Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Module--
Title produced by softwareMultiple Regression
Date of computationTue, 20 Dec 2011 19:12:53 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/20/t1324426445vfbmyrv9dmgcz3d.htm/, Retrieved Fri, 01 Nov 2024 00:00:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=158339, Retrieved Fri, 01 Nov 2024 00:00:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact179
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
- R PD  [Multiple Regression] [ws7 ] [2011-11-17 13:08:20] [22f8bc702946f784836540059d0d9516]
-    D    [Multiple Regression] [WS7-1] [2011-11-22 20:21:00] [74be16979710d4c4e7c6647856088456]
-  M          [Multiple Regression] [Paper: multiple l...] [2011-12-21 00:12:53] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
293403	111	74	91256	123	119
277108	70	69	86997	64	64
264020	76	76	55709	101	100
260646	109	60	75741	104	104
246100	81	89	92046	135	135
244051	67	111	84607	130	124
241329	54	57	73586	93	93
234730	106	116	162365	159	155
234509	125	122	70817	125	120
233482	68	90	59635	81	78
233406	96	85	109104	117	117
228548	106	65	120087	205	198
223914	104	89	72631	115	110
223696	88	82	104911	115	114
223004	87	84	85224	147	137
213765	84	56	58233	150	150
210554	81	73	117986	126	124
202204	44	79	67271	61	56
199512	75	59	55071	82	82
195304	93	47	114425	152	145
191467	76	75	79194	109	104
191381	87	71	101653	210	212
191276	112	90	81493	151	141
190410	84	107	64664	96	94
188967	86	75	63717	98	94
188780	98	85	72369	98	98
185139	121	83	86281	128	126
185039	94	73	63958	100	98
184217	69	45	73795	74	74
181853	87	93	96750	92	91
181379	92	123	83038	101	96
181344	75	114	65196	109	108
179562	76	89	62932	116	116
178863	86	78	57637	88	87
178140	56	91	70111	83	78
176789	115	66	123328	149	149
176460	97	55	38885	122	122
175877	95	81	54628	96	95
175568	106	80	74482	105	102
174107	49	71	76168	95	91
173587	70	70	71170	97	95
173260	41	78	37238	16	15
172684	87	112	101773	103	102
167845	105	77	103646	145	145
167131	71	69	37048	56	56
167105	56	32	85903	75	71
166790	49	59	43460	46	46
164767	51	87	90257	81	80
162810	49	76	70027	83	80
162336	111	84	111436	153	151
161678	75	59	65911	87	83
158980	84	75	105965	123	122
157250	84	106	61704	104	104
156833	79	73	48204	85	85
155383	83	75	60029	99	99
154991	63	87	52295	99	98
154730	78	82	82204	98	98
151503	93	83	56316	99	98
146455	65	68	95556	127	128
143937	98	66	78792	140	139
142339	75	67	125410	144	142
142146	108	88	76013	152	139
142141	73	87	91939	61	61
142069	66	88	57231	83	82
141933	90	75	51370	100	99
139350	70	79	99518	89	88
139144	57	76	56530	75	75
137793	70	78	56699	77	77
136911	95	86	74349	117	103
136548	89	62	83042	158	157
135171	80	61	71181	82	82
134043	54	69	55901	57	54
131876	27	83	38417	36	36
131122	56	50	65724	89	89
130539	60	47	48821	66	66
130533	64	76	85168	78	79
130232	102	83	55027	107	105
129100	38	60	73713	87	87
128655	75	70	79774	111	108
128066	42	48	42564	80	80
127619	49	50	36311	52	50
127324	79	87	56733	104	101
126683	71	123	63262	72	71
126681	39	90	94137	67	66
125971	61	45	38439	71	71
125366	69	22	34497	68	68
122433	51	91	58425	66	66
121135	50	51	42051	69	68
119291	83	38	64102	123	120
118958	52	68	54506	61	58
118807	56	81	55827	70	70
118372	72	35	66477	142	145
116900	42	36	28340	58	57
116775	30	83	73087	124	112
115199	84	54	51360	87	87
114928	44	72	53009	96	91
114397	70	65	55064	87	85
113337	58	37	63016	68	68
111664	55	59	38650	98	98
108715	64	35	40671	80	78
107342	77	53	82043	116	111
107335	48	61	49319	65	64
106539	36	68	77411	63	63
105615	57	70	202316	51	48
105410	62	72	89041	88	86
105324	42	71	26982	46	46
103012	30	37	29467	28	26
102531	46	63	40001	64	63
101324	81	104	70780	103	100
100885	39	29	49288	49	48
100672	38	69	50466	55	55
99946	106	80	99501	125	119
99768	24	62	15430	27	27
99246	27	63	37361	52	51
98599	48	55	36252	46	44
98030	30	41	31701	35	35
94763	94	75	56979	100	99
93340	41	63	43448	60	60
93125	30	29	50838	37	36
91185	57	66	21067	67	67
90961	42	78	63785	49	49
90938	40	51	37137	43	42
89318	75	78	44970	82	81
88817	70	60	46765	56	56
84944	54	72	54565	90	89
84572	43	82	72571	84	84
84256	97	58	59155	76	75
80953	49	27	56622	59	58
78800	20	66	33032	21	21
78776	30	18	26998	34	34
75812	28	57	35606	30	30
75426	3	19	47261	36	33
74398	41	30	31258	51	51
74112	28	54	174949	52	52
73567	37	31	23238	18	18
69471	22	63	22618	26	25
68948	31	47	35838	45	43
67746	18	35	62832	58	56
67507	101	112	78956	49	49
65029	21	61	32551	21	21
64320	16	56	62147	24	23
61857	23	30	25162	31	28
