Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 18 Sep 2020 03:31:16 +0200
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2020/Sep/19/t16004760069qk3h2m982t661l.htm/, Retrieved Thu, 25 Apr 2024 23:50:39 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Thu, 25 Apr 2024 23:50:39 +0200
QR Codes:

Original text written by user:third attempt archiving ShDPSF (5))
IsPrivate?No (this computation is public)
User-defined keywordsthird attempt archiving ShDPSF 5
Estimated Impact0
Dataseries X:
955	1	895	801025	2	0	0	1	-1	1	0	4
960	0.2	1269	1610361	2	0	1	27	1	0	0	5
1156	1	1187	1408969	2	0	0	14	0	1	0	5
1433	0.1	2010	4040100	3	0	1	27	0	0	1	5
769	0.3	1063	1129969	2	0	0	25	1	0	0	6
1310	0.2	1379	1901641	2	0	0	10	0	1	0	8
840	1	967	935089	2	1	0	14	0	0	0	10
1590	1	1302	1695204	3	0	0	2	-1	1	0	10
716	0.3	1038	1077444	2	0	0	25	0	0	0	10
892	0.5	1006	1012036	3	0	1	15	0	0	0	10
1717	1	1615	2608225	2	0	0	25	1	1	0	15
930	0.5	955	912025	3	1	0	12	0	1	0	17
920	0.4	1231	1515361	3	1	0	15	0	0	0	17
838	0.2	901	811801	2	0	1	5	0	0	0	25
1310	1	1164	1354896	3	1	0	4	0	0	0	25
1275	0.5	1268	1607824	2	0	0	10	0	1	0	31
1780	0.4	1910	3648100	3	0	0	11	0	1	0	33
1148	0.2	1017	1034289	3	0	0	1	0	1	0	33
900	0.2	845	714025	2	0	0	4	0	1	0	34
839	0.3	812	659344	2	0	0	4	0	1	0	36
1975	0.2	3931	15452761	4	0	0	26	0	0	1	38
865	0.5	1001	1002001	3	0	0	15	0	0	0	38
1018	1	892	795664	2	0	0	4	0	1	0	43
1550	0.2	2383	5678689	3	0	0	28	0	0	1	44
1190	1	1378	1898884	2	1	0	13	0	0	0	47
1182	0.2	1510	2280100	2	0	0	11	0.5	1	1	50
1198	0.1	1020	1040400	2	0	0	0	-1	1	0	50
783	0	856	732736	2	0	0	10	0	0	0	51
920	1	907	822649	2	0	0	1	0	1	0	53
788	1	844	712336	2	0	0	13	1	0	0	61
1193	1	1152	1327104	3	0	0	4	0	0	0	67




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
SP[t] = -447.788 + 115.198V[t] + 1.50912SQ[t] -0.000204601SQ2[t] + 44.702BR[t] -63.428PH[t] + 29.379GR[t] -11.1035AG[t] + 19.8689Re[t] + 116.531C[t] -261.783TH[t] + 0.0205733T[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
SP[t] =  -447.788 +  115.198V[t] +  1.50912SQ[t] -0.000204601SQ2[t] +  44.702BR[t] -63.428PH[t] +  29.379GR[t] -11.1035AG[t] +  19.8689Re[t] +  116.531C[t] -261.783TH[t] +  0.0205733T[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]SP[t] =  -447.788 +  115.198V[t] +  1.50912SQ[t] -0.000204601SQ2[t] +  44.702BR[t] -63.428PH[t] +  29.379GR[t] -11.1035AG[t] +  19.8689Re[t] +  116.531C[t] -261.783TH[t] +  0.0205733T[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
SP[t] = -447.788 + 115.198V[t] + 1.50912SQ[t] -0.000204601SQ2[t] + 44.702BR[t] -63.428PH[t] + 29.379GR[t] -11.1035AG[t] + 19.8689Re[t] + 116.531C[t] -261.783TH[t] + 0.0205733T[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-447.8 165-2.7140e+00 0.01377 0.006886
V+115.2 54.31+2.1210e+00 0.0473 0.02365
SQ+1.509 0.16+9.4350e+00 1.331e-08 6.656e-09
SQ2-0.0002046 3.063e-05-6.6810e+00 2.182e-06 1.091e-06
BR+44.7 44.31+1.0090e+00 0.3258 0.1629
PH-63.43 57.28-1.1070e+00 0.2819 0.141
GR+29.38 71.56+4.1050e-01 0.686 0.343
AG-11.1 5.127-2.1660e+00 0.04326 0.02163
Re+19.87 54.46+3.6480e-01 0.7193 0.3596
C+116.5 60.22+1.9350e+00 0.06799 0.03399
TH-261.8 87.75-2.9830e+00 0.007637 0.003819
T+0.02057 1.498+1.3740e-02 0.9892 0.4946

