Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationThu, 17 Dec 2009 01:51:10 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/17/t1261040025w4yde9vrz6yozij.htm/, Retrieved Sun, 10 Nov 2024 19:45:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=68643, Retrieved Sun, 10 Nov 2024 19:45:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact223
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Forecasting] [] [2009-12-07 09:54:52] [b98453cac15ba1066b407e146608df68]
- R PD  [ARIMA Forecasting] [] [2009-12-09 12:59:17] [e2ae2d788de9b949efa455f763351347]
-   P       [ARIMA Forecasting] [] [2009-12-17 08:51:10] [4057bfb3a128b4e91b455d276991f7f0] [Current]
- R           [ARIMA Forecasting] [] [2009-12-17 17:33:58] [e2ae2d788de9b949efa455f763351347]
Feedback Forum

Post a new message
Dataseries X:
8.3
8.2
8
7.9
7.6
7.6
8.3
8.4
8.4
8.4
8.4
8.6
8.9
8.8
8.3
7.5
7.2
7.4
8.8
9.3
9.3
8.7
8.2
8.3
8.5
8.6
8.5
8.2
8.1
7.9
8.6
8.7
8.7
8.5
8.4
8.5
8.7
8.7
8.6
8.5
8.3
8
8.2
8.1
8.1
8
7.9
7.9
8
8
7.9
8
7.7
7.2
7.5
7.3
7
7
7
7.2
7.3
7.1
6.8
6.4
6.1
6.5
7.7
7.9
7.5
6.9
6.6
6.9




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68643&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68643&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68643&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[44])
328.7-------
338.7-------
348.5-------
358.4-------
368.5-------
378.7-------
388.7-------
398.6-------
408.5-------
418.3-------
428-------
438.2-------
448.1-------
458.18.2147.9138.5150.22890.77118e-040.7711
4688.43647.97168.90130.03290.9220.39430.922
477.98.68168.15269.21060.00190.99420.85160.9844
487.98.95778.42869.4867010.9550.9993
4988.97498.43039.51952e-040.99990.83880.9992
5088.60368.03869.16860.01810.98190.3690.9597
517.98.0917.52598.65610.25380.62390.03870.4876
5287.73757.14898.32620.19110.29430.00560.1137
537.77.63036.96958.2910.41810.13640.02350.0818
547.27.72026.99098.44950.0810.52170.2260.1537
557.58.46387.70329.22430.00650.99940.75170.8257
567.38.55487.78999.31967e-040.99660.87810.8781
5778.46847.68259.25421e-040.99820.82090.8209
5878.24247.42129.06360.00150.99850.71860.6331
5978.09947.238.96890.00660.99340.67350.4995
607.28.26367.35149.17590.01110.99670.78270.6374
617.38.46497.51549.41440.00810.99550.83140.7744
627.18.40737.42789.38680.00450.98660.79240.7307
636.88.11717.10589.12850.00530.97560.66310.5133
646.47.74656.69658.79650.0060.96140.31810.2547
656.17.44356.34248.54460.00840.96840.3240.1213
666.57.30236.14018.46450.0880.97870.56850.0893
677.77.95616.72879.18340.34130.990.76680.4091
687.98.08126.79229.37020.39140.71890.88260.4886
697.58.12236.73899.50570.1890.62360.94410.5126
706.98.01546.53639.49450.06970.75270.91080.4554
716.67.91316.35119.47520.04970.89820.87410.4073
726.98.01856.39429.64290.08860.95650.83830.4609

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[44]) \tabularnewline