61499	28	75	36990	15	15
50999	2	66	63989	8	8
46660	12	13	6179	13	13
43287	13	64	43750	49	49
38214	16	21	8773	16	16
35523	0	53	52491	33	33
32750	1	22	22807	5	5
31414	18	9	14116	39	39
24188	8	7	5950	7	7
22938	12	0	1168	11	11
21054	4	0	855	4	4
17547	0	4	3926	3	3
14688	4	0	6023	5	5
7199	7	0	1644	6	6
969	0	0	0	0	0
455	0	0	0	0	0
203	0	0	0	0	0
98	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Total_time_RFC[t] = + 17385.6432597228 + 678.114702068308Total_Blogged_Comp[t] + 521.594871788755`Total_long_PR(+120characters)`[t] + 0.154599843473491Total_characters_comp[t] + 0.652151542992902Total_hyperl_comp[t] + 378.78033332735Total_blogs_comp[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Total_time_RFC[t] =  +  17385.6432597228 +  678.114702068308Total_Blogged_Comp[t] +  521.594871788755`Total_long_PR(+120characters)`[t] +  0.154599843473491Total_characters_comp[t] +  0.652151542992902Total_hyperl_comp[t] +  378.78033332735Total_blogs_comp[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Total_time_RFC[t] =  +  17385.6432597228 +  678.114702068308Total_Blogged_Comp[t] +  521.594871788755`Total_long_PR(+120characters)`[t] +  0.154599843473491Total_characters_comp[t] +  0.652151542992902Total_hyperl_comp[t] +  378.78033332735Total_blogs_comp[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Total_time_RFC[t] = + 17385.6432597228 + 678.114702068308Total_Blogged_Comp[t] + 521.594871788755`Total_long_PR(+120characters)`[t] + 0.154599843473491Total_characters_comp[t] + 0.652151542992902Total_hyperl_comp[t] + 378.78033332735Total_blogs_comp[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)17385.64325972287195.6626552.41610.0168270.008413
Total_Blogged_Comp678.114702068308191.8122673.53530.0005350.000267
`Total_long_PR(+120characters)`521.594871788755148.2078173.51930.0005650.000283
Total_characters_comp0.1545998434734910.1307421.18250.2387910.119395
Total_hyperl_comp0.6521515429929021254.095175e-040.9995860.499793
Total_blogs_comp378.780333327351280.6973750.29580.7678010.3839

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 17385.6432597228 & 7195.662655 & 2.4161 & 0.016827 & 0.008413 \tabularnewline
Total_Blogged_Comp & 678.114702068308 & 191.812267 & 3.5353 & 0.000535 & 0.000267 \tabularnewline
`Total_long_PR(+120characters)` & 521.594871788755 & 148.207817 & 3.5193 & 0.000565 & 0.000283 \tabularnewline
Total_characters_comp & 0.154599843473491 & 0.130742 & 1.1825 & 0.238791 & 0.119395 \tabularnewline
Total_hyperl_comp & 0.652151542992902 & 1254.09517 & 5e-04 & 0.999586 & 0.499793 \tabularnewline
Total_blogs_comp & 378.78033332735 & 1280.697375 & 0.2958 & 0.767801 & 0.3839 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]17385.6432597228[/C][C]7195.662655[/C][C]2.4161[/C][C]0.016827[/C][C]0.008413[/C][/ROW]
[ROW][C]Total_Blogged_Comp[/C][C]678.114702068308[/C][C]191.812267[/C][C]3.5353[/C][C]0.000535[/C][C]0.000267[/C][/ROW]
[ROW][C]`Total_long_PR(+120characters)`[/C][C]521.594871788755[/C][C]148.207817[/C][C]3.5193[/C][C]0.000565[/C][C]0.000283[/C][/ROW]
[ROW][C]Total_characters_comp[/C][C]0.154599843473491[/C][C]0.130742[/C][C]1.1825[/C][C]0.238791[/C][C]0.119395[/C][/ROW]
[ROW][C]Total_hyperl_comp[/C][C]0.652151542992902[/C][C]1254.09517[/C][C]5e-04[/C][C]0.999586[/C][C]0.499793[/C][/ROW]
[ROW][C]Total_blogs_comp[/C][C]378.78033332735[/C][C]1280.697375[/C][C]0.2958[/C][C]0.767801[/C][C]0.3839[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)17385.64325972287195.6626552.41610.0168270.008413
Total_Blogged_Comp678.114702068308191.8122673.53530.0005350.000267
`Total_long_PR(+120characters)`521.594871788755148.2078173.51930.0005650.000283
Total_characters_comp0.1545998434734910.1307421.18250.2387910.119395
Total_hyperl_comp0.6521515429929021254.095175e-040.9995860.499793
Total_blogs_comp378.780333327351280.6973750.29580.7678010.3839







Multiple Linear Regression - Regression Statistics
Multiple R0.817528267403602
R-squared0.668352468003935
Adjusted R-squared0.657857292940768
F-TEST (value)63.6818789568889
F-TEST (DF numerator)5
F-TEST (DF denominator)158
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation37291.0726460133
Sum Squared Residuals219718607656.258

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.817528267403602 \tabularnewline
R-squared & 0.668352468003935 \tabularnewline
Adjusted R-squared & 0.657857292940768 \tabularnewline
F-TEST (value) & 63.6818789568889 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 158 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 37291.0726460133 \tabularnewline
