6656 0.6688 0.3344

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
12 &  0.0944 &  0.1888 &  0.9056 \tabularnewline
13 &  0.7353 &  0.5294 &  0.2647 \tabularnewline
14 &  0.7101 &  0.5798 &  0.2899 \tabularnewline
15 &  0.8993 &  0.2014 &  0.1007 \tabularnewline
16 &  0.8186 &  0.3628 &  0.1814 \tabularnewline
17 &  0.8727 &  0.2547 &  0.1273 \tabularnewline
18 &  0.8009 &  0.3982 &  0.1991 \tabularnewline
19 &  0.6656 &  0.6688 &  0.3344 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]12[/C][C] 0.0944[/C][C] 0.1888[/C][C] 0.9056[/C][/ROW]
[ROW][C]13[/C][C] 0.7353[/C][C] 0.5294[/C][C] 0.2647[/C][/ROW]
[ROW][C]14[/C][C] 0.7101[/C][C] 0.5798[/C][C] 0.2899[/C][/ROW]
[ROW][C]15[/C][C] 0.8993[/C][C] 0.2014[/C][C] 0.1007[/C][/ROW]
[ROW][C]16[/C][C] 0.8186[/C][C] 0.3628[/C][C] 0.1814[/C][/ROW]
[ROW][C]17[/C][C] 0.8727[/C][C] 0.2547[/C][C] 0.1273[/C][/ROW]
[ROW][C]18[/C][C] 0.8009[/C][C] 0.3982[/C][C] 0.1991[/C][/ROW]
[ROW][C]19[/C][C] 0.6656[/C][C] 0.6688[/C][C] 0.3344[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
12 0.0944 0.1888 0.9056
13 0.7353 0.5294 0.2647
14 0.7101 0.5798 0.2899
15 0.8993 0.2014 0.1007
16 0.8186 0.3628 0.1814
17 0.8727 0.2547 0.1273
18 0.8009 0.3982 0.1991
19 0.6656 0.6688 0.3344







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.1711, df1 = 2, df2 = 20, p-value = 0.06365
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.32075, df1 = 16, df2 = 6, p-value = 0.9678
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51573, df1 = 2, df2 = 20, p-value = 0.6048

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.1711, df1 = 2, df2 = 20, p-value = 0.06365
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.32075, df1 = 16, df2 = 6, p-value = 0.9678
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51573, df1 = 2, df2 = 20, p-value = 0.6048
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.1711, df1 = 2, df2 = 20, p-value = 0.06365
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.32075, df1 = 16, df2 = 6, p-value = 0.9678
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51573, df1 = 2, df2 = 20, p-value = 0.6048
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.1711, df1 = 2, df2 = 20, p-value = 0.06365
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.32075, df1 = 16, df2 = 6, p-value = 0.9678
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51573, df1 = 2, df2 = 20, p-value = 0.6048







Variance Inflation Factors (Multicollinearity)
> vif
        V        SQ       SQ2        BR        PH        AG         C        TH 
 1.315653 31.548096 22.832638  2.039700  1.290921  2.729898  1.933849  2.711129 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
        V        SQ       SQ2        BR        PH        AG         C        TH 
 1.315653 31.548096 22.832638  2.039700  1.290921  2.729898  1.933849  2.711129 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
        V        SQ       SQ2        BR        PH        AG         C        TH 
 1.315653 31.548096 22.832638  2.039700  1.290921  2.729898  1.933849  2.711129 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
        V        SQ       SQ2        BR        PH        AG         C        TH 
 1.315653 31.548096 22.832638  2.039700  1.290921  2.729898  1.933849  2.711129 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
R code (references can be found in the software module):
par6 <- '12'
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')