32 & 8.7 & - & - & - & - & - & - & - \tabularnewline
33 & 8.7 & - & - & - & - & - & - & - \tabularnewline
34 & 8.5 & - & - & - & - & - & - & - \tabularnewline
35 & 8.4 & - & - & - & - & - & - & - \tabularnewline
36 & 8.5 & - & - & - & - & - & - & - \tabularnewline
37 & 8.7 & - & - & - & - & - & - & - \tabularnewline
38 & 8.7 & - & - & - & - & - & - & - \tabularnewline
39 & 8.6 & - & - & - & - & - & - & - \tabularnewline
40 & 8.5 & - & - & - & - & - & - & - \tabularnewline
41 & 8.3 & - & - & - & - & - & - & - \tabularnewline
42 & 8 & - & - & - & - & - & - & - \tabularnewline
43 & 8.2 & - & - & - & - & - & - & - \tabularnewline
44 & 8.1 & - & - & - & - & - & - & - \tabularnewline
45 & 8.1 & 8.214 & 7.913 & 8.515 & 0.2289 & 0.7711 & 8e-04 & 0.7711 \tabularnewline
46 & 8 & 8.4364 & 7.9716 & 8.9013 & 0.0329 & 0.922 & 0.3943 & 0.922 \tabularnewline
47 & 7.9 & 8.6816 & 8.1526 & 9.2106 & 0.0019 & 0.9942 & 0.8516 & 0.9844 \tabularnewline
48 & 7.9 & 8.9577 & 8.4286 & 9.4867 & 0 & 1 & 0.955 & 0.9993 \tabularnewline
49 & 8 & 8.9749 & 8.4303 & 9.5195 & 2e-04 & 0.9999 & 0.8388 & 0.9992 \tabularnewline
50 & 8 & 8.6036 & 8.0386 & 9.1686 & 0.0181 & 0.9819 & 0.369 & 0.9597 \tabularnewline
51 & 7.9 & 8.091 & 7.5259 & 8.6561 & 0.2538 & 0.6239 & 0.0387 & 0.4876 \tabularnewline
52 & 8 & 7.7375 & 7.1489 & 8.3262 & 0.1911 & 0.2943 & 0.0056 & 0.1137 \tabularnewline
53 & 7.7 & 7.6303 & 6.9695 & 8.291 & 0.4181 & 0.1364 & 0.0235 & 0.0818 \tabularnewline
54 & 7.2 & 7.7202 & 6.9909 & 8.4495 & 0.081 & 0.5217 & 0.226 & 0.1537 \tabularnewline
55 & 7.5 & 8.4638 & 7.7032 & 9.2243 & 0.0065 & 0.9994 & 0.7517 & 0.8257 \tabularnewline
56 & 7.3 & 8.5548 & 7.7899 & 9.3196 & 7e-04 & 0.9966 & 0.8781 & 0.8781 \tabularnewline
57 & 7 & 8.4684 & 7.6825 & 9.2542 & 1e-04 & 0.9982 & 0.8209 & 0.8209 \tabularnewline
58 & 7 & 8.2424 & 7.4212 & 9.0636 & 0.0015 & 0.9985 & 0.7186 & 0.6331 \tabularnewline
59 & 7 & 8.0994 & 7.23 & 8.9689 & 0.0066 & 0.9934 & 0.6735 & 0.4995 \tabularnewline
60 & 7.2 & 8.2636 & 7.3514 & 9.1759 & 0.0111 & 0.9967 & 0.7827 & 0.6374 \tabularnewline
61 & 7.3 & 8.4649 & 7.5154 & 9.4144 & 0.0081 & 0.9955 & 0.8314 & 0.7744 \tabularnewline
62 & 7.1 & 8.4073 & 7.4278 & 9.3868 & 0.0045 & 0.9866 & 0.7924 & 0.7307 \tabularnewline
63 & 6.8 & 8.1171 & 7.1058 & 9.1285 & 0.0053 & 0.9756 & 0.6631 & 0.5133 \tabularnewline
64 & 6.4 & 7.7465 & 6.6965 & 8.7965 & 0.006 & 0.9614 & 0.3181 & 0.2547 \tabularnewline
65 & 6.1 & 7.4435 & 6.3424 & 8.5446 & 0.0084 & 0.9684 & 0.324 & 0.1213 \tabularnewline
66 & 6.5 & 7.3023 & 6.1401 & 8.4645 & 0.088 & 0.9787 & 0.5685 & 0.0893 \tabularnewline
67 & 7.7 & 7.9561 & 6.7287 & 9.1834 & 0.3413 & 0.99 & 0.7668 & 0.4091 \tabularnewline
68 & 7.9 & 8.0812 & 6.7922 & 9.3702 & 0.3914 & 0.7189 & 0.8826 & 0.4886 \tabularnewline
69 & 7.5 & 8.1223 & 6.7389 & 9.5057 & 0.189 & 0.6236 & 0.9441 & 0.5126 \tabularnewline