Sum Squared Residuals & 219718607656.258 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.817528267403602[/C][/ROW]
[ROW][C]R-squared[/C][C]0.668352468003935[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.657857292940768[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]63.6818789568889[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]158[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]37291.0726460133[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]219718607656.258[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.817528267403602
R-squared0.668352468003935
Adjusted R-squared0.657857292940768
F-TEST (value)63.6818789568889
F-TEST (DF numerator)5
F-TEST (DF denominator)158
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation37291.0726460133
Sum Squared Residuals219718607656.258







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1293403190517.633323432102885.366676568
2277108138577.120172294138530.879827706
3264020155120.074191502108899.925808498
4260646173766.36326353586879.636736465
5246100184188.56036631261911.4396336878
6244051180850.12905679363200.8709432066
7241329130398.350038153110930.649961847
8234730233687.0541531081042.9458468925
9234509222268.01143390812240.9885660923
10233482149258.23340141384223.7665985869
11233406188081.28081248645324.7191875136
12228548216867.09681356211680.9031864376
13223914187301.09118880236612.9088111982
14223696179305.69613382144390.3038661787
15223004185359.98057277337644.0194272273
16213765169474.27646917444290.7235308258
17210554175680.90932690734873.0906730933
18202204120080.25100279982123.7489972006
19199512138645.77508967960866.2249103208
20195304177677.63198260217626.3680173982
21191467159749.59518934131717.4048106589
22191381209568.778614705-18187.7786147047
23191276206383.335278695-15107.3352786947
24190410175822.93167412614587.0683258745
25188967160343.02343233928623.9765676615
26188780176549.06775408812230.9322459122
27185139203878.72305994-18739.7230599402
28185039166278.4355039818760.56449602
29184217127134.02626246257082.9737375383
30181853174376.4885468247476.51145317573
31181379193194.806187644-11815.8061876436
32181344178764.7132114022579.28678859827
33179562169087.74980054710474.2501994531
34178863158309.85715066520553.1428493354
35178140143263.34411169634876.6558883036
36176789205396.025277216-28607.0252772158
37176460164152.86537637912307.1346236213
38175877168547.9430345977329.05696540335
39175568181212.36687506-5644.36687506036
40174107133953.02516513440153.9748348665
41173587148415.57465549425171.4253445059
4217326097321.874439910375938.1255600897
43172684189237.103458152-16553.1034581517
44167845199791.857787482-31946.8577874824
45167131128497.66741374238633.3325862581
46167105112274.00785865854830.9921413422
47166790105560.16459861229.8354019999
48164767141657.21592438523109.7840756145
49162810131437.1924001931372.8075998102
50162336210993.94209538-48657.9420953801
51161678140703.67848397420974.3215160259
52158980176140.481337011-17160.4813370106
53157250178636.741811273-21386.7418112727
54156833148737.2224324748095.77756752643
55155383159633.068921583-4250.06892158314
56154991150755.4578189314235.54218106929
57154730162942.478557917-8212.4785579172
58151503169634.165364432-18131.1653644318
59146455160271.198730612-13816.198730612
60143937183189.144015959-39252.1440159588
61142339176460.185849378-34121.1858493777
62142146201023.571069498-58877.5710694975
63142141149625.906942531-7484.90694253119
64142069148003.581866384-5934.58186638406
65141933163041.843942967-21108.8439429673
66139350154835.845318744-15485.8453187441
67139144132876.3570503946267.64294960609
68137793143520.030264147-5727.03026414713
69136911177248.718755703-40337.7187557028
70136548182486.566272617-45938.5662726175
71135171145570.141821956-10399.1418219562
72134043119127.47981247514915.5201875253
7313187698585.946216087333290.0537839127
74131122125370.2214308985751.77856910196
75130539115177.74731755515361.2526824453
76130533143567.668070204-13034.6680702043
77130232178194.598030445-47962.5980304446
78129100118856.33869132510243.6613086749
79128655158069.599673939-29414.599673939
80128066107838.00111968520227.9988803149
81127619101279.61071347726339.3892865233
82127324163431.008915056-36107.008915056
83126683166408.610211747-39725.6102117469
84126681130372.416719424-3691.41671942442
85125971115104.77912545510866.2208745446
