Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationFri, 05 Nov 2010 16:46:07 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/05/t1288975483t3m479zg7kze3so.htm/, Retrieved Fri, 01 Nov 2024 01:02:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=92384, Retrieved Fri, 01 Nov 2024 01:02:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact317
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
- RMPD  [Blocked Bootstrap Plot - Central Tendency] [Colombia Coffee] [2008-01-07 10:26:26] [74be16979710d4c4e7c6647856088456]
- RM D      [Blocked Bootstrap Plot - Central Tendency] [Yt skewed] [2010-11-05 16:46:07] [9ea95e194e0eb2a674315798620d5bc6] [Current]
-   PD        [Blocked Bootstrap Plot - Central Tendency] [Vraag 2: tweede m...] [2010-11-11 09:29:12] [39c51da0be01189e8a44eb69e891b7a1]
-   PD        [Blocked Bootstrap Plot - Central Tendency] [Vraag 2: tweede m...] [2010-11-11 09:32:57] [39c51da0be01189e8a44eb69e891b7a1]
-   P           [Blocked Bootstrap Plot - Central Tendency] [assignment 2 - 1 (2)] [2010-11-16 09:26:04] [717f3d787904f94c39256c5c1fc72d4c]
-   P           [Blocked Bootstrap Plot - Central Tendency] [assignment 2 - 1 (2)] [2010-11-16 09:26:04] [717f3d787904f94c39256c5c1fc72d4c]
- R PD        [Blocked Bootstrap Plot - Central Tendency] [] [2010-11-16 16:58:15] [8ef75e99f9f5061c72c54640f2f1c3e7]
F    D        [Blocked Bootstrap Plot - Central Tendency] [ws6] [2010-11-17 08:59:32] [f9eaed74daea918f73b9f505c5b1f19e]
- RMPD        [Bootstrap Plot - Central Tendency] [] [2011-11-13 11:55:28] [06c08141d7d783218a8164fd2ea166f2]
- RMPD        [Mean Plot] [] [2011-11-13 12:04:44] [06c08141d7d783218a8164fd2ea166f2]
- RM          [Blocked Bootstrap Plot - Central Tendency] [WS 6 - 8] [2011-11-15 14:38:05] [74be16979710d4c4e7c6647856088456]
Feedback Forum

Post a new message
Dataseries X:
255
280,2
299,9
339,2
374,2
393,5
389,2
381,7
375,2
369
357,4
352,1
346,5
342,9
340,3
328,3
322,9
314,3
308,9
294
285,6
281,2
280,3
278,8
274,5
270,4
263,4
259,9
258
262,7
284,7
311,3
322,1
327
331,3
333,3
321,4
327
320
314,7
316,7
314,4
321,3
318,2
307,2
301,3
287,5
277,7
274,4
258,8
253,3
251
248,4
249,5
246,1
244,5
243,6
244
240,8
249,8
248
259,4
260,5
260,8
261,3
259,5
256,6
257,9
256,5
254,2
253,3
253,8
255,5
257,1
257,3
253,2
252,8
252
250,7
252,2
250
251
253,4
251,2
255,6
261,1
258,9
259,9
261,2
264,7
267,1
266,4
267,7
268,6
267,5
268,5
268,5
270,5
270,9
270,1
269,3
269,8
270,1
264,9
263,7
264,8
263,7
255,9
276,2
360,1
380,5
373,7
369,8
366,6
359,3
345,8
326,2
324,5
328,1
327,5
324,4
316,5
310,9
301,5
291,7
290,4
287,4
277,7
281,6
288
276
272,9
283
283,3
276,8
284,5
282,7
281,2
287,4
283,1
284
285,5
289,2
292,5
296,4
305,2
303,9
311,5
316,3
316,7
322,5
317,1
309,8
303,8
290,3
293,7
291,7
296,5
289,1
288,5
293,8
297,7
305,4
302,7
302,5
303
294,5
294,1
294,5
297,1
289,4
292,4
287,9
286,6
280,5
272,4
269,2
270,6
267,3
262,5
266,8
268,8
263,1
261,2
266
262,5
265,2
261,3
253,7
249,2
239,1
236,4
235,2
245,2
246,2
247,7
251,4
253,3
254,8
250
249,3
241,5
243,3
248
253
252,9
251,5
251,6
253,5
259,8
334,1
448
445,8
445
448,2
438,2
439,8
423,4
410,8
408,4
406,7
405,9
402,7
405,1
399,6
386,5
381,4
375,2
357,7
359
355
352,7
344,4
343,8
338
339
333,3
334,4
328,3
330,7
330
331,6
351,2
389,4
410,9
442,8
462,8
466,9
461,7
439,2
430,3
416,1
402,5
397,3
403,3
395,9
387,8
378,6
377,1
370,4
362
350,3
348,2
344,6
343,5
342,8
347,6
346,6
349,5
342,1
342
342,8
339,3
348,2
333,7
334,7
354
367,7
363,3
358,4
353,1
343,1
344,6
344,4
333,9
331,7
324,3
321,2
322,4
321,7
320,5
312,8
309,7
315,6
309,7
304,6
302,5
301,5
298,8
291,3
293,6
294,6
285,9
297,6
301,1
293,8
297,7
292,9
292,1
287,2
288,2
283,8
299,9
292,4
293,3
300,8
293,7
293,1
294,4
292,1
291,9
282,5
277,9
287,5
289,2
285,6
293,2
290,8
283,1
275
287,8
287,8
287,4
284
277,8
277,6
304,9
294
300,9
324
332,9
341,6
333,4
348,2
344,7
344,7
329,3
323,5
323,2
317,4
330,1
329,2
334,9
315,8
315,4
319,6
317,3
313,8
315,8
311,3