70 & 6.9 & 8.0154 & 6.5363 & 9.4945 & 0.0697 & 0.7527 & 0.9108 & 0.4554 \tabularnewline
71 & 6.6 & 7.9131 & 6.3511 & 9.4752 & 0.0497 & 0.8982 & 0.8741 & 0.4073 \tabularnewline
72 & 6.9 & 8.0185 & 6.3942 & 9.6429 & 0.0886 & 0.9565 & 0.8383 & 0.4609 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68643&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[44])[/C][/ROW]
[ROW][C]32[/C][C]8.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]33[/C][C]8.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]34[/C][C]8.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]35[/C][C]8.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]36[/C][C]8.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]37[/C][C]8.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]38[/C][C]8.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]39[/C][C]8.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]40[/C][C]8.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]41[/C][C]8.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]42[/C][C]8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]43[/C][C]8.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]44[/C][C]8.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]45[/C][C]8.1[/C][C]8.214[/C][C]7.913[/C][C]8.515[/C][C]0.2289[/C][C]0.7711[/C][C]8e-04[/C][C]0.7711[/C][/ROW]
[ROW][C]46[/C][C]8[/C][C]8.4364[/C][C]7.9716[/C][C]8.9013[/C][C]0.0329[/C][C]0.922[/C][C]0.3943[/C][C]0.922[/C][/ROW]
[ROW][C]47[/C][C]7.9[/C][C]8.6816[/C][C]8.1526[/C][C]9.2106[/C][C]0.0019[/C][C]0.9942[/C][C]0.8516[/C][C]0.9844[/C][/ROW]
[ROW][C]48[/C][C]7.9[/C][C]8.9577[/C][C]8.4286[/C][C]9.4867[/C][C]0[/C][C]1[/C][C]0.955[/C][C]0.9993[/C][/ROW]
[ROW][C]49[/C][C]8[/C][C]8.9749[/C][C]8.4303[/C][C]9.5195[/C][C]2e-04[/C][C]0.9999[/C][C]0.8388[/C][C]0.9992[/C][/ROW]
[ROW][C]50[/C][C]8[/C][C]8.6036[/C][C]8.0386[/C][C]9.1686[/C][C]0.0181[/C][C]0.9819[/C][C]0.369[/C][C]0.9597[/C][/ROW]
[ROW][C]51[/C][C]7.9[/C][C]8.091[/C][C]7.5259[/C][C]8.6561[/C][C]0.2538[/C][C]0.6239[/C][C]0.0387[/C][C]0.4876[/C][/ROW]
[ROW][C]52[/C][C]8[/C][C]7.7375[/C][C]7.1489[/C][C]8.3262[/C][C]0.1911[/C][C]0.2943[/C][C]0.0056[/C][C]0.1137[/C][/ROW]
[ROW][C]53[/C][C]7.7[/C][C]7.6303[/C][C]6.9695[/C][C]8.291[/C][C]0.4181[/C][C]0.1364[/C][C]0.0235[/C][C]0.0818[/C][/ROW]
[ROW][C]54[/C][C]7.2[/C][C]7.7202[/C][C]6.9909[/C][C]8.4495[/C][C]0.081[/C][C]0.5217[/C][C]0.226[/C][C]0.1537[/C][/ROW]
[ROW][C]55[/C][C]7.5[/C][C]8.4638[/C][C]7.7032[/C][C]9.2243[/C][C]0.0065[/C][C]0.9994[/C][C]0.7517[/C][C]0.8257[/C][/ROW]
[ROW][C]56[/C][C]7.3[/C][C]8.5548[/C][C]7.7899[/C][C]9.3196[/C][C]7e-04[/C][C]0.9966[/C][C]0.8781[/C][C]0.8781[/C][/ROW]
[ROW][C]57[/C][C]7[/C][C]8.4684[/C][C]7.6825[/C][C]9.2542[/C][C]1e-04[/C][C]0.9982[/C][C]0.8209[/C][C]0.8209[/C][/ROW]
[ROW][C]58[/C][C]7[/C][C]8.2424[/C][C]7.4212[/C][C]9.0636[/C][C]0.0015[/C][C]0.9985[/C][C]0.7186[/C][C]0.6331[/C][/ROW]