86125366106785.28465327718580.715346723
87122433133509.666254365-11076.6662543646
88121135110195.85596499510939.1440350052
89119291148933.782464773-29642.7824647729
90118958118551.718694385406.281305614859
91118807132800.370592956-13993.3705929558
92118372149758.809967405-31386.8099674054
9311690090653.539484178226246.4605158218
94116775134824.96156418-18049.9615641801
95115199143464.275454572-28265.2754545718
96114928127504.320903121-12576.3209031212
97114397139523.290368863-25126.2903688629
98113337111558.9789433771778.02105662257
99111664128615.71677656-16951.7167765603
100108715114925.573061584-6210.57306158402
101107342152049.105060205-44707.1050602052
102107335113661.47700163-6326.4770016297
103106539113138.198845775-6599.19884577526
104105615142042.559963417-36427.5599634175
105105410143381.808221407-37971.8082214068
106105324104525.003924231798.996075769131
10710301271450.237075304231561.7629246958
108102531111528.443514714-8997.44351471426
109101324175446.582656003-74122.5826560033
11010088584791.696432701616093.3035672984
111100672107814.870460345-7142.87046034467
11299946191532.609056348-91586.6090563484
1139976878629.430836560221138.5691634397
1149924693682.93077020235563.06922979772
11598599100923.754070365-2324.7540703652
1169803077295.580673526120734.4193264739
11794763166621.453273283-71858.4532732834
11893340107531.826058672-14191.8260586718
1199312574375.104053026618749.8959469734
12091185119142.374204443-27957.3742044432
12190961115004.203520718-24043.2035207181
1229093892789.7607068541-1851.76070685407
12389318146615.684301412-57297.6843014125
12488817124627.445544607-35810.4455446067
12584944133764.551704336-48820.5517043364
12684572132407.148905161-47835.1489051615
12784256151018.71418159-66762.7141815895
1288095395457.8138105452-14504.8138105452
1297880078448.0230510404351.976948959625
1307877664192.383073658614583.6169263414
1317581282991.4191824219-7179.41918242189
1327542649160.06158766526265.938412335
1337439885019.730833868-10621.730833868
13474112111316.55522333-37204.5552233298
1357356769067.70415200484499.29584799522
1366947178147.8471609022-8676.84716090215
1376894884779.6083408256-15831.6083408256
1386774678810.8692305104-11064.8692305104
13967507175092.630808902-107585.630808902
1406502976443.8008694542-11414.8008694542
1416432075780.307088894-11460.307088894
1426185763146.2348534351-1289.23485343511
1436149986902.6057849317-25403.6057849317
1445099966095.2834649052-15096.2834649052
1454666038191.64775393358468.35224606651
1464328784939.1410917032-41652.1410917032
1473821446616.194985098-8402.19498509803
1483552365666.5438490152-30143.5438490152
1493275034961.9661955954-2211.96619559537
1503141451266.2600434663-19852.2600434663
1512418830037.6214415502-5849.62144155024
1522293829877.3496352933-6939.34963529332
1532105421748.0148736473-694.01487364726
1541754721217.2791869658-3670.2791869658
1551468822926.4193495886-8238.4193495886
156719924663.2032260934-17464.2032260934
15796917385.6432597228-16416.6432597228
15845517385.6432597228-16930.6432597228
15920317385.6432597228-17182.6432597228
1609817385.6432597228-17287.6432597228
161017385.6432597228-17385.6432597228
162017385.6432597228-17385.6432597228
163017385.6432597228-17385.6432597228
164017385.6432597228-17385.6432597228

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 293403 & 190517.633323432 & 102885.366676568 \tabularnewline
2 & 277108 & 138577.120172294 & 138530.879827706 \tabularnewline
3 & 264020 & 155120.074191502 & 108899.925808498 \tabularnewline
4 & 260646 & 173766.363263535 & 86879.636736465 \tabularnewline
5 & 246100 & 184188.560366312 & 61911.4396336878 \tabularnewline
6 & 244051 & 180850.129056793 & 63200.8709432066 \tabularnewline
7 & 241329 & 130398.350038153 & 110930.649961847 \tabularnewline
8 & 234730 & 233687.054153108 & 1042.9458468925 \tabularnewline
9 & 234509 & 222268.011433908 & 12240.9885660923 \tabularnewline
10 & 233482 & 149258.233401413 & 84223.7665985869 \tabularnewline
11 & 233406 & 188081.280812486 & 45324.7191875136 \tabularnewline
12 & 228548 & 216867.096813562 & 11680.9031864376 \tabularnewline
13 & 223914 & 187301.091188802 & 36612.9088111982 \tabularnewline
14 & 223696 & 179305.696133821 & 44390.3038661787 \tabularnewline
15 & 223004 & 185359.980572773 & 37644.0194272273 \tabularnewline
16 & 213765 & 169474.276469174 & 44290.7235308258 \tabularnewline
17 & 210554 & 175680.909326907 & 34873.0906730933 \tabularnewline
18 & 202204 & 120080.251002799 & 82123.7489972006 \tabularnewline
