Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 15 Dec 2011 02:45:19 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/15/t13239352164gge4kmrlzh6qxb.htm/, Retrieved Thu, 31 Oct 2024 23:04:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=155279, Retrieved Thu, 31 Oct 2024 23:04:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact191
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
- R  D  [Multiple Regression] [Tutorial 2-1] [2011-11-21 19:39:55] [9e469a83342941fcd5c6dffbf184cd3a]
-   PD    [Multiple Regression] [Tutorial2-1] [2011-11-21 20:30:04] [9e469a83342941fcd5c6dffbf184cd3a]
-   PD        [Multiple Regression] [Statistiek Paper 3.1] [2011-12-15 07:45:19] [5ae3d23a633522d14794d358c652ae9c] [Current]
-   PD          [Multiple Regression] [Paper statistiek 3.1] [2011-12-15 07:48:26] [9e469a83342941fcd5c6dffbf184cd3a]
Feedback Forum

Post a new message
Dataseries X:
27.25111111	54	17	1	18	-3
32.94777778	46	12	1	19	-2
30.12388889	60	17	1	19	0
27.26277778	40	17	1	19	0
23.3625	20	17	1	19	0
36.27361111	46	29	1	20	-4
18.1875	18	13	0	20	1
33.84666667	39	17	1	20	2
41.82777778	77	22	0	20	-4
62.31388889	83	39	1	20	0
94.88055556	168	21	0	20	0
37.03555556	55	20	0	20	-3
28.20083333	42	22	0	20	0
41.42	56	35	1	21	-4
8.608055556	14	17	0	21	-2
90.22194444	154	47	0	21	0
64.15666667	53	30	1	21	-1
54.59805556	57	29	0	21	-3
39.93222222	46	34	1	21	4
42.30527778	53	33	0	21	2
62.51666667	93	41	1	21	1
42.35388889	65	32	0	21	0
27.1775	38	24	1	21	-1
54.39944444	67	31	1	21	-2
70.69111111	83	39	1	21	0
25.69416667	32	18	0	21	-2
8.826111111	23	17	1	21	1
58.58527778	56	30	1	21	2
41.40583333	44	26	1	21	0
65.8925	84	38	0	21	0
36.98083333	55	30	0	21	4
48.44861111	100	31	0	21	3
81.78444444	77	33	1	21	4
90.3075	99	36	0	21	3
29.55777778	30	14	1	21	1
73.82472222	146	32	0	21	-2
100.6391667	119	34	0	21	2
60.81833333	41	29	0	21	2
31.28083333	41	20	0	21	3
41.235	91	37	0	21	3
50.5775	63	33	1	21	2
36.80194444	41	36	0	21	3
35.67305556	64	38	1	21	2
47.915	52	43	0	21	3
90.16611111	110	37	1	21	2
50.45361111	70	30	0	21	6
21.195	31	20	0	21	2
16.495	49	12	1	21	1
67.79222222	68	44	0	22	2
46.52444444	45	28	1	22	0
95.63805556	75	30	0	22	1
45.2125	32	28	0	22	-3
23.77055556	34	21	0	22	0
88.165	86	31	1	22	-3
39.79055556	103	27	1	22	2
53.70527778	78	35	0	22	2
67.98583333	95	33	0	22	0
63.67833333	247	31	0	22	2
65.77361111	119	31	0	23	0
67.64194444	71	42	0	23	0
62.12	73	33	0	23	-1
27.98611111	72	30	0	23	3
26.45194444	34	32	0	23	3
50.87972222	66	39	1	24	-4
67.51666667	63	29	0	24	-1
42.46416667	58	28	1	24	2
26.82222222	76	17	1	25	0
75.51555556	103	37	0	25	-3
48.53444444	92	34	0	26	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Totale_score[t] = + 2.0221380901886 -0.0205633229750716time_in_rfc[t] + 0.00402057552451883logins[t] + 0.075462358421005compendiums_reviewed[t] -0.531115745006386`What_is_your_gender?`[t] -0.132478093259995`What_is_your_age?`[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Totale_score[t] =  +  2.0221380901886 -0.0205633229750716time_in_rfc[t] +  0.00402057552451883logins[t] +  0.075462358421005compendiums_reviewed[t] -0.531115745006386`What_is_your_gender?`[t] -0.132478093259995`What_is_your_age?`[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Totale_score[t] =  +  2.0221380901886 -0.0205633229750716time_in_rfc[t] +  0.00402057552451883logins[t] +  0.075462358421005compendiums_reviewed[t] -0.531115745006386`What_is_your_gender?`[t] -0.132478093259995`What_is_your_age?`[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Totale_score[t] = + 2.0221380901886 -0.0205633229750716time_in_rfc[t] + 0.00402057552451883logins[t] + 0.075462358421005compendiums_reviewed[t] -0.531115745006386`What_is_your_gender?`[t] -0.132478093259995`What_is_your_age?`[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2.02213809018864.3244520.46760.641680.32084
time_in_rfc-0.02056332297507160.019508-1.05410.2958770.147938
logins0.004020575524518830.0098810.40690.6854520.342726
compendiums_reviewed0.0754623584210050.043981.71580.0911090.045555
`What_is_your_gender?`-0.5311157450063860.578352-0.91830.3619510.180975
`What_is_your_age?`-0.1324780932599950.210202-0.63020.5308160.265408

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 2.0221380901886 & 4.324452 & 0.4676 & 0.64168 & 0.32084 \tabularnewline
time_in_rfc & -0.0205633229750716 & 0.019508 & -1.0541 & 0.295877 & 0.147938 \tabularnewline
logins & 0.00402057552451883 & 0.009881 & 0.4069 & 0.685452 & 0.342726 \tabularnewline
compendiums_reviewed & 0.075462358421005 & 0.04398 & 1.7158 & 0.091109 & 0.045555 \tabularnewline
`What_is_your_gender?` & -0.531115745006386 & 0.578352 & -0.9183 & 0.361951 & 0.180975 \tabularnewline
`What_is_your_age?` & -0.132478093259995 & 0.210202 & -0.6302 & 0.530816 & 0.265408 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]2.0221380901886[/C][C]4.324452[/C][C]0.4676[/C][C]0.64168[/C][C]0.32084[/C][/ROW]