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=92384&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=92384&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=92384&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean302.117222222222308.350833333333313.4504861111118.122739453528711.3332638888889
median292.25296.45303.8510.034913519242611.6000000000000

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 302.117222222222 & 308.350833333333 & 313.450486111111 & 8.1227394535287 & 11.3332638888889 \tabularnewline
median & 292.25 & 296.45 & 303.85 & 10.0349135192426 & 11.6000000000000 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=92384&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]302.117222222222[/C][C]308.350833333333[/C][C]313.450486111111[/C][C]8.1227394535287[/C][C]11.3332638888889[/C][/ROW]
[ROW][C]median[/C][C]292.25[/C][C]296.45[/C][C]303.85[/C][C]10.0349135192426[/C][C]11.6000000000000[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=92384&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=92384&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean302.117222222222308.350833333333313.4504861111118.122739453528711.3332638888889
median292.25296.45303.8510.034913519242611.6000000000000







95% Confidence Intervals
MeanMedian
Lower Bound307.254747029272293.730346922168
Upper Bound308.862197415173295.369653077832

\begin{tabular}{lllllllll}
\hline
95% Confidence Intervals \tabularnewline
 & Mean & Median \tabularnewline
Lower Bound & 307.254747029272 & 293.730346922168 \tabularnewline
Upper Bound & 308.862197415173 & 295.369653077832 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=92384&T=2

[TABLE]
[ROW][C]95% Confidence Intervals[/C][/ROW]
[ROW][C][/C][C]Mean[/C][C]Median[/C][/ROW]
[ROW][C]Lower Bound[/C][C]307.254747029272[/C][C]293.730346922168[/C][/ROW]
[ROW][C]Upper Bound[/C][C]308.862197415173[/C][C]295.369653077832[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=92384&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=92384&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

95% Confidence Intervals
MeanMedian
Lower Bound307.254747029272293.730346922168
Upper Bound308.862197415173295.369653077832



Parameters (Session):
par1 = 500 ; par2 = 12 ;
Parameters (R input):
par1 = 500 ; par2 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
c(s.mean, s.median)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
z <- data.frame(cbind(r$t[,1],r$t[,2]))
colnames(z) <- list('mean','median')
bitmap(file='plot7.png')
b <- boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
b
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[1])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,1])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[2])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,2])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')

a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'95% Confidence Intervals',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Mean',1,TRUE)
a<-table.element(a,'Median',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lower Bound',1,TRUE)
a<-table.element(a,b$conf[1,1])
a<-table.element(a,b$conf[1,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Upper Bound',1,TRUE)
a<-table.element(a,b$conf[2,1])
a<-table.element(a,b$conf[2,2])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')