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -447.8 &  165 & -2.7140e+00 &  0.01377 &  0.006886 \tabularnewline
V & +115.2 &  54.31 & +2.1210e+00 &  0.0473 &  0.02365 \tabularnewline
SQ & +1.509 &  0.16 & +9.4350e+00 &  1.331e-08 &  6.656e-09 \tabularnewline
SQ2 & -0.0002046 &  3.063e-05 & -6.6810e+00 &  2.182e-06 &  1.091e-06 \tabularnewline
BR & +44.7 &  44.31 & +1.0090e+00 &  0.3258 &  0.1629 \tabularnewline
PH & -63.43 &  57.28 & -1.1070e+00 &  0.2819 &  0.141 \tabularnewline
GR & +29.38 &  71.56 & +4.1050e-01 &  0.686 &  0.343 \tabularnewline
AG & -11.1 &  5.127 & -2.1660e+00 &  0.04326 &  0.02163 \tabularnewline
Re & +19.87 &  54.46 & +3.6480e-01 &  0.7193 &  0.3596 \tabularnewline
C & +116.5 &  60.22 & +1.9350e+00 &  0.06799 &  0.03399 \tabularnewline
TH & -261.8 &  87.75 & -2.9830e+00 &  0.007637 &  0.003819 \tabularnewline
T & +0.02057 &  1.498 & +1.3740e-02 &  0.9892 &  0.4946 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-447.8[/C][C] 165[/C][C]-2.7140e+00[/C][C] 0.01377[/C][C] 0.006886[/C][/ROW]
[ROW][C]V[/C][C]+115.2[/C][C] 54.31[/C][C]+2.1210e+00[/C][C] 0.0473[/C][C] 0.02365[/C][/ROW]
[ROW][C]SQ[/C][C]+1.509[/C][C] 0.16[/C][C]+9.4350e+00[/C][C] 1.331e-08[/C][C] 6.656e-09[/C][/ROW]
[ROW][C]SQ2[/C][C]-0.0002046[/C][C] 3.063e-05[/C][C]-6.6810e+00[/C][C] 2.182e-06[/C][C] 1.091e-06[/C][/ROW]
[ROW][C]BR[/C][C]+44.7[/C][C] 44.31[/C][C]+1.0090e+00[/C][C] 0.3258[/C][C] 0.1629[/C][/ROW]
[ROW][C]PH[/C][C]-63.43[/C][C] 57.28[/C][C]-1.1070e+00[/C][C] 0.2819[/C][C] 0.141[/C][/ROW]
[ROW][C]GR[/C][C]+29.38[/C][C] 71.56[/C][C]+4.1050e-01[/C][C] 0.686[/C][C] 0.343[/C][/ROW]
[ROW][C]AG[/C][C]-11.1[/C][C] 5.127[/C][C]-2.1660e+00[/C][C] 0.04326[/C][C] 0.02163[/C][/ROW]
[ROW][C]Re[/C][C]+19.87[/C][C] 54.46[/C][C]+3.6480e-01[/C][C] 0.7193[/C][C] 0.3596[/C][/ROW]
[ROW][C]C[/C][C]+116.5[/C][C] 60.22[/C][C]+1.9350e+00[/C][C] 0.06799[/C][C] 0.03399[/C][/ROW]
[ROW][C]TH[/C][C]-261.8[/C][C] 87.75[/C][C]-2.9830e+00[/C][C] 0.007637[/C][C] 0.003819[/C][/ROW]
[ROW][C]T[/C][C]+0.02057[/C][C] 1.498[/C][C]+1.3740e-02[/C][C] 0.9892[/C][C] 0.4946[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-447.8 165-2.7140e+00 0.01377 0.006886
V+115.2 54.31+2.1210e+00 0.0473 0.02365
SQ+1.509 0.16+9.4350e+00 1.331e-08 6.656e-09
SQ2-0.0002046 3.063e-05-6.6810e+00 2.182e-06 1.091e-06
BR+44.7 44.31+1.0090e+00 0.3258 0.1629
PH-63.43 57.28-1.1070e+00 0.2819 0.141
GR+29.38 71.56+4.1050e-01 0.686 0.343
AG-11.1 5.127-2.1660e+00 0.04326 0.02163
Re+19.87 54.46+3.6480e-01 0.7193 0.3596
C+116.5 60.22+1.9350e+00 0.06799 0.03399
TH-261.8 87.75-2.9830e+00 0.007637 0.003819
T+0.02057 1.498+1.3740e-02 0.9892 0.4946