19 & 199512 & 138645.775089679 & 60866.2249103208 \tabularnewline
20 & 195304 & 177677.631982602 & 17626.3680173982 \tabularnewline
21 & 191467 & 159749.595189341 & 31717.4048106589 \tabularnewline
22 & 191381 & 209568.778614705 & -18187.7786147047 \tabularnewline
23 & 191276 & 206383.335278695 & -15107.3352786947 \tabularnewline
24 & 190410 & 175822.931674126 & 14587.0683258745 \tabularnewline
25 & 188967 & 160343.023432339 & 28623.9765676615 \tabularnewline
26 & 188780 & 176549.067754088 & 12230.9322459122 \tabularnewline
27 & 185139 & 203878.72305994 & -18739.7230599402 \tabularnewline
28 & 185039 & 166278.43550398 & 18760.56449602 \tabularnewline
29 & 184217 & 127134.026262462 & 57082.9737375383 \tabularnewline
30 & 181853 & 174376.488546824 & 7476.51145317573 \tabularnewline
31 & 181379 & 193194.806187644 & -11815.8061876436 \tabularnewline
32 & 181344 & 178764.713211402 & 2579.28678859827 \tabularnewline
33 & 179562 & 169087.749800547 & 10474.2501994531 \tabularnewline
34 & 178863 & 158309.857150665 & 20553.1428493354 \tabularnewline
35 & 178140 & 143263.344111696 & 34876.6558883036 \tabularnewline
36 & 176789 & 205396.025277216 & -28607.0252772158 \tabularnewline
37 & 176460 & 164152.865376379 & 12307.1346236213 \tabularnewline
38 & 175877 & 168547.943034597 & 7329.05696540335 \tabularnewline
39 & 175568 & 181212.36687506 & -5644.36687506036 \tabularnewline
40 & 174107 & 133953.025165134 & 40153.9748348665 \tabularnewline
41 & 173587 & 148415.574655494 & 25171.4253445059 \tabularnewline
42 & 173260 & 97321.8744399103 & 75938.1255600897 \tabularnewline
43 & 172684 & 189237.103458152 & -16553.1034581517 \tabularnewline
44 & 167845 & 199791.857787482 & -31946.8577874824 \tabularnewline
45 & 167131 & 128497.667413742 & 38633.3325862581 \tabularnewline
46 & 167105 & 112274.007858658 & 54830.9921413422 \tabularnewline
47 & 166790 & 105560.164598 & 61229.8354019999 \tabularnewline
48 & 164767 & 141657.215924385 & 23109.7840756145 \tabularnewline
49 & 162810 & 131437.19240019 & 31372.8075998102 \tabularnewline
50 & 162336 & 210993.94209538 & -48657.9420953801 \tabularnewline
51 & 161678 & 140703.678483974 & 20974.3215160259 \tabularnewline
52 & 158980 & 176140.481337011 & -17160.4813370106 \tabularnewline
53 & 157250 & 178636.741811273 & -21386.7418112727 \tabularnewline
54 & 156833 & 148737.222432474 & 8095.77756752643 \tabularnewline
55 & 155383 & 159633.068921583 & -4250.06892158314 \tabularnewline
56 & 154991 & 150755.457818931 & 4235.54218106929 \tabularnewline
57 & 154730 & 162942.478557917 & -8212.4785579172 \tabularnewline
58 & 151503 & 169634.165364432 & -18131.1653644318 \tabularnewline
59 & 146455 & 160271.198730612 & -13816.198730612 \tabularnewline
60 & 143937 & 183189.144015959 & -39252.1440159588 \tabularnewline
61 & 142339 & 176460.185849378 & -34121.1858493777 \tabularnewline
62 & 142146 & 201023.571069498 & -58877.5710694975 \tabularnewline
63 & 142141 & 149625.906942531 & -7484.90694253119 \tabularnewline
64 & 142069 & 148003.581866384 & -5934.58186638406 \tabularnewline
65 & 141933 & 163041.843942967 & -21108.8439429673 \tabularnewline
66 & 139350 & 154835.845318744 & -15485.8453187441 \tabularnewline
67 & 139144 & 132876.357050394 & 6267.64294960609 \tabularnewline
68 & 137793 & 143520.030264147 & -5727.03026414713 \tabularnewline
69 & 136911 & 177248.718755703 & -40337.7187557028 \tabularnewline
70 & 136548 & 182486.566272617 & -45938.5662726175 \tabularnewline
71 & 135171 & 145570.141821956 & -10399.1418219562 \tabularnewline
72 & 134043 & 119127.479812475 & 14915.5201875253 \tabularnewline
73 & 131876 & 98585.9462160873 & 33290.0537839127 \tabularnewline
74 & 131122 & 125370.221430898 & 5751.77856910196 \tabularnewline
75 & 130539 & 115177.747317555 & 15361.2526824453 \tabularnewline
76 & 130533 & 143567.668070204 & -13034.6680702043 \tabularnewline
77 & 130232 & 178194.598030445 & -47962.5980304446 \tabularnewline
78 & 129100 & 118856.338691325 & 10243.6613086749 \tabularnewline
79 & 128655 & 158069.599673939 & -29414.599673939 \tabularnewline
80 & 128066 & 107838.001119685 & 20227.9988803149 \tabularnewline
81 & 127619 & 101279.610713477 & 26339.3892865233 \tabularnewline
82 & 127324 & 163431.008915056 & -36107.008915056 \tabularnewline
83 & 126683 & 166408.610211747 & -39725.6102117469 \tabularnewline
84 & 126681 & 130372.416719424 & -3691.41671942442 \tabularnewline
85 & 125971 & 115104.779125455 & 10866.2208745446 \tabularnewline