[ROW][C]time_in_rfc[/C][C]-0.0205633229750716[/C][C]0.019508[/C][C]-1.0541[/C][C]0.295877[/C][C]0.147938[/C][/ROW]
[ROW][C]logins[/C][C]0.00402057552451883[/C][C]0.009881[/C][C]0.4069[/C][C]0.685452[/C][C]0.342726[/C][/ROW]
[ROW][C]compendiums_reviewed[/C][C]0.075462358421005[/C][C]0.04398[/C][C]1.7158[/C][C]0.091109[/C][C]0.045555[/C][/ROW]
[ROW][C]`What_is_your_gender?`[/C][C]-0.531115745006386[/C][C]0.578352[/C][C]-0.9183[/C][C]0.361951[/C][C]0.180975[/C][/ROW]
[ROW][C]`What_is_your_age?`[/C][C]-0.132478093259995[/C][C]0.210202[/C][C]-0.6302[/C][C]0.530816[/C][C]0.265408[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2.02213809018864.3244520.46760.641680.32084
time_in_rfc-0.02056332297507160.019508-1.05410.2958770.147938
logins0.004020575524518830.0098810.40690.6854520.342726
compendiums_reviewed0.0754623584210050.043981.71580.0911090.045555
`What_is_your_gender?`-0.5311157450063860.578352-0.91830.3619510.180975
`What_is_your_age?`-0.1324780932599950.210202-0.63020.5308160.265408







Multiple Linear Regression - Regression Statistics
Multiple R0.251965123896546
R-squared0.0634864236602016
Adjusted R-squared-0.0108400506524808
F-TEST (value)0.854156264605286
F-TEST (DF numerator)5
F-TEST (DF denominator)63
p-value0.516909458658315
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.27653287492752
Sum Squared Residuals326.503921629423

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.251965123896546 \tabularnewline
R-squared & 0.0634864236602016 \tabularnewline
Adjusted R-squared & -0.0108400506524808 \tabularnewline
F-TEST (value) & 0.854156264605286 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 63 \tabularnewline
p-value & 0.516909458658315 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 2.27653287492752 \tabularnewline
Sum Squared Residuals & 326.503921629423 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.251965123896546[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0634864236602016[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.0108400506524808[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]0.854156264605286[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]63[/C][/ROW]
[ROW][C]p-value[/C][C]0.516909458658315[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]2.27653287492752[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]326.503921629423[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.251965123896546
R-squared0.0634864236602016
Adjusted R-squared-0.0108400506524808
F-TEST (value)0.854156264605286
F-TEST (DF numerator)5
F-TEST (DF denominator)63
p-value0.516909458658315
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.27653287492752
Sum Squared Residuals326.503921629423







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1-30.0460144387989154-3.04601443879892
2-2-0.613082447378792-1.38691755262121
30-0.1214140586397180.121414058639718
40-0.1429916173075990.142991617307599
50-0.143200456115340.14320045611534
6-40.46890936759225-4.46890936759225
710.05196180729398850.948038192706012
82-0.4148769197691682.41487691976917
9-40.482214321819097-4.4822143218191
1000.836819603858777-0.836819603858777
110-0.3183170680855380.318317068085538
12-30.341380956715846-3.34138095671585
1300.621709438349647-0.621709438349647
14-40.723584323203083-4.72358432320308
15-20.402236055643665-2.40223605564367
1601.55073462533315-1.55073462533315
17-1-0.133330615587255-0.866669384412745
18-30.53496188054424-3.53496188054424
1940.6385098645421653.36149013545783
2021.073509371881110.926490628118892
2110.8913021977036720.108697802296328
2201.04529431379922-1.04529431379922
23-10.114001148603146-1.11400114860315
24-20.199060712232052-2.19906071223205
2500.532077984454975-0.532077984454975
26-20.198721552280866-2.19872155228087
271-0.09717845644602431.09717845644602
282-0.006702619848903082.0067026198489
290-0.003532495069497110.00353249506949711
3001.09042733665157-1.09042733665157
3140.9646517185553073.03534828144469
3230.985224357283172.01477564271683
334-0.1729354153530864.17293541535309
3430.497757722240972.50224227775903
351-0.7217334605635821.72173346056358
36-20.723816021225808-2.72381602122581
3720.2147911166664441.78520888333356
3820.342723091372771.65727690862723
3930.2709510179599022.7290489820401
4031.550149143160031.44985085683997
4120.4124950048884871.58750499511151
4231.36481636175981.6351836382402
4321.100312277301760.899687722698239
4431.708757850756341.29124214924366
4520.08923809183545361.91076190816455
4660.7479152705615825.25208472943842
4720.4381435109522461.56185648904775
481-0.5276531239980061.52765312399801
4921.307329583952520.692670416047475
500-0.08632094940168330.0863209494016833
511-0.2936022697503511.29360226975035
52-30.419505251031028-3.41950525103103