Multiple Linear Regression - Regression Statistics
Multiple R 0.9738
R-squared 0.9483
Adjusted R-squared 0.9184
F-TEST (value) 31.7
F-TEST (DF numerator)11
F-TEST (DF denominator)19
p-value 7.072e-10
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 93.8
Sum Squared Residuals 1.672e+05

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.9738 \tabularnewline
R-squared &  0.9483 \tabularnewline
Adjusted R-squared &  0.9184 \tabularnewline
F-TEST (value) &  31.7 \tabularnewline
F-TEST (DF numerator) & 11 \tabularnewline
F-TEST (DF denominator) & 19 \tabularnewline
p-value &  7.072e-10 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  93.8 \tabularnewline
Sum Squared Residuals &  1.672e+05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.9738[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.9483[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.9184[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 31.7[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]11[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]19[/C][/ROW]
[ROW][C]p-value[/C][C] 7.072e-10[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 93.8[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1.672e+05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.9738
R-squared 0.9483
Adjusted R-squared 0.9184
F-TEST (value) 31.7
F-TEST (DF numerator)11
F-TEST (DF denominator)19
p-value 7.072e-10
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 93.8
Sum Squared Residuals 1.672e+05







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 955 1029-74.23
2 960 999.8-39.81
3 1156 1221-65.05
4 1433 1372 60.53
5 769 791.6-22.59
6 1310 1362-52.32
7 840 806.1 33.85
8 1590 1494 95.78
9 716 744.8-28.82
10 892 918.1-26.06
11 1717 1520 197.5
12 930 918.7 11.26
13 920 1050-130.5
14 838 832.7 5.343
15 1310 1174 136.4
16 1275 1290-14.96
17 1780 1863-83.49
18 1148 1139 9.373
19 900 866.6 33.41
20 839 839.5-0.5395
21 1975 1975-0.07729
22 865 883.8-18.77
23 1018 1013 4.839
24 1550 1572-21.96
25 1190 1241-51.07
26 1182 1220-38.49
27 1198 1077 120.7
28 783 673.5 109.5
29 920 1064-143.8
30 788 761.5 26.45
31 1193 1225-32.46