[ROW][C]59[/C][C]7[/C][C]8.0994[/C][C]7.23[/C][C]8.9689[/C][C]0.0066[/C][C]0.9934[/C][C]0.6735[/C][C]0.4995[/C][/ROW]
[ROW][C]60[/C][C]7.2[/C][C]8.2636[/C][C]7.3514[/C][C]9.1759[/C][C]0.0111[/C][C]0.9967[/C][C]0.7827[/C][C]0.6374[/C][/ROW]
[ROW][C]61[/C][C]7.3[/C][C]8.4649[/C][C]7.5154[/C][C]9.4144[/C][C]0.0081[/C][C]0.9955[/C][C]0.8314[/C][C]0.7744[/C][/ROW]
[ROW][C]62[/C][C]7.1[/C][C]8.4073[/C][C]7.4278[/C][C]9.3868[/C][C]0.0045[/C][C]0.9866[/C][C]0.7924[/C][C]0.7307[/C][/ROW]
[ROW][C]63[/C][C]6.8[/C][C]8.1171[/C][C]7.1058[/C][C]9.1285[/C][C]0.0053[/C][C]0.9756[/C][C]0.6631[/C][C]0.5133[/C][/ROW]
[ROW][C]64[/C][C]6.4[/C][C]7.7465[/C][C]6.6965[/C][C]8.7965[/C][C]0.006[/C][C]0.9614[/C][C]0.3181[/C][C]0.2547[/C][/ROW]
[ROW][C]65[/C][C]6.1[/C][C]7.4435[/C][C]6.3424[/C][C]8.5446[/C][C]0.0084[/C][C]0.9684[/C][C]0.324[/C][C]0.1213[/C][/ROW]
[ROW][C]66[/C][C]6.5[/C][C]7.3023[/C][C]6.1401[/C][C]8.4645[/C][C]0.088[/C][C]0.9787[/C][C]0.5685[/C][C]0.0893[/C][/ROW]
[ROW][C]67[/C][C]7.7[/C][C]7.9561[/C][C]6.7287[/C][C]9.1834[/C][C]0.3413[/C][C]0.99[/C][C]0.7668[/C][C]0.4091[/C][/ROW]
[ROW][C]68[/C][C]7.9[/C][C]8.0812[/C][C]6.7922[/C][C]9.3702[/C][C]0.3914[/C][C]0.7189[/C][C]0.8826[/C][C]0.4886[/C][/ROW]
[ROW][C]69[/C][C]7.5[/C][C]8.1223[/C][C]6.7389[/C][C]9.5057[/C][C]0.189[/C][C]0.6236[/C][C]0.9441[/C][C]0.5126[/C][/ROW]
[ROW][C]70[/C][C]6.9[/C][C]8.0154[/C][C]6.5363[/C][C]9.4945[/C][C]0.0697[/C][C]0.7527[/C][C]0.9108[/C][C]0.4554[/C][/ROW]
[ROW][C]71[/C][C]6.6[/C][C]7.9131[/C][C]6.3511[/C][C]9.4752[/C][C]0.0497[/C][C]0.8982[/C][C]0.8741[/C][C]0.4073[/C][/ROW]
[ROW][C]72[/C][C]6.9[/C][C]8.0185[/C][C]6.3942[/C][C]9.6429[/C][C]0.0886[/C][C]0.9565[/C][C]0.8383[/C][C]0.4609[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68643&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68643&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[44])
328.7-------
338.7-------
348.5-------
358.4-------
368.5-------
378.7-------
388.7-------
398.6-------
408.5-------
418.3-------
428-------
438.2-------
448.1-------
458.18.2147.9138.5150.22890.77118e-040.7711
4688.43647.97168.90130.03290.9220.39430.922
477.98.68168.15269.21060.00190.99420.85160.9844
487.98.95778.42869.4867010.9550.9993
4988.97498.43039.51952e-040.99990.83880.9992
5088.60368.03869.16860.01810.98190.3690.9597
517.98.0917.52598.65610.25380.62390.03870.4876
5287.73757.14898.32620.19110.29430.00560.1137
537.77.63036.96958.2910.41810.13640.02350.0818
547.27.72026.99098.44950.0810.52170.2260.1537
557.58.46387.70329.22430.00650.99940.75170.8257
567.38.55487.78999.31967e-040.99660.87810.8781
5778.46847.68259.25421e-040.99820.82090.8209
5878.24247.42129.06360.00150.99850.71860.6331
5978.09947.238.96890.00660.99340.67350.4995
607.28.26367.35149.17590.01110.99670.78270.6374
617.38.46497.51549.41440.00810.99550.83140.7744