5300.34022752186629-0.34022752186629
54-3-0.55135847047509-2.44864152952491
5520.2098812045170871.79011879548291
5620.9580485016602771.04195149833972
5700.581817892696985-0.581817892696985
5821.130597169296960.869402830703041
5900.440399535185922-0.440399535185922
6001.03907871095019-1.03907871095019
61-10.481508163180306-1.48150816318031
6230.953006694033052.04699330596695
6330.9826971056761452.01730289432385
64-40.473681909087984-4.47368190908798
65-1-0.103998518732912-0.896001481267088
662-0.2155168509499162.21551685094992
670-0.7840601717161480.784060171716148
68-30.363561540669105-3.3635615406691
6900.515291343563243-0.515291343563243

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & -3 & 0.0460144387989154 & -3.04601443879892 \tabularnewline
2 & -2 & -0.613082447378792 & -1.38691755262121 \tabularnewline
3 & 0 & -0.121414058639718 & 0.121414058639718 \tabularnewline
4 & 0 & -0.142991617307599 & 0.142991617307599 \tabularnewline
5 & 0 & -0.14320045611534 & 0.14320045611534 \tabularnewline
6 & -4 & 0.46890936759225 & -4.46890936759225 \tabularnewline
7 & 1 & 0.0519618072939885 & 0.948038192706012 \tabularnewline
8 & 2 & -0.414876919769168 & 2.41487691976917 \tabularnewline
9 & -4 & 0.482214321819097 & -4.4822143218191 \tabularnewline
10 & 0 & 0.836819603858777 & -0.836819603858777 \tabularnewline
11 & 0 & -0.318317068085538 & 0.318317068085538 \tabularnewline
12 & -3 & 0.341380956715846 & -3.34138095671585 \tabularnewline
13 & 0 & 0.621709438349647 & -0.621709438349647 \tabularnewline
14 & -4 & 0.723584323203083 & -4.72358432320308 \tabularnewline
15 & -2 & 0.402236055643665 & -2.40223605564367 \tabularnewline
16 & 0 & 1.55073462533315 & -1.55073462533315 \tabularnewline
17 & -1 & -0.133330615587255 & -0.866669384412745 \tabularnewline
18 & -3 & 0.53496188054424 & -3.53496188054424 \tabularnewline
19 & 4 & 0.638509864542165 & 3.36149013545783 \tabularnewline
20 & 2 & 1.07350937188111 & 0.926490628118892 \tabularnewline
21 & 1 & 0.891302197703672 & 0.108697802296328 \tabularnewline
22 & 0 & 1.04529431379922 & -1.04529431379922 \tabularnewline
23 & -1 & 0.114001148603146 & -1.11400114860315 \tabularnewline
24 & -2 & 0.199060712232052 & -2.19906071223205 \tabularnewline
25 & 0 & 0.532077984454975 & -0.532077984454975 \tabularnewline
26 & -2 & 0.198721552280866 & -2.19872155228087 \tabularnewline
27 & 1 & -0.0971784564460243 & 1.09717845644602 \tabularnewline
28 & 2 & -0.00670261984890308 & 2.0067026198489 \tabularnewline
29 & 0 & -0.00353249506949711 & 0.00353249506949711 \tabularnewline
30 & 0 & 1.09042733665157 & -1.09042733665157 \tabularnewline
31 & 4 & 0.964651718555307 & 3.03534828144469 \tabularnewline
32 & 3 & 0.98522435728317 & 2.01477564271683 \tabularnewline
33 & 4 & -0.172935415353086 & 4.17293541535309 \tabularnewline
34 & 3 & 0.49775772224097 & 2.50224227775903 \tabularnewline
35 & 1 & -0.721733460563582 & 1.72173346056358 \tabularnewline
36 & -2 & 0.723816021225808 & -2.72381602122581 \tabularnewline
37 & 2 & 0.214791116666444 & 1.78520888333356 \tabularnewline
38 & 2 & 0.34272309137277 & 1.65727690862723 \tabularnewline
39 & 3 & 0.270951017959902 & 2.7290489820401 \tabularnewline
40 & 3 & 1.55014914316003 & 1.44985085683997 \tabularnewline
41 & 2 & 0.412495004888487 & 1.58750499511151 \tabularnewline
42 & 3 & 1.3648163617598 & 1.6351836382402 \tabularnewline
43 & 2 & 1.10031227730176 & 0.899687722698239 \tabularnewline
44 & 3 & 1.70875785075634 & 1.29124214924366 \tabularnewline
45 & 2 & 0.0892380918354536 & 1.91076190816455 \tabularnewline
46 & 6 & 0.747915270561582 & 5.25208472943842 \tabularnewline
47 & 2 & 0.438143510952246 & 1.56185648904775 \tabularnewline
48 & 1 & -0.527653123998006 & 1.52765312399801 \tabularnewline
49 & 2 & 1.30732958395252 & 0.692670416047475 \tabularnewline
50 & 0 & -0.0863209494016833 & 0.0863209494016833 \tabularnewline
51 & 1 & -0.293602269750351 & 1.29360226975035 \tabularnewline
52 & -3 & 0.419505251031028 & -3.41950525103103 \tabularnewline
53 & 0 & 0.34022752186629 & -0.34022752186629 \tabularnewline
54 & -3 & -0.55135847047509 & -2.44864152952491 \tabularnewline
55 & 2 & 0.209881204517087 & 1.79011879548291 \tabularnewline
56 & 2 & 0.958048501660277 & 1.04195149833972 \tabularnewline
57 & 0 & 0.581817892696985 & -0.581817892696985 \tabularnewline
58 & 2 & 1.13059716929696 & 0.869402830703041 \tabularnewline
59 & 0 & 0.440399535185922 & -0.440399535185922 \tabularnewline
60 & 0 & 1.03907871095019 & -1.03907871095019 \tabularnewline
61 & -1 & 0.481508163180306 & -1.48150816318031 \tabularnewline
62 & 3 & 0.95300669403305 & 2.04699330596695 \tabularnewline
63 & 3 & 0.982697105676145 & 2.01730289432385 \tabularnewline
64 & -4 & 0.473681909087984 & -4.47368190908798 \tabularnewline
65 & -1 & -0.103998518732912 & -0.896001481267088 \tabularnewline