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  955 &  1029 & -74.23 \tabularnewline
2 &  960 &  999.8 & -39.81 \tabularnewline
3 &  1156 &  1221 & -65.05 \tabularnewline
4 &  1433 &  1372 &  60.53 \tabularnewline
5 &  769 &  791.6 & -22.59 \tabularnewline
6 &  1310 &  1362 & -52.32 \tabularnewline
7 &  840 &  806.1 &  33.85 \tabularnewline
8 &  1590 &  1494 &  95.78 \tabularnewline
9 &  716 &  744.8 & -28.82 \tabularnewline
10 &  892 &  918.1 & -26.06 \tabularnewline
11 &  1717 &  1520 &  197.5 \tabularnewline
12 &  930 &  918.7 &  11.26 \tabularnewline
13 &  920 &  1050 & -130.5 \tabularnewline
14 &  838 &  832.7 &  5.343 \tabularnewline
15 &  1310 &  1174 &  136.4 \tabularnewline
16 &  1275 &  1290 & -14.96 \tabularnewline
17 &  1780 &  1863 & -83.49 \tabularnewline
18 &  1148 &  1139 &  9.373 \tabularnewline
19 &  900 &  866.6 &  33.41 \tabularnewline
20 &  839 &  839.5 & -0.5395 \tabularnewline
21 &  1975 &  1975 & -0.07729 \tabularnewline
22 &  865 &  883.8 & -18.77 \tabularnewline
23 &  1018 &  1013 &  4.839 \tabularnewline
24 &  1550 &  1572 & -21.96 \tabularnewline
25 &  1190 &  1241 & -51.07 \tabularnewline
26 &  1182 &  1220 & -38.49 \tabularnewline
27 &  1198 &  1077 &  120.7 \tabularnewline
28 &  783 &  673.5 &  109.5 \tabularnewline
29 &  920 &  1064 & -143.8 \tabularnewline
30 &  788 &  761.5 &  26.45 \tabularnewline
31 &  1193 &  1225 & -32.46 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 955[/C][C] 1029[/C][C]-74.23[/C][/ROW]
[ROW][C]2[/C][C] 960[/C][C] 999.8[/C][C]-39.81[/C][/ROW]
[ROW][C]3[/C][C] 1156[/C][C] 1221[/C][C]-65.05[/C][/ROW]
[ROW][C]4[/C][C] 1433[/C][C] 1372[/C][C] 60.53[/C][/ROW]
[ROW][C]5[/C][C] 769[/C][C] 791.6[/C][C]-22.59[/C][/ROW]
[ROW][C]6[/C][C] 1310[/C][C] 1362[/C][C]-52.32[/C][/ROW]
[ROW][C]7[/C][C] 840[/C][C] 806.1[/C][C] 33.85[/C][/ROW]
[ROW][C]8[/C][C] 1590[/C][C] 1494[/C][C] 95.78[/C][/ROW]
[ROW][C]9[/C][C] 716[/C][C] 744.8[/C][C]-28.82[/C][/ROW]
[ROW][C]10[/C][C] 892[/C][C] 918.1[/C][C]-26.06[/C][/ROW]
[ROW][C]11[/C][C] 1717[/C][C] 1520[/C][C] 197.5[/C][/ROW]
[ROW][C]12[/C][C] 930[/C][C] 918.7[/C][C] 11.26[/C][/ROW]
[ROW][C]13[/C][C] 920[/C][C] 1050[/C][C]-130.5[/C][/ROW]
[ROW][C]14[/C][C] 838[/C][C] 832.7[/C][C] 5.343[/C][/ROW]
[ROW][C]15[/C][C] 1310[/C][C] 1174[/C][C] 136.4[/C][/ROW]
[ROW][C]16[/C][C] 1275[/C][C] 1290[/C][C]-14.96[/C][/ROW]
[ROW][C]17[/C][C] 1780[/C][C] 1863[/C][C]-83.49[/C][/ROW]
[ROW][C]18[/C][C] 1148[/C][C] 1139[/C][C] 9.373[/C][/ROW]
[ROW][C]19[/C][C] 900[/C][C] 866.6[/C][C] 33.41[/C][/ROW]
[ROW][C]20[/C][C] 839[/C][C] 839.5[/C][C]-0.5395[/C][/ROW]
[ROW][C]21[/C][C] 1975[/C][C] 1975[/C][C]-0.07729[/C][/ROW]
[ROW][C]22[/C][C] 865[/C][C] 883.8[/C][C]-18.77[/C][/ROW]
[ROW][C]23[/C][C] 1018[/C][C] 1013[/C][C] 4.839[/C][/ROW]
[ROW][C]24[/C][C] 1550[/C][C] 1572[/C][C]-21.96[/C][/ROW]
[ROW][C]25[/C][C] 1190[/C][C] 1241[/C][C]-51.07[/C][/ROW]
[ROW][C]26[/C][C] 1182[/C][C] 1220[/C][C]-38.49[/C][/ROW]
[ROW][C]27[/C][C] 1198[/C][C] 1077[/C][C] 120.7[/C][/ROW]
[ROW][C]28[/C][C] 783[/C][C] 673.5[/C][C] 109.5[/C][/ROW]
[ROW][C]29[/C][C] 920[/C][C] 1064[/C][C]-143.8[/C][/ROW]
[ROW][C]30[/C][C] 788[/C][C] 761.5[/C][C] 26.45[/C][/ROW]
[ROW][C]31[/C][C] 1193[/C][C] 1225[/C][C]-32.46[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 955 1029-74.23
2 960 999.8-39.81
3 1156 1221-65.05
4 1433 1372 60.53
5 769 791.6-22.59
6 1310 1362-52.32
7 840 806.1 33.85
8 1590 1494 95.78
9 716 744.8-28.82
10 892 918.1-26.06
11 1717 1520 197.5
12 930 918.7 11.26
13 920 1050-130.5
14 838 832.7 5.343
15 1310 1174 136.4
16 1275 1290-14.96
17 1780 1863-83.49
18 1148 1139 9.373
19 900 866.6 33.41
20 839 839.5-0.5395
21 1975 1975-0.07729
22 865 883.8-18.77
23 1018 1013 4.839
24 1550 1572-21.96
25 1190 1241-51.07
26 1182 1220-38.49
27 1198 1077 120.7
28 783 673.5 109.5
29 920 1064-143.8
30 788 761.5 26.45
31 1193 1225-32.46