627.18.40737.42789.38680.00450.98660.79240.7307
636.88.11717.10589.12850.00530.97560.66310.5133
646.47.74656.69658.79650.0060.96140.31810.2547
656.17.44356.34248.54460.00840.96840.3240.1213
666.57.30236.14018.46450.0880.97870.56850.0893
677.77.95616.72879.18340.34130.990.76680.4091
687.98.08126.79229.37020.39140.71890.88260.4886
697.58.12236.73899.50570.1890.62360.94410.5126
706.98.01546.53639.49450.06970.75270.91080.4554
716.67.91316.35119.47520.04970.89820.87410.4073
726.98.01856.39429.64290.08860.95650.83830.4609







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
450.0187-0.013900.01300
460.0281-0.05170.03280.19050.10170.319
470.0311-0.090.05190.6110.27150.521
480.0301-0.11810.06841.11870.48330.6952
490.031-0.10860.07650.95040.57670.7594
500.0335-0.07020.07540.36430.54130.7357
510.0356-0.02360.0680.03650.46920.685
520.03880.03390.06380.06890.41920.6474
530.04420.00910.05770.00490.37310.6108
540.0482-0.06740.05870.27060.36290.6024
550.0458-0.11390.06370.92880.41430.6437
560.0456-0.14670.07061.57450.5110.7148
570.0473-0.17340.07852.15610.63750.7985
580.0508-0.15070.08371.54360.70230.838
590.0548-0.13570.08711.20880.7360.8579
600.0563-0.12870.08971.13130.76070.8722
610.0572-0.13760.09251.35710.79580.8921
620.0594-0.15550.0961.70890.84650.9201
630.0636-0.16230.09951.73490.89330.9451
640.0692-0.17380.10321.81320.93930.9692
650.0755-0.18050.10691.8050.98050.9902
660.0812-0.10990.10710.64370.96520.9824
670.0787-0.03220.10380.06560.92610.9623
680.0814-0.02240.10040.03280.88890.9428
690.0869-0.07660.09950.38730.86880.9321
700.0941-0.13920.1011.24410.88320.9398
710.1007-0.16590.10341.72430.91440.9562
720.1034-0.13950.10471.25110.92640.9625

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & Sq.E & MSE & RMSE \tabularnewline
45 & 0.0187 & -0.0139 & 0 & 0.013 & 0 & 0 \tabularnewline
46 & 0.0281 & -0.0517 & 0.0328 & 0.1905 & 0.1017 & 0.319 \tabularnewline
47 & 0.0311 & -0.09 & 0.0519 & 0.611 & 0.2715 & 0.521 \tabularnewline
48 & 0.0301 & -0.1181 & 0.0684 & 1.1187 & 0.4833 & 0.6952 \tabularnewline
49 & 0.031 & -0.1086 & 0.0765 & 0.9504 & 0.5767 & 0.7594 \tabularnewline
50 & 0.0335 & -0.0702 & 0.0754 & 0.3643 & 0.5413 & 0.7357 \tabularnewline
51 & 0.0356 & -0.0236 & 0.068 & 0.0365 & 0.4692 & 0.685 \tabularnewline
52 & 0.0388 & 0.0339 & 0.0638 & 0.0689 & 0.4192 & 0.6474 \tabularnewline
53 & 0.0442 & 0.0091 & 0.0577 & 0.0049 & 0.3731 & 0.6108 \tabularnewline
54 & 0.0482 & -0.0674 & 0.0587 & 0.2706 & 0.3629 & 0.6024 \tabularnewline
55 & 0.0458 & -0.1139 & 0.0637 & 0.9288 & 0.4143 & 0.6437 \tabularnewline
56 & 0.0456 & -0.1467 & 0.0706 & 1.5745 & 0.511 & 0.7148 \tabularnewline
57 & 0.0473 & -0.1734 & 0.0785 & 2.1561 & 0.6375 & 0.7985 \tabularnewline
58 & 0.0508 & -0.1507 & 0.0837 & 1.5436 & 0.7023 & 0.838 \tabularnewline
59 & 0.0548 & -0.1357 & 0.0871 & 1.2088 & 0.736 & 0.8579 \tabularnewline