66 & 2 & -0.215516850949916 & 2.21551685094992 \tabularnewline
67 & 0 & -0.784060171716148 & 0.784060171716148 \tabularnewline
68 & -3 & 0.363561540669105 & -3.3635615406691 \tabularnewline
69 & 0 & 0.515291343563243 & -0.515291343563243 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]-3[/C][C]0.0460144387989154[/C][C]-3.04601443879892[/C][/ROW]
[ROW][C]2[/C][C]-2[/C][C]-0.613082447378792[/C][C]-1.38691755262121[/C][/ROW]
[ROW][C]3[/C][C]0[/C][C]-0.121414058639718[/C][C]0.121414058639718[/C][/ROW]
[ROW][C]4[/C][C]0[/C][C]-0.142991617307599[/C][C]0.142991617307599[/C][/ROW]
[ROW][C]5[/C][C]0[/C][C]-0.14320045611534[/C][C]0.14320045611534[/C][/ROW]
[ROW][C]6[/C][C]-4[/C][C]0.46890936759225[/C][C]-4.46890936759225[/C][/ROW]
[ROW][C]7[/C][C]1[/C][C]0.0519618072939885[/C][C]0.948038192706012[/C][/ROW]
[ROW][C]8[/C][C]2[/C][C]-0.414876919769168[/C][C]2.41487691976917[/C][/ROW]
[ROW][C]9[/C][C]-4[/C][C]0.482214321819097[/C][C]-4.4822143218191[/C][/ROW]
[ROW][C]10[/C][C]0[/C][C]0.836819603858777[/C][C]-0.836819603858777[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]-0.318317068085538[/C][C]0.318317068085538[/C][/ROW]
[ROW][C]12[/C][C]-3[/C][C]0.341380956715846[/C][C]-3.34138095671585[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0.621709438349647[/C][C]-0.621709438349647[/C][/ROW]
[ROW][C]14[/C][C]-4[/C][C]0.723584323203083[/C][C]-4.72358432320308[/C][/ROW]
[ROW][C]15[/C][C]-2[/C][C]0.402236055643665[/C][C]-2.40223605564367[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]1.55073462533315[/C][C]-1.55073462533315[/C][/ROW]
[ROW][C]17[/C][C]-1[/C][C]-0.133330615587255[/C][C]-0.866669384412745[/C][/ROW]
[ROW][C]18[/C][C]-3[/C][C]0.53496188054424[/C][C]-3.53496188054424[/C][/ROW]
[ROW][C]19[/C][C]4[/C][C]0.638509864542165[/C][C]3.36149013545783[/C][/ROW]
[ROW][C]20[/C][C]2[/C][C]1.07350937188111[/C][C]0.926490628118892[/C][/ROW]
[ROW][C]21[/C][C]1[/C][C]0.891302197703672[/C][C]0.108697802296328[/C][/ROW]
[ROW][C]22[/C][C]0[/C][C]1.04529431379922[/C][C]-1.04529431379922[/C][/ROW]
[ROW][C]23[/C][C]-1[/C][C]0.114001148603146[/C][C]-1.11400114860315[/C][/ROW]
[ROW][C]24[/C][C]-2[/C][C]0.199060712232052[/C][C]-2.19906071223205[/C][/ROW]
[ROW][C]25[/C][C]0[/C][C]0.532077984454975[/C][C]-0.532077984454975[/C][/ROW]
[ROW][C]26[/C][C]-2[/C][C]0.198721552280866[/C][C]-2.19872155228087[/C][/ROW]
[ROW][C]27[/C][C]1[/C][C]-0.0971784564460243[/C][C]1.09717845644602[/C][/ROW]
[ROW][C]28[/C][C]2[/C][C]-0.00670261984890308[/C][C]2.0067026198489[/C][/ROW]
[ROW][C]29[/C][C]0[/C][C]-0.00353249506949711[/C][C]0.00353249506949711[/C][/ROW]
[ROW][C]30[/C][C]0[/C][C]1.09042733665157[/C][C]-1.09042733665157[/C][/ROW]
[ROW][C]31[/C][C]4[/C][C]0.964651718555307[/C][C]3.03534828144469[/C][/ROW]
[ROW][C]32[/C][C]3[/C][C]0.98522435728317[/C][C]2.01477564271683[/C][/ROW]
[ROW][C]33[/C][C]4[/C][C]-0.172935415353086[/C][C]4.17293541535309[/C][/ROW]
[ROW][C]34[/C][C]3[/C][C]0.49775772224097[/C][C]2.50224227775903[/C][/ROW]
[ROW][C]35[/C][C]1[/C][C]-0.721733460563582[/C][C]1.72173346056358[/C][/ROW]
[ROW][C]36[/C][C]-2[/C][C]0.723816021225808[/C][C]-2.72381602122581[/C][/ROW]
[ROW][C]37[/C][C]2[/C][C]0.214791116666444[/C][C]1.78520888333356[/C][/ROW]
[ROW][C]38[/C][C]2[/C][C]0.34272309137277[/C][C]1.65727690862723[/C][/ROW]
[ROW][C]39[/C][C]3[/C][C]0.270951017959902[/C][C]2.7290489820401[/C][/ROW]
[ROW][C]40[/C][C]3[/C][C]1.55014914316003[/C][C]1.44985085683997[/C][/ROW]
[ROW][C]41[/C][C]2[/C][C]0.412495004888487[/C][C]1.58750499511151[/C][/ROW]
[ROW][C]42[/C][C]3[/C][C]1.3648163617598[/C][C]1.6351836382402[/C][/ROW]
[ROW][C]43[/C][C]2[/C][C]1.10031227730176[/C][C]0.899687722698239[/C][/ROW]
[ROW][C]44[/C][C]3[/C][C]1.70875785075634[/C][C]1.29124214924366[/C][/ROW]
[ROW][C]45[/C][C]2[/C][C]0.0892380918354536[/C][C]1.91076190816455[/C][/ROW]
[ROW][C]46[/C][C]6[/C][C]0.747915270561582[/C][C]5.25208472943842[/C][/ROW]
[ROW][C]47[/C][C]2[/C][C]0.438143510952246[/C][C]1.56185648904775[/C][/ROW]
[ROW][C]48[/C][C]1[/C][C]-0.527653123998006[/C][C]1.52765312399801[/C][/ROW]
[ROW][C]49[/C][C]2[/C][C]1.30732958395252[/C][C]0.692670416047475[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]-0.0863209494016833[/C][C]0.0863209494016833[/C][/ROW]
[ROW][C]51[/C][C]1[/C][C]-0.293602269750351[/C][C]1.29360226975035[/C][/ROW]
[ROW][C]52[/C][C]-3[/C][C]0.419505251031028[/C][C]-3.41950525103103[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]0.34022752186629[/C][C]-0.34022752186629[/C][/ROW]
[ROW][C]54[/C][C]-3[/C][C]-0.55135847047509[/C][C]-2.44864152952491[/C][/ROW]
[ROW][C]55[/C][C]2[/C][C]0.209881204517087[/C][C]1.79011879548291[/C][/ROW]
[ROW][C]56[/C][C]2[/C][C]0.958048501660277[/C][C]1.04195149833972[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]0.581817892696985[/C][C]-0.581817892696985[/C][/ROW]
