Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_grangercausality.wasp
Title produced by softwareBivariate Granger Causality
Date of computationWed, 09 Dec 2009 11:16:33 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/09/t12603826556jtlqmcc89kkuzf.htm/, Retrieved Sun, 10 Nov 2024 19:42:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=65112, Retrieved Sun, 10 Nov 2024 19:42:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact173
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Granger Causality] [] [2009-12-07 08:56:28] [b98453cac15ba1066b407e146608df68]
-   PD    [Bivariate Granger Causality] [] [2009-12-09 18:16:33] [6e025b5370bdd3143fbe248190b38274] [Current]
Feedback Forum

Post a new message
Dataseries X:
87.28
87.09
86.92
87.59
90.72
90.69
90.3
89.55
88.94
88.41
87.82
87.07
86.82
86.4
86.02
85.66
85.32
85
84.67
83.94
82.83
81.95
81.19
80.48
78.86
69.47
68.77
70.06
73.95
75.8
77.79
81.57
83.07
84.34
85.1
85.25
84.26
83.63
86.44
85.3
84.1
83.36
82.48
81.58
80.47
79.34
82.13
81.69
80.7
79.88
79.16
78.38
77.42
76.47
75.46
74.48
78.27
80.7
79.91
78.75
77.78
81.14
81.08
80.03
78.91
78.01
76.9
75.97
81.93
80.27
78.67
77.42
76.16
74.7
76.39
76.04
74.65
73.29
71.79
74.39
74.91
74.54
73.08
72.75
71.32
70.38
70.35
70.01
69.36
67.77
69.26
69.8
68.38
67.62
68.39
66.95
65.21
66.64
63.45
60.66
62.34
60.32
58.64
60.46
58.59
61.87
61.85
67.44
77.06
91.74
93.15
94.15
93.11
91.51
89.96
88.16
86.98
88.03
86.24
84.65
83.23
81.7
80.25
78.8
77.51
76.2
75.04
74
75.49
77.14
76.15
76.27
78.19
76.49
77.31
76.65
74.99
73.51
72.07
70.59
71.96
76.29
74.86
74.93
71.9
71.01
77.47
75.78
76.6
76.07
74.57
73.02
72.65
73.16
71.53
69.78
67.98
69.96
72.16
70.47
68.86
67.37
65.87
72.16
71.34
69.93
68.44
67.16
66.01
67.25
70.91
69.75
68.59
67.48
66.31
64.81
66.58
65.97
64.7
64.7
60.94
59.08
58.42
57.77
57.11
53.31
49.96
49.4
48.84
48.3
47.74
47.24
46.76
46.29
48.9
49.23
48.53
48.03
54.34
53.79
53.24
52.96
52.17
51.7
58.55
78.2
77.03
76.19
77.15
75.87
95.47
109.67
112.28
112.01
107.93
105.96
105.06
102.98
102.2
105.23
101.85
99.89
96.23
94.76
91.51
91.63
91.54
85.23
87.83
87.38
84.44
85.19
84.03
86.73
102.52
104.45
106.98
107.02
99.26
94.45
113.44
157.33
147.38
171.89
171.95
132.71
126.02
121.18
115.45
110.48
117.85
117.63
124.65
109.59
111.27
99.78
98.21
99.2
97.97
89.55
87.91
93.34
94.42
93.2
90.29
91.46
89.98
88.35
88.41
82.44
79.89
75.69
75.66
84.5
96.73
87.48
82.39
83.48
79.31
78.16
72.77
72.45
68.46
67.62
68.76
70.07
68.55
65.3
58.96
59.17
62.37
66.28