86 & 125366 & 106785.284653277 & 18580.715346723 \tabularnewline
87 & 122433 & 133509.666254365 & -11076.6662543646 \tabularnewline
88 & 121135 & 110195.855964995 & 10939.1440350052 \tabularnewline
89 & 119291 & 148933.782464773 & -29642.7824647729 \tabularnewline
90 & 118958 & 118551.718694385 & 406.281305614859 \tabularnewline
91 & 118807 & 132800.370592956 & -13993.3705929558 \tabularnewline
92 & 118372 & 149758.809967405 & -31386.8099674054 \tabularnewline
93 & 116900 & 90653.5394841782 & 26246.4605158218 \tabularnewline
94 & 116775 & 134824.96156418 & -18049.9615641801 \tabularnewline
95 & 115199 & 143464.275454572 & -28265.2754545718 \tabularnewline
96 & 114928 & 127504.320903121 & -12576.3209031212 \tabularnewline
97 & 114397 & 139523.290368863 & -25126.2903688629 \tabularnewline
98 & 113337 & 111558.978943377 & 1778.02105662257 \tabularnewline
99 & 111664 & 128615.71677656 & -16951.7167765603 \tabularnewline
100 & 108715 & 114925.573061584 & -6210.57306158402 \tabularnewline
101 & 107342 & 152049.105060205 & -44707.1050602052 \tabularnewline
102 & 107335 & 113661.47700163 & -6326.4770016297 \tabularnewline
103 & 106539 & 113138.198845775 & -6599.19884577526 \tabularnewline
104 & 105615 & 142042.559963417 & -36427.5599634175 \tabularnewline
105 & 105410 & 143381.808221407 & -37971.8082214068 \tabularnewline
106 & 105324 & 104525.003924231 & 798.996075769131 \tabularnewline
107 & 103012 & 71450.2370753042 & 31561.7629246958 \tabularnewline
108 & 102531 & 111528.443514714 & -8997.44351471426 \tabularnewline
109 & 101324 & 175446.582656003 & -74122.5826560033 \tabularnewline
110 & 100885 & 84791.6964327016 & 16093.3035672984 \tabularnewline
111 & 100672 & 107814.870460345 & -7142.87046034467 \tabularnewline
112 & 99946 & 191532.609056348 & -91586.6090563484 \tabularnewline
113 & 99768 & 78629.4308365602 & 21138.5691634397 \tabularnewline
114 & 99246 & 93682.9307702023 & 5563.06922979772 \tabularnewline
115 & 98599 & 100923.754070365 & -2324.7540703652 \tabularnewline
116 & 98030 & 77295.5806735261 & 20734.4193264739 \tabularnewline
117 & 94763 & 166621.453273283 & -71858.4532732834 \tabularnewline
118 & 93340 & 107531.826058672 & -14191.8260586718 \tabularnewline
119 & 93125 & 74375.1040530266 & 18749.8959469734 \tabularnewline
120 & 91185 & 119142.374204443 & -27957.3742044432 \tabularnewline
121 & 90961 & 115004.203520718 & -24043.2035207181 \tabularnewline
122 & 90938 & 92789.7607068541 & -1851.76070685407 \tabularnewline
123 & 89318 & 146615.684301412 & -57297.6843014125 \tabularnewline
124 & 88817 & 124627.445544607 & -35810.4455446067 \tabularnewline
125 & 84944 & 133764.551704336 & -48820.5517043364 \tabularnewline
126 & 84572 & 132407.148905161 & -47835.1489051615 \tabularnewline
127 & 84256 & 151018.71418159 & -66762.7141815895 \tabularnewline
128 & 80953 & 95457.8138105452 & -14504.8138105452 \tabularnewline
129 & 78800 & 78448.0230510404 & 351.976948959625 \tabularnewline
130 & 78776 & 64192.3830736586 & 14583.6169263414 \tabularnewline
131 & 75812 & 82991.4191824219 & -7179.41918242189 \tabularnewline
132 & 75426 & 49160.061587665 & 26265.938412335 \tabularnewline
133 & 74398 & 85019.730833868 & -10621.730833868 \tabularnewline
134 & 74112 & 111316.55522333 & -37204.5552233298 \tabularnewline
135 & 73567 & 69067.7041520048 & 4499.29584799522 \tabularnewline
136 & 69471 & 78147.8471609022 & -8676.84716090215 \tabularnewline
137 & 68948 & 84779.6083408256 & -15831.6083408256 \tabularnewline
138 & 67746 & 78810.8692305104 & -11064.8692305104 \tabularnewline
139 & 67507 & 175092.630808902 & -107585.630808902 \tabularnewline
140 & 65029 & 76443.8008694542 & -11414.8008694542 \tabularnewline
141 & 64320 & 75780.307088894 & -11460.307088894 \tabularnewline
142 & 61857 & 63146.2348534351 & -1289.23485343511 \tabularnewline
143 & 61499 & 86902.6057849317 & -25403.6057849317 \tabularnewline
144 & 50999 & 66095.2834649052 & -15096.2834649052 \tabularnewline
145 & 46660 & 38191.6477539335 & 8468.35224606651 \tabularnewline
146 & 43287 & 84939.1410917032 & -41652.1410917032 \tabularnewline
147 & 38214 & 46616.194985098 & -8402.19498509803 \tabularnewline
148 & 35523 & 65666.5438490152 & -30143.5438490152 \tabularnewline
149 & 32750 & 34961.9661955954 & -2211.96619559537 \tabularnewline
150 & 31414 & 51266.2600434663 & -19852.2600434663 \tabularnewline
151 & 24188 & 30037.6214415502 & -5849.62144155024 \tabularnewline
152 & 22938 & 29877.3496352933 & -6939.34963529332 \tabularnewline