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
15 0.7382 0.5236 0.2618
16 0.5462 0.9077 0.4538

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
15 &  0.7382 &  0.5236 &  0.2618 \tabularnewline
16 &  0.5462 &  0.9077 &  0.4538 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]15[/C][C] 0.7382[/C][C] 0.5236[/C][C] 0.2618[/C][/ROW]
[ROW][C]16[/C][C] 0.5462[/C][C] 0.9077[/C][C] 0.4538[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
15 0.7382 0.5236 0.2618
16 0.5462 0.9077 0.4538







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.7689, df1 = 2, df2 = 17, p-value = 0.0227
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.67407, df1 = 22, df2 = -3, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.28945, df1 = 2, df2 = 17, p-value = 0.7523

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.7689, df1 = 2, df2 = 17, p-value = 0.0227
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.67407, df1 = 22, df2 = -3, p-value = NA
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.28945, df1 = 2, df2 = 17, p-value = 0.7523
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.7689, df1 = 2, df2 = 17, p-value = 0.0227
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.67407, df1 = 22, df2 = -3, p-value = NA
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.28945, df1 = 2, df2 = 17, p-value = 0.7523
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.7689, df1 = 2, df2 = 17, p-value = 0.0227
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -0.67407, df1 = 22, df2 = -3, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.28945, df1 = 2, df2 = 17, p-value = 0.7523







Variance Inflation Factors (Multicollinearity)
> vif
        V        SQ       SQ2        BR        PH        GR        AG        Re 
 1.390485 33.025181 23.863303  2.130852  1.563528  2.027583  7.275371  2.419217 
        C        TH         T 
 3.190228  3.048479  2.726906 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
        V        SQ       SQ2        BR        PH        GR        AG        Re 
 1.390485 33.025181 23.863303  2.130852  1.563528  2.027583  7.275371  2.419217 
        C        TH         T 
 3.190228  3.048479  2.726906 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
        V        SQ       SQ2        BR        PH        GR        AG        Re 
 1.390485 33.025181 23.863303  2.130852  1.563528  2.027583  7.275371  2.419217 
        C        TH         T 
 3.190228  3.048479  2.726906 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
        V        SQ       SQ2        BR        PH        GR        AG        Re 
 1.390485 33.025181 23.863303  2.130852  1.563528  2.027583  7.275371  2.419217 
        C        TH         T 
 3.190228  3.048479  2.726906 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
R code (references can be found in the software module):
par6 <- '12'
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')