[ROW][C]58[/C][C]2[/C][C]1.13059716929696[/C][C]0.869402830703041[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]0.440399535185922[/C][C]-0.440399535185922[/C][/ROW]
[ROW][C]60[/C][C]0[/C][C]1.03907871095019[/C][C]-1.03907871095019[/C][/ROW]
[ROW][C]61[/C][C]-1[/C][C]0.481508163180306[/C][C]-1.48150816318031[/C][/ROW]
[ROW][C]62[/C][C]3[/C][C]0.95300669403305[/C][C]2.04699330596695[/C][/ROW]
[ROW][C]63[/C][C]3[/C][C]0.982697105676145[/C][C]2.01730289432385[/C][/ROW]
[ROW][C]64[/C][C]-4[/C][C]0.473681909087984[/C][C]-4.47368190908798[/C][/ROW]
[ROW][C]65[/C][C]-1[/C][C]-0.103998518732912[/C][C]-0.896001481267088[/C][/ROW]
[ROW][C]66[/C][C]2[/C][C]-0.215516850949916[/C][C]2.21551685094992[/C][/ROW]
[ROW][C]67[/C][C]0[/C][C]-0.784060171716148[/C][C]0.784060171716148[/C][/ROW]
[ROW][C]68[/C][C]-3[/C][C]0.363561540669105[/C][C]-3.3635615406691[/C][/ROW]
[ROW][C]69[/C][C]0[/C][C]0.515291343563243[/C][C]-0.515291343563243[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1-30.0460144387989154-3.04601443879892
2-2-0.613082447378792-1.38691755262121
30-0.1214140586397180.121414058639718
40-0.1429916173075990.142991617307599
50-0.143200456115340.14320045611534
6-40.46890936759225-4.46890936759225
710.05196180729398850.948038192706012
82-0.4148769197691682.41487691976917
9-40.482214321819097-4.4822143218191
1000.836819603858777-0.836819603858777
110-0.3183170680855380.318317068085538
12-30.341380956715846-3.34138095671585
1300.621709438349647-0.621709438349647
14-40.723584323203083-4.72358432320308
15-20.402236055643665-2.40223605564367
1601.55073462533315-1.55073462533315
17-1-0.133330615587255-0.866669384412745
18-30.53496188054424-3.53496188054424
1940.6385098645421653.36149013545783
2021.073509371881110.926490628118892
2110.8913021977036720.108697802296328
2201.04529431379922-1.04529431379922
23-10.114001148603146-1.11400114860315
24-20.199060712232052-2.19906071223205
2500.532077984454975-0.532077984454975
26-20.198721552280866-2.19872155228087
271-0.09717845644602431.09717845644602
282-0.006702619848903082.0067026198489
290-0.003532495069497110.00353249506949711
3001.09042733665157-1.09042733665157
3140.9646517185553073.03534828144469
3230.985224357283172.01477564271683
334-0.1729354153530864.17293541535309
3430.497757722240972.50224227775903
351-0.7217334605635821.72173346056358
36-20.723816021225808-2.72381602122581
3720.2147911166664441.78520888333356
3820.342723091372771.65727690862723
3930.2709510179599022.7290489820401
4031.550149143160031.44985085683997
4120.4124950048884871.58750499511151
4231.36481636175981.6351836382402
4321.100312277301760.899687722698239
4431.708757850756341.29124214924366
4520.08923809183545361.91076190816455
4660.7479152705615825.25208472943842
4720.4381435109522461.56185648904775
481-0.5276531239980061.52765312399801
4921.307329583952520.692670416047475
500-0.08632094940168330.0863209494016833
511-0.2936022697503511.29360226975035
52-30.419505251031028-3.41950525103103
5300.34022752186629-0.34022752186629
54-3-0.55135847047509-2.44864152952491
5520.2098812045170871.79011879548291
5620.9580485016602771.04195149833972
5700.581817892696985-0.581817892696985
5821.130597169296960.869402830703041
5900.440399535185922-0.440399535185922
6001.03907871095019-1.03907871095019
61-10.481508163180306-1.48150816318031
6230.953006694033052.04699330596695
6330.9826971056761452.01730289432385
64-40.473681909087984-4.47368190908798
65-1-0.103998518732912-0.896001481267088
662-0.2155168509499162.21551685094992
670-0.7840601717161480.784060171716148
68-30.363561540669105-3.3635615406691
6900.515291343563243-0.515291343563243







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
90.2592762475269680.5185524950539350.740723752473032
100.7223342274110910.5553315451778180.277665772588909
110.5956366688706340.8087266622587320.404363331129366
120.5559049190994590.8881901618010810.444095080900541
130.5548230210627830.8903539578744340.445176978937217
140.5885197241705030.8229605516589930.411480275829497
150.5319760403065430.9360479193869130.468023959693457
160.6092904177749890.7814191644500220.390709582225011
170.5938941840954410.8122116318091170.406105815904559
180.6687339397700270.6625321204599450.331266060229973
190.8927453529333430.2145092941333140.107254647066657
200.9080236725053640.1839526549892720.0919763274946362
210.8750873600064770.2498252799870460.124912639993523
220.84783764316540.3043247136692010.1521623568346
230.8249036409923770.3501927180152460.175096359007623
240.8419886714596350.316022657080730.158011328540365
250.8014757671941610.3970484656116790.198524232805839
260.8349093391780250.3301813216439510.165090660821975
270.8047150522275230.3905698955449550.195284947772477
280.7832231828382770.4335536343234460.216776817161723
290.7416656278025310.5166687443949380.258334372197469