153 & 21054 & 21748.0148736473 & -694.01487364726 \tabularnewline
154 & 17547 & 21217.2791869658 & -3670.2791869658 \tabularnewline
155 & 14688 & 22926.4193495886 & -8238.4193495886 \tabularnewline
156 & 7199 & 24663.2032260934 & -17464.2032260934 \tabularnewline
157 & 969 & 17385.6432597228 & -16416.6432597228 \tabularnewline
158 & 455 & 17385.6432597228 & -16930.6432597228 \tabularnewline
159 & 203 & 17385.6432597228 & -17182.6432597228 \tabularnewline
160 & 98 & 17385.6432597228 & -17287.6432597228 \tabularnewline
161 & 0 & 17385.6432597228 & -17385.6432597228 \tabularnewline
162 & 0 & 17385.6432597228 & -17385.6432597228 \tabularnewline
163 & 0 & 17385.6432597228 & -17385.6432597228 \tabularnewline
164 & 0 & 17385.6432597228 & -17385.6432597228 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]293403[/C][C]190517.633323432[/C][C]102885.366676568[/C][/ROW]
[ROW][C]2[/C][C]277108[/C][C]138577.120172294[/C][C]138530.879827706[/C][/ROW]
[ROW][C]3[/C][C]264020[/C][C]155120.074191502[/C][C]108899.925808498[/C][/ROW]
[ROW][C]4[/C][C]260646[/C][C]173766.363263535[/C][C]86879.636736465[/C][/ROW]
[ROW][C]5[/C][C]246100[/C][C]184188.560366312[/C][C]61911.4396336878[/C][/ROW]
[ROW][C]6[/C][C]244051[/C][C]180850.129056793[/C][C]63200.8709432066[/C][/ROW]
[ROW][C]7[/C][C]241329[/C][C]130398.350038153[/C][C]110930.649961847[/C][/ROW]
[ROW][C]8[/C][C]234730[/C][C]233687.054153108[/C][C]1042.9458468925[/C][/ROW]
[ROW][C]9[/C][C]234509[/C][C]222268.011433908[/C][C]12240.9885660923[/C][/ROW]
[ROW][C]10[/C][C]233482[/C][C]149258.233401413[/C][C]84223.7665985869[/C][/ROW]
[ROW][C]11[/C][C]233406[/C][C]188081.280812486[/C][C]45324.7191875136[/C][/ROW]
[ROW][C]12[/C][C]228548[/C][C]216867.096813562[/C][C]11680.9031864376[/C][/ROW]
[ROW][C]13[/C][C]223914[/C][C]187301.091188802[/C][C]36612.9088111982[/C][/ROW]
[ROW][C]14[/C][C]223696[/C][C]179305.696133821[/C][C]44390.3038661787[/C][/ROW]
[ROW][C]15[/C][C]223004[/C][C]185359.980572773[/C][C]37644.0194272273[/C][/ROW]
[ROW][C]16[/C][C]213765[/C][C]169474.276469174[/C][C]44290.7235308258[/C][/ROW]
[ROW][C]17[/C][C]210554[/C][C]175680.909326907[/C][C]34873.0906730933[/C][/ROW]
[ROW][C]18[/C][C]202204[/C][C]120080.251002799[/C][C]82123.7489972006[/C][/ROW]
[ROW][C]19[/C][C]199512[/C][C]138645.775089679[/C][C]60866.2249103208[/C][/ROW]
[ROW][C]20[/C][C]195304[/C][C]177677.631982602[/C][C]17626.3680173982[/C][/ROW]
[ROW][C]21[/C][C]191467[/C][C]159749.595189341[/C][C]31717.4048106589[/C][/ROW]
[ROW][C]22[/C][C]191381[/C][C]209568.778614705[/C][C]-18187.7786147047[/C][/ROW]
[ROW][C]23[/C][C]191276[/C][C]206383.335278695[/C][C]-15107.3352786947[/C][/ROW]
[ROW][C]24[/C][C]190410[/C][C]175822.931674126[/C][C]14587.0683258745[/C][/ROW]
[ROW][C]25[/C][C]188967[/C][C]160343.023432339[/C][C]28623.9765676615[/C][/ROW]
[ROW][C]26[/C][C]188780[/C][C]176549.067754088[/C][C]12230.9322459122[/C][/ROW]
[ROW][C]27[/C][C]185139[/C][C]203878.72305994[/C][C]-18739.7230599402[/C][/ROW]
[ROW][C]28[/C][C]185039[/C][C]166278.43550398[/C][C]18760.56449602[/C][/ROW]
[ROW][C]29[/C][C]184217[/C][C]127134.026262462[/C][C]57082.9737375383[/C][/ROW]
[ROW][C]30[/C][C]181853[/C][C]174376.488546824[/C][C]7476.51145317573[/C][/ROW]
[ROW][C]31[/C][C]181379[/C][C]193194.806187644[/C][C]-11815.8061876436[/C][/ROW]
[ROW][C]32[/C][C]181344[/C][C]178764.713211402[/C][C]2579.28678859827[/C][/ROW]
[ROW][C]33[/C][C]179562[/C][C]169087.749800547[/C][C]10474.2501994531[/C][/ROW]
[ROW][C]34[/C][C]178863[/C][C]158309.857150665[/C][C]20553.1428493354[/C][/ROW]
[ROW][C]35[/C][C]178140[/C][C]143263.344111696[/C][C]34876.6558883036[/C][/ROW]
[ROW][C]36[/C][C]176789[/C][C]205396.025277216[/C][C]-28607.0252772158[/C][/ROW]
[ROW][C]37[/C][C]176460[/C][C]164152.865376379[/C][C]12307.1346236213[/C][/ROW]
[ROW][C]38[/C][C]175877[/C][C]168547.943034597[/C][C]7329.05696540335[/C][/ROW]
[ROW][C]39[/C][C]175568[/C][C]181212.36687506[/C][C]-5644.36687506036[/C][/ROW]
[ROW][C]40[/C][C]174107[/C][C]133953.025165134[/C][C]40153.9748348665[/C][/ROW]
[ROW][C]41[/C][C]173587[/C][C]148415.574655494[/C][C]25171.4253445059[/C][/ROW]
[ROW][C]42[/C][C]173260[/C][C]97321.8744399103[/C][C]75938.1255600897[/C][/ROW]
[ROW][C]43[/C][C]172684[/C][C]189237.103458152[/C][C]-16553.1034581517[/C][/ROW]
[ROW][C]44[/C][C]167845[/C][C]199791.857787482[/C][C]-31946.8577874824[/C][/ROW]
[ROW][C]45[/C][C]167131[/C][C]128497.667413742[/C][C]38633.3325862581[/C][/ROW]
[ROW][C]46[/C][C]167105[/C][C]112274.007858658[/C][C]54830.9921413422[/C][/ROW]
