Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSun, 20 Dec 2009 03:24:37 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/20/t1261304735t9efpnfc7vrb0w1.htm/, Retrieved Sun, 10 Nov 2024 19:42:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=69818, Retrieved Sun, 10 Nov 2024 19:42:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact204
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Forecasting] [] [2009-12-06 10:44:58] [1e83ffa964db6f7ea6ccc4e7b5acbbff]
-   PD  [ARIMA Forecasting] [ws 10 deel 2 prblm] [2009-12-09 19:29:01] [134dc66689e3d457a82860db6471d419]
-   P     [ARIMA Forecasting] [ws 10 deel 2 arim...] [2009-12-12 09:45:03] [134dc66689e3d457a82860db6471d419]
-    D      [ARIMA Forecasting] [WS 10 ] [2009-12-12 11:53:20] [3425351e86519d261a643e224a0c8ee1]
-   PD        [ARIMA Forecasting] [] [2009-12-19 16:24:22] [3425351e86519d261a643e224a0c8ee1]
-   P             [ARIMA Forecasting] [] [2009-12-20 10:24:37] [17416e80e7873ecccac25c455c5f767e] [Current]
-   PD              [ARIMA Forecasting] [ARIMA forecasting] [2009-12-21 15:59:35] [76ab39dc7a55316678260825bd5ad46c]
Feedback Forum

Post a new message
Dataseries X:
91.98
91.72
90.27
91.89
92.07
92.92
93.34
93.6
92.41
93.6
93.77
93.6
93.6
93.51
92.66
94.2
94.37
94.45
94.62
94.37
93.43
94.79
94.88
94.79
94.62
94.71
93.77
95.73
95.99
95.82
95.47
95.82
94.71
96.33
96.5
96.16
96.33
96.33
95.05
96.84
96.92
97.44
97.78
97.69
96.67
98.29
98.2
98.71
98.54
98.2
96.92
99.06
99.65
99.82
99.99
100.33
99.31
101.1
101.1
100.93
100.85
100.93
99.6
101.88
101.81
102.38
102.74
102.82
101.72
103.47
102.98
102.68
102.9
103.03
101.29
103.69
103.68
104.2
104.08
104.16
103.05
104.66
104.46
104.95
105.85
106.23
104.86
107.44
108.23
108.45
109.39
110.15
109.13
110.28
110.17
109.99
109.26
109.11
107.06
109.53
108.92
109.24
109.12
109
107.23
109.49
109.04
109.02
109.23




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69818&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69818&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69818&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[94])
82104.66-------
83104.46-------
84104.95-------
85105.85-------
86106.23-------
87104.86-------
88107.44-------
89108.23-------
90108.45-------
91109.39-------
92110.15-------
93109.13-------
94110.28-------
95110.17110.0421109.3959110.68820.3490.235210.2352
96109.99110.1598109.2005111.11910.36430.491710.403
97109.26110.552109.3586111.74540.01690.82210.6725
98109.11110.7148109.3264112.10330.01170.9810.7303
99107.06109.2984107.7391110.85770.00240.593610.1086
100109.53111.6516109.9383113.36480.0076110.9417
101108.92112.0281110.1737113.88265e-040.995910.9677
102109.24112.3774110.3918114.3630.0010.99970.99990.9808
103109.12112.8112110.7026114.91993e-040.99950.99930.9907
104109113.1834110.9586115.40831e-040.99980.99620.9947
105107.23112.1261109.7907114.461400.99570.9940.9394
106109.49113.5746111.1338116.01535e-0410.99590.9959
107109.04113.3657110.7393115.99226e-040.99810.99150.9894
108109.02113.4839110.6752116.29269e-040.9990.99260.9873
109109.23113.876110.8961116.8560.00110.99930.99880.991

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[94]) \tabularnewline
82 & 104.66 & - & - & - & - & - & - & - \tabularnewline
83 & 104.46 & - & - & - & - & - & - & - \tabularnewline
84 & 104.95 & - & - & - & - & - & - & - \tabularnewline
85 & 105.85 & - & - & - & - & - & - & - \tabularnewline
86 & 106.23 & - & - & - & - & - & - & - \tabularnewline
87 & 104.86 & - & - & - & - & - & - & - \tabularnewline