300.7167164395131540.5665671209736920.283283560486846
310.8137317815947830.3725364368104340.186268218405217
320.809798813458250.3804023730834990.19020118654175
330.8902215940058650.2195568119882690.109778405994135
340.8904131411491150.2191737177017690.109586858850885
350.8522083726882340.2955832546235310.147791627311766
360.9146073457632390.1707853084735220.0853926542367611
370.891132867957830.2177342640843390.10886713204217
380.8555837168147610.2888325663704790.144416283185239
390.8431984218893860.3136031562212280.156801578110614
400.8372696347739520.3254607304520960.162730365226048
410.7953692039610670.4092615920778660.204630796038933
420.7551305633747250.4897388732505510.244869436625275
430.7016274887571690.5967450224856620.298372511242831
440.638265786652920.723468426694160.36173421334708
450.6218335363491450.756332927301710.378166463650855
460.8580864046243970.2838271907512050.141913595375603
470.8082966106007140.3834067787985720.191703389399286
480.7517478699830470.4965042600339050.248252130016953
490.7353284084646720.5293431830706560.264671591535328
500.666604353396580.666791293206840.33339564660342
510.7712800349773020.4574399300453960.228719965022698
520.9073843519633430.1852312960733130.0926156480366567
530.9789381805502930.04212363889941350.0210618194497067
540.9659520599157390.06809588016852290.0340479400842615
550.9405734470250180.1188531059499630.0594265529749817
560.8990827034859930.2018345930280150.100917296514007
570.8281536378234470.3436927243531070.171846362176553
580.7350126289177920.5299747421644160.264987371082208
590.6122744245507860.7754511508984280.387725575449214
600.5315570886396040.9368858227207920.468442911360396

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
9 & 0.259276247526968 & 0.518552495053935 & 0.740723752473032 \tabularnewline
10 & 0.722334227411091 & 0.555331545177818 & 0.277665772588909 \tabularnewline
11 & 0.595636668870634 & 0.808726662258732 & 0.404363331129366 \tabularnewline
12 & 0.555904919099459 & 0.888190161801081 & 0.444095080900541 \tabularnewline
13 & 0.554823021062783 & 0.890353957874434 & 0.445176978937217 \tabularnewline
14 & 0.588519724170503 & 0.822960551658993 & 0.411480275829497 \tabularnewline
15 & 0.531976040306543 & 0.936047919386913 & 0.468023959693457 \tabularnewline
16 & 0.609290417774989 & 0.781419164450022 & 0.390709582225011 \tabularnewline
17 & 0.593894184095441 & 0.812211631809117 & 0.406105815904559 \tabularnewline
18 & 0.668733939770027 & 0.662532120459945 & 0.331266060229973 \tabularnewline
19 & 0.892745352933343 & 0.214509294133314 & 0.107254647066657 \tabularnewline
20 & 0.908023672505364 & 0.183952654989272 & 0.0919763274946362 \tabularnewline
21 & 0.875087360006477 & 0.249825279987046 & 0.124912639993523 \tabularnewline
22 & 0.8478376431654 & 0.304324713669201 & 0.1521623568346 \tabularnewline
23 & 0.824903640992377 & 0.350192718015246 & 0.175096359007623 \tabularnewline
24 & 0.841988671459635 & 0.31602265708073 & 0.158011328540365 \tabularnewline
25 & 0.801475767194161 & 0.397048465611679 & 0.198524232805839 \tabularnewline
26 & 0.834909339178025 & 0.330181321643951 & 0.165090660821975 \tabularnewline
27 & 0.804715052227523 & 0.390569895544955 & 0.195284947772477 \tabularnewline
28 & 0.783223182838277 & 0.433553634323446 & 0.216776817161723 \tabularnewline
29 & 0.741665627802531 & 0.516668744394938 & 0.258334372197469 \tabularnewline
30 & 0.716716439513154 & 0.566567120973692 & 0.283283560486846 \tabularnewline
31 & 0.813731781594783 & 0.372536436810434 & 0.186268218405217 \tabularnewline
32 & 0.80979881345825 & 0.380402373083499 & 0.19020118654175 \tabularnewline
33 & 0.890221594005865 & 0.219556811988269 & 0.109778405994135 \tabularnewline
34 & 0.890413141149115 & 0.219173717701769 & 0.109586858850885 \tabularnewline
35 & 0.852208372688234 & 0.295583254623531 & 0.147791627311766 \tabularnewline
36 & 0.914607345763239 & 0.170785308473522 & 0.0853926542367611 \tabularnewline
37 & 0.89113286795783 & 0.217734264084339 & 0.10886713204217 \tabularnewline
38 & 0.855583716814761 & 0.288832566370479 & 0.144416283185239 \tabularnewline
39 & 0.843198421889386 & 0.313603156221228 & 0.156801578110614 \tabularnewline
40 & 0.837269634773952 & 0.325460730452096 & 0.162730365226048 \tabularnewline
41 & 0.795369203961067 & 0.409261592077866 & 0.204630796038933 \tabularnewline
42 & 0.755130563374725 & 0.489738873250551 & 0.244869436625275 \tabularnewline
43 & 0.701627488757169 & 0.596745022485662 & 0.298372511242831 \tabularnewline
44 & 0.63826578665292 & 0.72346842669416 & 0.36173421334708 \tabularnewline
45 & 0.621833536349145 & 0.75633292730171 & 0.378166463650855 \tabularnewline
46 & 0.858086404624397 & 0.283827190751205 & 0.141913595375603 \tabularnewline
47 & 0.808296610600714 & 0.383406778798572 & 0.191703389399286 \tabularnewline