60 & 0.0563 & -0.1287 & 0.0897 & 1.1313 & 0.7607 & 0.8722 \tabularnewline
61 & 0.0572 & -0.1376 & 0.0925 & 1.3571 & 0.7958 & 0.8921 \tabularnewline
62 & 0.0594 & -0.1555 & 0.096 & 1.7089 & 0.8465 & 0.9201 \tabularnewline
63 & 0.0636 & -0.1623 & 0.0995 & 1.7349 & 0.8933 & 0.9451 \tabularnewline
64 & 0.0692 & -0.1738 & 0.1032 & 1.8132 & 0.9393 & 0.9692 \tabularnewline
65 & 0.0755 & -0.1805 & 0.1069 & 1.805 & 0.9805 & 0.9902 \tabularnewline
66 & 0.0812 & -0.1099 & 0.1071 & 0.6437 & 0.9652 & 0.9824 \tabularnewline
67 & 0.0787 & -0.0322 & 0.1038 & 0.0656 & 0.9261 & 0.9623 \tabularnewline
68 & 0.0814 & -0.0224 & 0.1004 & 0.0328 & 0.8889 & 0.9428 \tabularnewline
69 & 0.0869 & -0.0766 & 0.0995 & 0.3873 & 0.8688 & 0.9321 \tabularnewline
70 & 0.0941 & -0.1392 & 0.101 & 1.2441 & 0.8832 & 0.9398 \tabularnewline
71 & 0.1007 & -0.1659 & 0.1034 & 1.7243 & 0.9144 & 0.9562 \tabularnewline
72 & 0.1034 & -0.1395 & 0.1047 & 1.2511 & 0.9264 & 0.9625 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=68643&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][/ROW]
[ROW][C]45[/C][C]0.0187[/C][C]-0.0139[/C][C]0[/C][C]0.013[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]46[/C][C]0.0281[/C][C]-0.0517[/C][C]0.0328[/C][C]0.1905[/C][C]0.1017[/C][C]0.319[/C][/ROW]
[ROW][C]47[/C][C]0.0311[/C][C]-0.09[/C][C]0.0519[/C][C]0.611[/C][C]0.2715[/C][C]0.521[/C][/ROW]
[ROW][C]48[/C][C]0.0301[/C][C]-0.1181[/C][C]0.0684[/C][C]1.1187[/C][C]0.4833[/C][C]0.6952[/C][/ROW]
[ROW][C]49[/C][C]0.031[/C][C]-0.1086[/C][C]0.0765[/C][C]0.9504[/C][C]0.5767[/C][C]0.7594[/C][/ROW]
[ROW][C]50[/C][C]0.0335[/C][C]-0.0702[/C][C]0.0754[/C][C]0.3643[/C][C]0.5413[/C][C]0.7357[/C][/ROW]
[ROW][C]51[/C][C]0.0356[/C][C]-0.0236[/C][C]0.068[/C][C]0.0365[/C][C]0.4692[/C][C]0.685[/C][/ROW]
[ROW][C]52[/C][C]0.0388[/C][C]0.0339[/C][C]0.0638[/C][C]0.0689[/C][C]0.4192[/C][C]0.6474[/C][/ROW]
[ROW][C]53[/C][C]0.0442[/C][C]0.0091[/C][C]0.0577[/C][C]0.0049[/C][C]0.3731[/C][C]0.6108[/C][/ROW]
[ROW][C]54[/C][C]0.0482[/C][C]-0.0674[/C][C]0.0587[/C][C]0.2706[/C][C]0.3629[/C][C]0.6024[/C][/ROW]
[ROW][C]55[/C][C]0.0458[/C][C]-0.1139[/C][C]0.0637[/C][C]0.9288[/C][C]0.4143[/C][C]0.6437[/C][/ROW]
[ROW][C]56[/C][C]0.0456[/C][C]-0.1467[/C][C]0.0706[/C][C]1.5745[/C][C]0.511[/C][C]0.7148[/C][/ROW]
[ROW][C]57[/C][C]0.0473[/C][C]-0.1734[/C][C]0.0785[/C][C]2.1561[/C][C]0.6375[/C][C]0.7985[/C][/ROW]
[ROW][C]58[/C][C]0.0508[/C][C]-0.1507[/C][C]0.0837[/C][C]1.5436[/C][C]0.7023[/C][C]0.838[/C][/ROW]
[ROW][C]59[/C][C]0.0548[/C][C]-0.1357[/C][C]0.0871[/C][C]1.2088[/C][C]0.736[/C][C]0.8579[/C][/ROW]
[ROW][C]60[/C][C]0.0563[/C][C]-0.1287[/C][C]0.0897[/C][C]1.1313[/C][C]0.7607[/C][C]0.8722[/C][/ROW]
[ROW][C]61[/C][C]0.0572[/C][C]-0.1376[/C][C]0.0925[/C][C]1.3571[/C][C]0.7958[/C][C]0.8921[/C][/ROW]
[ROW][C]62[/C][C]0.0594[/C][C]-0.1555[/C][C]0.096[/C][C]1.7089[/C][C]0.8465[/C][C]0.9201[/C][/ROW]