88 & 107.44 & - & - & - & - & - & - & - \tabularnewline
89 & 108.23 & - & - & - & - & - & - & - \tabularnewline
90 & 108.45 & - & - & - & - & - & - & - \tabularnewline
91 & 109.39 & - & - & - & - & - & - & - \tabularnewline
92 & 110.15 & - & - & - & - & - & - & - \tabularnewline
93 & 109.13 & - & - & - & - & - & - & - \tabularnewline
94 & 110.28 & - & - & - & - & - & - & - \tabularnewline
95 & 110.17 & 110.0421 & 109.3959 & 110.6882 & 0.349 & 0.2352 & 1 & 0.2352 \tabularnewline
96 & 109.99 & 110.1598 & 109.2005 & 111.1191 & 0.3643 & 0.4917 & 1 & 0.403 \tabularnewline
97 & 109.26 & 110.552 & 109.3586 & 111.7454 & 0.0169 & 0.822 & 1 & 0.6725 \tabularnewline
98 & 109.11 & 110.7148 & 109.3264 & 112.1033 & 0.0117 & 0.98 & 1 & 0.7303 \tabularnewline
99 & 107.06 & 109.2984 & 107.7391 & 110.8577 & 0.0024 & 0.5936 & 1 & 0.1086 \tabularnewline
100 & 109.53 & 111.6516 & 109.9383 & 113.3648 & 0.0076 & 1 & 1 & 0.9417 \tabularnewline
101 & 108.92 & 112.0281 & 110.1737 & 113.8826 & 5e-04 & 0.9959 & 1 & 0.9677 \tabularnewline
102 & 109.24 & 112.3774 & 110.3918 & 114.363 & 0.001 & 0.9997 & 0.9999 & 0.9808 \tabularnewline
103 & 109.12 & 112.8112 & 110.7026 & 114.9199 & 3e-04 & 0.9995 & 0.9993 & 0.9907 \tabularnewline
104 & 109 & 113.1834 & 110.9586 & 115.4083 & 1e-04 & 0.9998 & 0.9962 & 0.9947 \tabularnewline
105 & 107.23 & 112.1261 & 109.7907 & 114.4614 & 0 & 0.9957 & 0.994 & 0.9394 \tabularnewline
106 & 109.49 & 113.5746 & 111.1338 & 116.0153 & 5e-04 & 1 & 0.9959 & 0.9959 \tabularnewline
107 & 109.04 & 113.3657 & 110.7393 & 115.9922 & 6e-04 & 0.9981 & 0.9915 & 0.9894 \tabularnewline
108 & 109.02 & 113.4839 & 110.6752 & 116.2926 & 9e-04 & 0.999 & 0.9926 & 0.9873 \tabularnewline
109 & 109.23 & 113.876 & 110.8961 & 116.856 & 0.0011 & 0.9993 & 0.9988 & 0.991 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69818&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[94])[/C][/ROW]
[ROW][C]82[/C][C]104.66[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]83[/C][C]104.46[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]84[/C][C]104.95[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]85[/C][C]105.85[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]86[/C][C]106.23[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]87[/C][C]104.86[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]88[/C][C]107.44[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]89[/C][C]108.23[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]90[/C][C]108.45[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]109.39[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]110.15[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]109.13[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]110.28[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]110.17[/C][C]110.0421[/C][C]109.3959[/C][C]110.6882[/C][C]0.349[/C][C]0.2352[/C][C]1[/C][C]0.2352[/C][/ROW]
[ROW][C]96[/C][C]109.99[/C][C]110.1598[/C][C]109.2005[/C][C]111.1191[/C][C]0.3643[/C][C]0.4917[/C][C]1[/C][C]0.403[/C][/ROW]
[ROW][C]97[/C][C]109.26[/C][C]110.552[/C][C]109.3586[/C][C]111.7454[/C][C]0.0169[/C][C]0.822[/C][C]1[/C][C]0.6725[/C][/ROW]
[ROW][C]98[/C][C]109.11[/C][C]110.7148[/C][C]109.3264[/C][C]112.1033[/C][C]0.0117[/C][C]0.98[/C][C]1[/C][C]0.7303[/C][/ROW]
[ROW][C]99[/C][C]107.06[/C][C]109.2984[/C][C]107.7391[/C][C]110.8577[/C][C]0.0024[/C][C]0.5936[/C][C]1[/C][C]0.1086[/C][/ROW]
[ROW][C]100[/C][C]109.53[/C][C]111.6516[/C][C]109.9383[/C][C]113.3648[/C][C]0.0076[/C][C]1[/C][C]1[/C][C]0.9417[/C][/ROW]