55.62
55.23
55.85
56.75
50.89
53.88
52.95
55.08
53.61
58.78
61.85
55.91
53.32
46.41
44.57
50
50
53.36
46.23
50.45
49.07
45.85
48.45
49.96
46.53
50.51
47.58
48.05
46.84
47.67
49.16
55.54
55.82
58.22
56.19
57.77
63.19
54.76
55.74
62.54
61.39
69.6
79.23
80
93.68
107.63
100.18
97.3
90.45
80.64
80.58
75.82
85.59
89.35
89.42
104.73
95.32
89.27
90.44
86.97
79.98
81.22
87.35
83.64
82.22
94.4
102.18
Dataseries Y:
255
280.2
299.9
339.2
374.2
393.5
389.2
381.7
375.2
369
357.4
352.1
346.5
342.9
340.3
328.3
322.9
314.3
308.9
294
285.6
281.2
280.3
278.8
274.5
270.4
263.4
259.9
258
262.7
284.7
311.3
322.1
327
331.3
333.3
321.4
327
320
314.7
316.7
314.4
321.3
318.2
307.2
301.3
287.5
277.7
274.4
258.8
253.3
251
248.4
249.5
246.1
244.5
243.6
244
240.8
249.8
248
259.4
260.5
260.8
261.3
259.5
256.6
257.9
256.5
254.2
253.3
253.8
255.5
257.1
257.3
253.2
252.8
252
250.7
252.2
250
251
253.4
251.2
255.6
261.1
258.9
259.9
261.2
264.7
267.1
266.4
267.7
268.6
267.5
268.5
268.5
270.5
270.9
270.1
269.3
269.8
270.1
264.9
263.7
264.8
263.7
255.9
276.2
360.1
380.5
373.7
369.8
366.6
359.3
345.8
326.2
324.5
328.1
327.5
324.4
316.5
310.9
301.5
291.7
290.4
287.4
277.7
281.6
288
276
272.9
283
283.3
276.8
284.5
282.7
281.2
287.4
283.1
284
285.5
289.2
292.5
296.4
305.2
303.9
311.5
316.3
316.7
322.5
317.1
309.8
303.8
290.3
293.7
291.7
296.5
289.1
288.5
293.8
297.7
305.4
302.7
302.5
303
294.5
294.1
294.5
297.1
289.4
292.4
287.9
286.6
280.5
272.4
269.2
270.6
267.3
262.5
266.8
268.8
263.1
261.2
266
262.5
265.2
261.3
253.7
249.2
239.1
236.4
235.2
245.2
246.2
247.7
251.4
253.3
254.8
250
249.3
241.5
243.3
248
253
252.9
251.5
251.6
253.5
259.8
334.1
448
445.8
445
448.2
438.2
439.8
423.4
410.8
408.4
406.7
405.9
402.7
405.1
399.6
386.5
381.4
375.2
357.7
359
355
352.7
344.4
343.8
338
339
333.3
334.4
328.3
330.7
330
331.6
351.2
389.4
410.9
442.8
462.8
466.9
461.7
439.2
430.3
416.1
402.5
397.3
403.3
395.9
387.8
378.6
377.1
370.4
362
350.3
348.2
344.6
343.5
342.8
347.6
346.6
349.5
342.1
342
342.8
339.3
348.2
333.7
334.7
354
367.7
363.3
358.4
353.1
343.1
344.6
344.4
333.9
331.7
324.3
321.2
322.4
321.7
320.5
312.8
309.7
315.6
309.7
304.6
302.5
301.5
298.8
291.3
293.6
294.6
285.9
297.6
301.1
293.8
297.7
292.9
292.1
287.2
288.2
283.8
299.9
292.4
293.3
300.8
293.7
293.1
294.4
292.1
291.9
282.5
277.9
287.5
289.2
285.6
293.2
290.8
283.1
275
287.8
287.8
287.4
284
277.8
277.6
304.9
294
300.9
324
332.9
341.6
333.4
348.2
344.7
344.7
329.3
323.5
323.2
317.4
330.1
329.2
334.9
315.8
315.4
319.6
317.3
313.8
315.8