48 & 0.751747869983047 & 0.496504260033905 & 0.248252130016953 \tabularnewline
49 & 0.735328408464672 & 0.529343183070656 & 0.264671591535328 \tabularnewline
50 & 0.66660435339658 & 0.66679129320684 & 0.33339564660342 \tabularnewline
51 & 0.771280034977302 & 0.457439930045396 & 0.228719965022698 \tabularnewline
52 & 0.907384351963343 & 0.185231296073313 & 0.0926156480366567 \tabularnewline
53 & 0.978938180550293 & 0.0421236388994135 & 0.0210618194497067 \tabularnewline
54 & 0.965952059915739 & 0.0680958801685229 & 0.0340479400842615 \tabularnewline
55 & 0.940573447025018 & 0.118853105949963 & 0.0594265529749817 \tabularnewline
56 & 0.899082703485993 & 0.201834593028015 & 0.100917296514007 \tabularnewline
57 & 0.828153637823447 & 0.343692724353107 & 0.171846362176553 \tabularnewline
58 & 0.735012628917792 & 0.529974742164416 & 0.264987371082208 \tabularnewline
59 & 0.612274424550786 & 0.775451150898428 & 0.387725575449214 \tabularnewline
60 & 0.531557088639604 & 0.936885822720792 & 0.468442911360396 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]9[/C][C]0.259276247526968[/C][C]0.518552495053935[/C][C]0.740723752473032[/C][/ROW]
[ROW][C]10[/C][C]0.722334227411091[/C][C]0.555331545177818[/C][C]0.277665772588909[/C][/ROW]
[ROW][C]11[/C][C]0.595636668870634[/C][C]0.808726662258732[/C][C]0.404363331129366[/C][/ROW]
[ROW][C]12[/C][C]0.555904919099459[/C][C]0.888190161801081[/C][C]0.444095080900541[/C][/ROW]
[ROW][C]13[/C][C]0.554823021062783[/C][C]0.890353957874434[/C][C]0.445176978937217[/C][/ROW]
[ROW][C]14[/C][C]0.588519724170503[/C][C]0.822960551658993[/C][C]0.411480275829497[/C][/ROW]
[ROW][C]15[/C][C]0.531976040306543[/C][C]0.936047919386913[/C][C]0.468023959693457[/C][/ROW]
[ROW][C]16[/C][C]0.609290417774989[/C][C]0.781419164450022[/C][C]0.390709582225011[/C][/ROW]
[ROW][C]17[/C][C]0.593894184095441[/C][C]0.812211631809117[/C][C]0.406105815904559[/C][/ROW]
[ROW][C]18[/C][C]0.668733939770027[/C][C]0.662532120459945[/C][C]0.331266060229973[/C][/ROW]
[ROW][C]19[/C][C]0.892745352933343[/C][C]0.214509294133314[/C][C]0.107254647066657[/C][/ROW]
[ROW][C]20[/C][C]0.908023672505364[/C][C]0.183952654989272[/C][C]0.0919763274946362[/C][/ROW]
[ROW][C]21[/C][C]0.875087360006477[/C][C]0.249825279987046[/C][C]0.124912639993523[/C][/ROW]
[ROW][C]22[/C][C]0.8478376431654[/C][C]0.304324713669201[/C][C]0.1521623568346[/C][/ROW]
[ROW][C]23[/C][C]0.824903640992377[/C][C]0.350192718015246[/C][C]0.175096359007623[/C][/ROW]
[ROW][C]24[/C][C]0.841988671459635[/C][C]0.31602265708073[/C][C]0.158011328540365[/C][/ROW]
[ROW][C]25[/C][C]0.801475767194161[/C][C]0.397048465611679[/C][C]0.198524232805839[/C][/ROW]
[ROW][C]26[/C][C]0.834909339178025[/C][C]0.330181321643951[/C][C]0.165090660821975[/C][/ROW]
[ROW][C]27[/C][C]0.804715052227523[/C][C]0.390569895544955[/C][C]0.195284947772477[/C][/ROW]
[ROW][C]28[/C][C]0.783223182838277[/C][C]0.433553634323446[/C][C]0.216776817161723[/C][/ROW]
[ROW][C]29[/C][C]0.741665627802531[/C][C]0.516668744394938[/C][C]0.258334372197469[/C][/ROW]
[ROW][C]30[/C][C]0.716716439513154[/C][C]0.566567120973692[/C][C]0.283283560486846[/C][/ROW]
[ROW][C]31[/C][C]0.813731781594783[/C][C]0.372536436810434[/C][C]0.186268218405217[/C][/ROW]
[ROW][C]32[/C][C]0.80979881345825[/C][C]0.380402373083499[/C][C]0.19020118654175[/C][/ROW]
[ROW][C]33[/C][C]0.890221594005865[/C][C]0.219556811988269[/C][C]0.109778405994135[/C][/ROW]
[ROW][C]34[/C][C]0.890413141149115[/C][C]0.219173717701769[/C][C]0.109586858850885[/C][/ROW]
[ROW][C]35[/C][C]0.852208372688234[/C][C]0.295583254623531[/C][C]0.147791627311766[/C][/ROW]
[ROW][C]36[/C][C]0.914607345763239[/C][C]0.170785308473522[/C][C]0.0853926542367611[/C][/ROW]
[ROW][C]37[/C][C]0.89113286795783[/C][C]0.217734264084339[/C][C]0.10886713204217[/C][/ROW]
[ROW][C]38[/C][C]0.855583716814761[/C][C]0.288832566370479[/C][C]0.144416283185239[/C][/ROW]
[ROW][C]39[/C][C]0.843198421889386[/C][C]0.313603156221228[/C][C]0.156801578110614[/C][/ROW]
[ROW][C]40[/C][C]0.837269634773952[/C][C]0.325460730452096[/C][C]0.162730365226048[/C][/ROW]
[ROW][C]41[/C][C]0.795369203961067[/C][C]0.409261592077866[/C][C]0.204630796038933[/C][/ROW]
[ROW][C]42[/C][C]0.755130563374725[/C][C]0.489738873250551[/C][C]0.244869436625275[/C][/ROW]
[ROW][C]43[/C][C]0.701627488757169[/C][C]0.596745022485662[/C][C]0.298372511242831[/C][/ROW]
[ROW][C]44[/C][C]0.63826578665292[/C][C]0.72346842669416[/C][C]0.36173421334708[/C][/ROW]
[ROW][C]45[/C][C]0.621833536349145[/C][C]0.75633292730171[/C][C]0.378166463650855[/C][/ROW]
[ROW][C]46[/C][C]0.858086404624397[/C][C]0.283827190751205[/C][C]0.141913595375603[/C][/ROW]
[ROW][C]47[/C][C]0.808296610600714[/C][C]0.383406778798572[/C][C]0.191703389399286[/C][/ROW]
[ROW][C]48[/C][C]0.751747869983047[/C][C]0.496504260033905[/C][C]0.248252130016953[/C][/ROW]
[ROW][C]49[/C][C]0.735328408464672[/C][C]0.529343183070656[/C][C]0.264671591535328[/C][/ROW]