[ROW][C]101[/C][C]108.92[/C][C]112.0281[/C][C]110.1737[/C][C]113.8826[/C][C]5e-04[/C][C]0.9959[/C][C]1[/C][C]0.9677[/C][/ROW]
[ROW][C]102[/C][C]109.24[/C][C]112.3774[/C][C]110.3918[/C][C]114.363[/C][C]0.001[/C][C]0.9997[/C][C]0.9999[/C][C]0.9808[/C][/ROW]
[ROW][C]103[/C][C]109.12[/C][C]112.8112[/C][C]110.7026[/C][C]114.9199[/C][C]3e-04[/C][C]0.9995[/C][C]0.9993[/C][C]0.9907[/C][/ROW]
[ROW][C]104[/C][C]109[/C][C]113.1834[/C][C]110.9586[/C][C]115.4083[/C][C]1e-04[/C][C]0.9998[/C][C]0.9962[/C][C]0.9947[/C][/ROW]
[ROW][C]105[/C][C]107.23[/C][C]112.1261[/C][C]109.7907[/C][C]114.4614[/C][C]0[/C][C]0.9957[/C][C]0.994[/C][C]0.9394[/C][/ROW]
[ROW][C]106[/C][C]109.49[/C][C]113.5746[/C][C]111.1338[/C][C]116.0153[/C][C]5e-04[/C][C]1[/C][C]0.9959[/C][C]0.9959[/C][/ROW]
[ROW][C]107[/C][C]109.04[/C][C]113.3657[/C][C]110.7393[/C][C]115.9922[/C][C]6e-04[/C][C]0.9981[/C][C]0.9915[/C][C]0.9894[/C][/ROW]
[ROW][C]108[/C][C]109.02[/C][C]113.4839[/C][C]110.6752[/C][C]116.2926[/C][C]9e-04[/C][C]0.999[/C][C]0.9926[/C][C]0.9873[/C][/ROW]
[ROW][C]109[/C][C]109.23[/C][C]113.876[/C][C]110.8961[/C][C]116.856[/C][C]0.0011[/C][C]0.9993[/C][C]0.9988[/C][C]0.991[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69818&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69818&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[94])
82104.66-------
83104.46-------
84104.95-------
85105.85-------
86106.23-------
87104.86-------
88107.44-------
89108.23-------
90108.45-------
91109.39-------
92110.15-------
93109.13-------
94110.28-------
95110.17110.0421109.3959110.68820.3490.235210.2352
96109.99110.1598109.2005111.11910.36430.491710.403
97109.26110.552109.3586111.74540.01690.82210.6725
98109.11110.7148109.3264112.10330.01170.9810.7303
99107.06109.2984107.7391110.85770.00240.593610.1086
100109.53111.6516109.9383113.36480.0076110.9417
101108.92112.0281110.1737113.88265e-040.995910.9677
102109.24112.3774110.3918114.3630.0010.99970.99990.9808
103109.12112.8112110.7026114.91993e-040.99950.99930.9907
104109113.1834110.9586115.40831e-040.99980.99620.9947
105107.23112.1261109.7907114.461400.99570.9940.9394
106109.49113.5746111.1338116.01535e-0410.99590.9959
107109.04113.3657110.7393115.99226e-040.99810.99150.9894
108109.02113.4839110.6752116.29269e-040.9990.99260.9873
109109.23113.876110.8961116.8560.00110.99930.99880.991







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
950.0030.00121e-040.01640.00110.033
960.0044-0.00151e-040.02880.00190.0439
970.0055-0.01178e-041.66930.11130.3336
980.0064-0.01450.0012.57550.17170.4144
990.0073-0.02050.00145.01040.3340.578
1000.0078-0.0190.00134.50110.30010.5478
1010.0084-0.02770.00189.66050.6440.8025
1020.009-0.02790.00199.84330.65620.8101
1030.0095-0.03270.002213.62530.90840.9531
1040.01-0.0370.002517.5011.16671.0802
1050.0106-0.04370.002923.97131.59811.2642
1060.011-0.0360.002416.68361.11221.0546
1070.0118-0.03820.002518.7121.24751.1169
1080.0126-0.03930.002619.92621.32841.1526
1090.0134-0.04080.002721.58571.4391.1996

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & Sq.E & MSE & RMSE \tabularnewline
95 & 0.003 & 0.0012 & 1e-04 & 0.0164 & 0.0011 & 0.033 \tabularnewline
96 & 0.0044 & -0.0015 & 1e-04 & 0.0288 & 0.0019 & 0.0439 \tabularnewline
97 & 0.0055 & -0.0117 & 8e-04 & 1.6693 & 0.1113 & 0.3336 \tabularnewline
98 & 0.0064 & -0.0145 & 0.001 & 2.5755 & 0.1717 & 0.4144 \tabularnewline
99 & 0.0073 & -0.0205 & 0.0014 & 5.0104 & 0.334 & 0.578 \tabularnewline
100 & 0.0078 & -0.019 & 0.0013 & 4.5011 & 0.3001 & 0.5478 \tabularnewline