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=65112&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=65112&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=65112&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Granger Causality Test: Y = f(X)
ModelRes.DFDiff. DFFp-value
Complete model354
Reduced model355-13.827120910051820.0512154595608946

\begin{tabular}{lllllllll}
\hline
Granger Causality Test: Y = f(X) \tabularnewline
Model & Res.DF & Diff. DF & F & p-value \tabularnewline
Complete model & 354 &  &  &  \tabularnewline
Reduced model & 355 & -1 & 3.82712091005182 & 0.0512154595608946 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=65112&T=1

[TABLE]
[ROW][C]Granger Causality Test: Y = f(X)[/C][/ROW]
[ROW][C]Model[/C][C]Res.DF[/C][C]Diff. DF[/C][C]F[/C][C]p-value[/C][/ROW]
[ROW][C]Complete model[/C][C]354[/C][C][/C][C][/C][C][/C][/ROW]
[ROW][C]Reduced model[/C][C]355[/C][C]-1[/C][C]3.82712091005182[/C][C]0.0512154595608946[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=65112&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=65112&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Granger Causality Test: Y = f(X)
ModelRes.DFDiff. DFFp-value
Complete model354
Reduced model355-13.827120910051820.0512154595608946







Granger Causality Test: X = f(Y)
ModelRes.DFDiff. DFFp-value
Complete model354
Reduced model355-12.04424677918420.153664524316026

\begin{tabular}{lllllllll}
\hline
Granger Causality Test: X = f(Y) \tabularnewline
Model & Res.DF & Diff. DF & F & p-value \tabularnewline
Complete model & 354 &  &  &  \tabularnewline
Reduced model & 355 & -1 & 2.0442467791842 & 0.153664524316026 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=65112&T=2

[TABLE]
[ROW][C]Granger Causality Test: X = f(Y)[/C][/ROW]
[ROW][C]Model[/C][C]Res.DF[/C][C]Diff. DF[/C][C]F[/C][C]p-value[/C][/ROW]
[ROW][C]Complete model[/C][C]354[/C][C][/C][C][/C][C][/C][/ROW]
[ROW][C]Reduced model[/C][C]355[/C][C]-1[/C][C]2.0442467791842[/C][C]0.153664524316026[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=65112&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=65112&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Granger Causality Test: X = f(Y)
ModelRes.DFDiff. DFFp-value
Complete model354
Reduced model355-12.04424677918420.153664524316026



Parameters (Session):
par1 = 1 ; par2 = 1 ; par3 = 0 ; par4 = 12 ; par5 = 1 ; par6 = 1 ; par7 = 0 ; par8 = 1 ;
Parameters (R input):
par1 = 1 ; par2 = 1 ; par3 = 0 ; par4 = 12 ; par5 = 1 ; par6 = 1 ; par7 = 0 ; par8 = 1 ;
R code (references can be found in the software module):
library(lmtest)
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
par6 <- as.numeric(par6)
par7 <- as.numeric(par7)
par8 <- as.numeric(par8)
ox <- x
oy <- y
if (par1 == 0) {
x <- log(x)
} else {
x <- (x ^ par1 - 1) / par1
}
if (par5 == 0) {
y <- log(y)
} else {
y <- (y ^ par5 - 1) / par5
}
if (par2 > 0) x <- diff(x,lag=1,difference=par2)
if (par6 > 0) y <- diff(y,lag=1,difference=par6)
if (par3 > 0) x <- diff(x,lag=par4,difference=par3)
if (par7 > 0) y <- diff(y,lag=par4,difference=par7)
x
y
(gyx <- grangertest(y ~ x, order=par8))
(gxy <- grangertest(x ~ y, order=par8))
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
(r <- ccf(ox,oy,main='Cross Correlation Function (raw data)',ylab='CCF',xlab='Lag (k)'))
(r <- ccf(x,y,main='Cross Correlation Function (transformed and differenced)',ylab='CCF',xlab='Lag (k)'))
par(op)
dev.off()
bitmap(file='test2.png')
op <- par(mfrow=c(2,1))
acf(ox,lag.max=round(length(x)/2),main='ACF of x (raw)')
acf(x,lag.max=round(length(x)/2),main='ACF of x (transformed and differenced)')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow=c(2,1))
acf(oy,lag.max=round(length(y)/2),main='ACF of y (raw)')
acf(y,lag.max=round(length(y)/2),main='ACF of y (transformed and differenced)')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Granger Causality Test: Y = f(X)',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Model',header=TRUE)
a<-table.element(a,'Res.DF',header=TRUE)
a<-table.element(a,'Diff. DF',header=TRUE)
a<-table.element(a,'F',header=TRUE)
a<-table.element(a,'p-value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Complete model',header=TRUE)
a<-table.element(a,gyx$Res.Df[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Reduced model',header=TRUE)
a<-table.element(a,gyx$Res.Df[2])
a<-table.element(a,gyx$Df[2])
a<-table.element(a,gyx$F[2])
a<-table.element(a,gyx$Pr[2])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Granger Causality Test: X = f(Y)',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Model',header=TRUE)
a<-table.element(a,'Res.DF',header=TRUE)
a<-table.element(a,'Diff. DF',header=TRUE)
a<-table.element(a,'F',header=TRUE)
a<-table.element(a,'p-value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Complete model',header=TRUE)
a<-table.element(a,gxy$Res.Df[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Reduced model',header=TRUE)
a<-table.element(a,gxy$Res.Df[2])
a<-table.element(a,gxy$Df[2])
a<-table.element(a,gxy$F[2])
a<-table.element(a,gxy$Pr[2])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')