[ROW][C]63[/C][C]0.0636[/C][C]-0.1623[/C][C]0.0995[/C][C]1.7349[/C][C]0.8933[/C][C]0.9451[/C][/ROW]
[ROW][C]64[/C][C]0.0692[/C][C]-0.1738[/C][C]0.1032[/C][C]1.8132[/C][C]0.9393[/C][C]0.9692[/C][/ROW]
[ROW][C]65[/C][C]0.0755[/C][C]-0.1805[/C][C]0.1069[/C][C]1.805[/C][C]0.9805[/C][C]0.9902[/C][/ROW]
[ROW][C]66[/C][C]0.0812[/C][C]-0.1099[/C][C]0.1071[/C][C]0.6437[/C][C]0.9652[/C][C]0.9824[/C][/ROW]
[ROW][C]67[/C][C]0.0787[/C][C]-0.0322[/C][C]0.1038[/C][C]0.0656[/C][C]0.9261[/C][C]0.9623[/C][/ROW]
[ROW][C]68[/C][C]0.0814[/C][C]-0.0224[/C][C]0.1004[/C][C]0.0328[/C][C]0.8889[/C][C]0.9428[/C][/ROW]
[ROW][C]69[/C][C]0.0869[/C][C]-0.0766[/C][C]0.0995[/C][C]0.3873[/C][C]0.8688[/C][C]0.9321[/C][/ROW]
[ROW][C]70[/C][C]0.0941[/C][C]-0.1392[/C][C]0.101[/C][C]1.2441[/C][C]0.8832[/C][C]0.9398[/C][/ROW]
[ROW][C]71[/C][C]0.1007[/C][C]-0.1659[/C][C]0.1034[/C][C]1.7243[/C][C]0.9144[/C][C]0.9562[/C][/ROW]
[ROW][C]72[/C][C]0.1034[/C][C]-0.1395[/C][C]0.1047[/C][C]1.2511[/C][C]0.9264[/C][C]0.9625[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=68643&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=68643&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
450.0187-0.013900.01300
460.0281-0.05170.03280.19050.10170.319
470.0311-0.090.05190.6110.27150.521
480.0301-0.11810.06841.11870.48330.6952
490.031-0.10860.07650.95040.57670.7594
500.0335-0.07020.07540.36430.54130.7357
510.0356-0.02360.0680.03650.46920.685
520.03880.03390.06380.06890.41920.6474
530.04420.00910.05770.00490.37310.6108
540.0482-0.06740.05870.27060.36290.6024
550.0458-0.11390.06370.92880.41430.6437
560.0456-0.14670.07061.57450.5110.7148
570.0473-0.17340.07852.15610.63750.7985
580.0508-0.15070.08371.54360.70230.838
590.0548-0.13570.08711.20880.7360.8579
600.0563-0.12870.08971.13130.76070.8722
610.0572-0.13760.09251.35710.79580.8921
620.0594-0.15550.0961.70890.84650.9201
630.0636-0.16230.09951.73490.89330.9451
640.0692-0.17380.10321.81320.93930.9692
650.0755-0.18050.10691.8050.98050.9902
660.0812-0.10990.10710.64370.96520.9824
670.0787-0.03220.10380.06560.92610.9623
680.0814-0.02240.10040.03280.88890.9428
690.0869-0.07660.09950.38730.86880.9321
700.0941-0.13920.1011.24410.88320.9398
710.1007-0.16590.10341.72430.91440.9562
720.1034-0.13950.10471.25110.92640.9625



Parameters (Session):
par1 = 12 ; par2 = 1 ; par3 = 2 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = 1 ; par3 = 2 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 1 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par1 <- 28
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par6 <- 3
par7 <- as.numeric(par7) #q
par7 <- 3
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,par1))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i]
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.mse[1] = abs(perf.se[1])
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')