101 & 0.0084 & -0.0277 & 0.0018 & 9.6605 & 0.644 & 0.8025 \tabularnewline
102 & 0.009 & -0.0279 & 0.0019 & 9.8433 & 0.6562 & 0.8101 \tabularnewline
103 & 0.0095 & -0.0327 & 0.0022 & 13.6253 & 0.9084 & 0.9531 \tabularnewline
104 & 0.01 & -0.037 & 0.0025 & 17.501 & 1.1667 & 1.0802 \tabularnewline
105 & 0.0106 & -0.0437 & 0.0029 & 23.9713 & 1.5981 & 1.2642 \tabularnewline
106 & 0.011 & -0.036 & 0.0024 & 16.6836 & 1.1122 & 1.0546 \tabularnewline
107 & 0.0118 & -0.0382 & 0.0025 & 18.712 & 1.2475 & 1.1169 \tabularnewline
108 & 0.0126 & -0.0393 & 0.0026 & 19.9262 & 1.3284 & 1.1526 \tabularnewline
109 & 0.0134 & -0.0408 & 0.0027 & 21.5857 & 1.439 & 1.1996 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=69818&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][/ROW]
[ROW][C]95[/C][C]0.003[/C][C]0.0012[/C][C]1e-04[/C][C]0.0164[/C][C]0.0011[/C][C]0.033[/C][/ROW]
[ROW][C]96[/C][C]0.0044[/C][C]-0.0015[/C][C]1e-04[/C][C]0.0288[/C][C]0.0019[/C][C]0.0439[/C][/ROW]
[ROW][C]97[/C][C]0.0055[/C][C]-0.0117[/C][C]8e-04[/C][C]1.6693[/C][C]0.1113[/C][C]0.3336[/C][/ROW]
[ROW][C]98[/C][C]0.0064[/C][C]-0.0145[/C][C]0.001[/C][C]2.5755[/C][C]0.1717[/C][C]0.4144[/C][/ROW]
[ROW][C]99[/C][C]0.0073[/C][C]-0.0205[/C][C]0.0014[/C][C]5.0104[/C][C]0.334[/C][C]0.578[/C][/ROW]
[ROW][C]100[/C][C]0.0078[/C][C]-0.019[/C][C]0.0013[/C][C]4.5011[/C][C]0.3001[/C][C]0.5478[/C][/ROW]
[ROW][C]101[/C][C]0.0084[/C][C]-0.0277[/C][C]0.0018[/C][C]9.6605[/C][C]0.644[/C][C]0.8025[/C][/ROW]
[ROW][C]102[/C][C]0.009[/C][C]-0.0279[/C][C]0.0019[/C][C]9.8433[/C][C]0.6562[/C][C]0.8101[/C][/ROW]
[ROW][C]103[/C][C]0.0095[/C][C]-0.0327[/C][C]0.0022[/C][C]13.6253[/C][C]0.9084[/C][C]0.9531[/C][/ROW]
[ROW][C]104[/C][C]0.01[/C][C]-0.037[/C][C]0.0025[/C][C]17.501[/C][C]1.1667[/C][C]1.0802[/C][/ROW]
[ROW][C]105[/C][C]0.0106[/C][C]-0.0437[/C][C]0.0029[/C][C]23.9713[/C][C]1.5981[/C][C]1.2642[/C][/ROW]
[ROW][C]106[/C][C]0.011[/C][C]-0.036[/C][C]0.0024[/C][C]16.6836[/C][C]1.1122[/C][C]1.0546[/C][/ROW]
[ROW][C]107[/C][C]0.0118[/C][C]-0.0382[/C][C]0.0025[/C][C]18.712[/C][C]1.2475[/C][C]1.1169[/C][/ROW]
[ROW][C]108[/C][C]0.0126[/C][C]-0.0393[/C][C]0.0026[/C][C]19.9262[/C][C]1.3284[/C][C]1.1526[/C][/ROW]
[ROW][C]109[/C][C]0.0134[/C][C]-0.0408[/C][C]0.0027[/C][C]21.5857[/C][C]1.439[/C][C]1.1996[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=69818&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=69818&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
950.0030.00121e-040.01640.00110.033
960.0044-0.00151e-040.02880.00190.0439
970.0055-0.01178e-041.66930.11130.3336
980.0064-0.01450.0012.57550.17170.4144
990.0073-0.02050.00145.01040.3340.578
1000.0078-0.0190.00134.50110.30010.5478
1010.0084-0.02770.00189.66050.6440.8025
1020.009-0.02790.00199.84330.65620.8101
1030.0095-0.03270.002213.62530.90840.9531
1040.01-0.0370.002517.5011.16671.0802
1050.0106-0.04370.002923.97131.59811.2642
1060.011-0.0360.002416.68361.11221.0546
1070.0118-0.03820.002518.7121.24751.1169
1080.0126-0.03930.002619.92621.32841.1526
1090.0134-0.04080.002721.58571.4391.1996



Parameters (Session):
par1 = 15 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 15 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i]
perf.mape[i] = perf.mape[i] + abs(perf.pe[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
perf.mse[i] = perf.mse[i] + perf.se[i]
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape = perf.mape / fx
perf.mse = perf.mse / fx
perf.rmse = sqrt(perf.mse)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:12] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')