[ROW][C]50[/C][C]0.66660435339658[/C][C]0.66679129320684[/C][C]0.33339564660342[/C][/ROW]
[ROW][C]51[/C][C]0.771280034977302[/C][C]0.457439930045396[/C][C]0.228719965022698[/C][/ROW]
[ROW][C]52[/C][C]0.907384351963343[/C][C]0.185231296073313[/C][C]0.0926156480366567[/C][/ROW]
[ROW][C]53[/C][C]0.978938180550293[/C][C]0.0421236388994135[/C][C]0.0210618194497067[/C][/ROW]
[ROW][C]54[/C][C]0.965952059915739[/C][C]0.0680958801685229[/C][C]0.0340479400842615[/C][/ROW]
[ROW][C]55[/C][C]0.940573447025018[/C][C]0.118853105949963[/C][C]0.0594265529749817[/C][/ROW]
[ROW][C]56[/C][C]0.899082703485993[/C][C]0.201834593028015[/C][C]0.100917296514007[/C][/ROW]
[ROW][C]57[/C][C]0.828153637823447[/C][C]0.343692724353107[/C][C]0.171846362176553[/C][/ROW]
[ROW][C]58[/C][C]0.735012628917792[/C][C]0.529974742164416[/C][C]0.264987371082208[/C][/ROW]
[ROW][C]59[/C][C]0.612274424550786[/C][C]0.775451150898428[/C][C]0.387725575449214[/C][/ROW]
[ROW][C]60[/C][C]0.531557088639604[/C][C]0.936885822720792[/C][C]0.468442911360396[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
90.2592762475269680.5185524950539350.740723752473032
100.7223342274110910.5553315451778180.277665772588909
110.5956366688706340.8087266622587320.404363331129366
120.5559049190994590.8881901618010810.444095080900541
130.5548230210627830.8903539578744340.445176978937217
140.5885197241705030.8229605516589930.411480275829497
150.5319760403065430.9360479193869130.468023959693457
160.6092904177749890.7814191644500220.390709582225011
170.5938941840954410.8122116318091170.406105815904559
180.6687339397700270.6625321204599450.331266060229973
190.8927453529333430.2145092941333140.107254647066657
200.9080236725053640.1839526549892720.0919763274946362
210.8750873600064770.2498252799870460.124912639993523
220.84783764316540.3043247136692010.1521623568346
230.8249036409923770.3501927180152460.175096359007623
240.8419886714596350.316022657080730.158011328540365
250.8014757671941610.3970484656116790.198524232805839
260.8349093391780250.3301813216439510.165090660821975
270.8047150522275230.3905698955449550.195284947772477
280.7832231828382770.4335536343234460.216776817161723
290.7416656278025310.5166687443949380.258334372197469
300.7167164395131540.5665671209736920.283283560486846
310.8137317815947830.3725364368104340.186268218405217
320.809798813458250.3804023730834990.19020118654175
330.8902215940058650.2195568119882690.109778405994135
340.8904131411491150.2191737177017690.109586858850885
350.8522083726882340.2955832546235310.147791627311766
360.9146073457632390.1707853084735220.0853926542367611
370.891132867957830.2177342640843390.10886713204217
380.8555837168147610.2888325663704790.144416283185239
390.8431984218893860.3136031562212280.156801578110614
400.8372696347739520.3254607304520960.162730365226048
410.7953692039610670.4092615920778660.204630796038933
420.7551305633747250.4897388732505510.244869436625275
430.7016274887571690.5967450224856620.298372511242831
440.638265786652920.723468426694160.36173421334708
450.6218335363491450.756332927301710.378166463650855
460.8580864046243970.2838271907512050.141913595375603
470.8082966106007140.3834067787985720.191703389399286
480.7517478699830470.4965042600339050.248252130016953
490.7353284084646720.5293431830706560.264671591535328
500.666604353396580.666791293206840.33339564660342
510.7712800349773020.4574399300453960.228719965022698
520.9073843519633430.1852312960733130.0926156480366567
530.9789381805502930.04212363889941350.0210618194497067
540.9659520599157390.06809588016852290.0340479400842615
550.9405734470250180.1188531059499630.0594265529749817
560.8990827034859930.2018345930280150.100917296514007
570.8281536378234470.3436927243531070.171846362176553
580.7350126289177920.5299747421644160.264987371082208
590.6122744245507860.7754511508984280.387725575449214
600.5315570886396040.9368858227207920.468442911360396







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level10.0192307692307692OK
10% type I error level20.0384615384615385OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 1 & 0.0192307692307692 & OK \tabularnewline
10% type I error level & 2 & 0.0384615384615385 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=155279&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]1[/C][C]0.0192307692307692[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]2[/C][C]0.0384615384615385[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=155279&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=155279&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level10.0192307692307692OK
10% type I error level20.0384615384615385OK



Parameters (Session):
par1 = 6 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 6 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}