[ROW][C]47[/C][C]166790[/C][C]105560.164598[/C][C]61229.8354019999[/C][/ROW]
[ROW][C]48[/C][C]164767[/C][C]141657.215924385[/C][C]23109.7840756145[/C][/ROW]
[ROW][C]49[/C][C]162810[/C][C]131437.19240019[/C][C]31372.8075998102[/C][/ROW]
[ROW][C]50[/C][C]162336[/C][C]210993.94209538[/C][C]-48657.9420953801[/C][/ROW]
[ROW][C]51[/C][C]161678[/C][C]140703.678483974[/C][C]20974.3215160259[/C][/ROW]
[ROW][C]52[/C][C]158980[/C][C]176140.481337011[/C][C]-17160.4813370106[/C][/ROW]
[ROW][C]53[/C][C]157250[/C][C]178636.741811273[/C][C]-21386.7418112727[/C][/ROW]
[ROW][C]54[/C][C]156833[/C][C]148737.222432474[/C][C]8095.77756752643[/C][/ROW]
[ROW][C]55[/C][C]155383[/C][C]159633.068921583[/C][C]-4250.06892158314[/C][/ROW]
[ROW][C]56[/C][C]154991[/C][C]150755.457818931[/C][C]4235.54218106929[/C][/ROW]
[ROW][C]57[/C][C]154730[/C][C]162942.478557917[/C][C]-8212.4785579172[/C][/ROW]
[ROW][C]58[/C][C]151503[/C][C]169634.165364432[/C][C]-18131.1653644318[/C][/ROW]
[ROW][C]59[/C][C]146455[/C][C]160271.198730612[/C][C]-13816.198730612[/C][/ROW]
[ROW][C]60[/C][C]143937[/C][C]183189.144015959[/C][C]-39252.1440159588[/C][/ROW]
[ROW][C]61[/C][C]142339[/C][C]176460.185849378[/C][C]-34121.1858493777[/C][/ROW]
[ROW][C]62[/C][C]142146[/C][C]201023.571069498[/C][C]-58877.5710694975[/C][/ROW]
[ROW][C]63[/C][C]142141[/C][C]149625.906942531[/C][C]-7484.90694253119[/C][/ROW]
[ROW][C]64[/C][C]142069[/C][C]148003.581866384[/C][C]-5934.58186638406[/C][/ROW]
[ROW][C]65[/C][C]141933[/C][C]163041.843942967[/C][C]-21108.8439429673[/C][/ROW]
[ROW][C]66[/C][C]139350[/C][C]154835.845318744[/C][C]-15485.8453187441[/C][/ROW]
[ROW][C]67[/C][C]139144[/C][C]132876.357050394[/C][C]6267.64294960609[/C][/ROW]
[ROW][C]68[/C][C]137793[/C][C]143520.030264147[/C][C]-5727.03026414713[/C][/ROW]
[ROW][C]69[/C][C]136911[/C][C]177248.718755703[/C][C]-40337.7187557028[/C][/ROW]
[ROW][C]70[/C][C]136548[/C][C]182486.566272617[/C][C]-45938.5662726175[/C][/ROW]
[ROW][C]71[/C][C]135171[/C][C]145570.141821956[/C][C]-10399.1418219562[/C][/ROW]
[ROW][C]72[/C][C]134043[/C][C]119127.479812475[/C][C]14915.5201875253[/C][/ROW]
[ROW][C]73[/C][C]131876[/C][C]98585.9462160873[/C][C]33290.0537839127[/C][/ROW]
[ROW][C]74[/C][C]131122[/C][C]125370.221430898[/C][C]5751.77856910196[/C][/ROW]
[ROW][C]75[/C][C]130539[/C][C]115177.747317555[/C][C]15361.2526824453[/C][/ROW]
[ROW][C]76[/C][C]130533[/C][C]143567.668070204[/C][C]-13034.6680702043[/C][/ROW]
[ROW][C]77[/C][C]130232[/C][C]178194.598030445[/C][C]-47962.5980304446[/C][/ROW]
[ROW][C]78[/C][C]129100[/C][C]118856.338691325[/C][C]10243.6613086749[/C][/ROW]
[ROW][C]79[/C][C]128655[/C][C]158069.599673939[/C][C]-29414.599673939[/C][/ROW]
[ROW][C]80[/C][C]128066[/C][C]107838.001119685[/C][C]20227.9988803149[/C][/ROW]
[ROW][C]81[/C][C]127619[/C][C]101279.610713477[/C][C]26339.3892865233[/C][/ROW]
[ROW][C]82[/C][C]127324[/C][C]163431.008915056[/C][C]-36107.008915056[/C][/ROW]
[ROW][C]83[/C][C]126683[/C][C]166408.610211747[/C][C]-39725.6102117469[/C][/ROW]
[ROW][C]84[/C][C]126681[/C][C]130372.416719424[/C][C]-3691.41671942442[/C][/ROW]
[ROW][C]85[/C][C]125971[/C][C]115104.779125455[/C][C]10866.2208745446[/C][/ROW]
[ROW][C]86[/C][C]125366[/C][C]106785.284653277[/C][C]18580.715346723[/C][/ROW]
[ROW][C]87[/C][C]122433[/C][C]133509.666254365[/C][C]-11076.6662543646[/C][/ROW]
[ROW][C]88[/C][C]121135[/C][C]110195.855964995[/C][C]10939.1440350052[/C][/ROW]
[ROW][C]89[/C][C]119291[/C][C]148933.782464773[/C][C]-29642.7824647729[/C][/ROW]
[ROW][C]90[/C][C]118958[/C][C]118551.718694385[/C][C]406.281305614859[/C][/ROW]
[ROW][C]91[/C][C]118807[/C][C]132800.370592956[/C][C]-13993.3705929558[/C][/ROW]
[ROW][C]92[/C][C]118372[/C][C]149758.809967405[/C][C]-31386.8099674054[/C][/ROW]
[ROW][C]93[/C][C]116900[/C][C]90653.5394841782[/C][C]26246.4605158218[/C][/ROW]
[ROW][C]94[/C][C]116775[/C][C]134824.96156418[/C][C]-18049.9615641801[/C][/ROW]
[ROW][C]95[/C][C]115199[/C][C]143464.275454572[/C][C]-28265.2754545718[/C][/ROW]
[ROW][C]96[/C][C]114928[/C][C]127504.320903121[/C][C]-12576.3209031212[/C][/ROW]
[ROW][C]97[/C][C]114397[/C][C]139523.290368863[/C][C]-25126.2903688629[/C][/ROW]
[ROW][C]98[/C][C]113337[/C][C]111558.978943377[/C][C]1778.02105662257[/C][/ROW]
[ROW][C]99[/C][C]111664[/C][C]128615.71677656[/C][C]-16951.7167765603[/C][/ROW]
[ROW][C]100[/C][C]108715[/C][C]114925.573061584[/C][C]-6210.57306158402[/C][/ROW]
[ROW][C]101[/C][C]107342[/C][C]152049.105060205[/C][C]-44707.1050602052[/C][/ROW]
[ROW][C]102[/C][C]107335[/C][C]113661.47700163[/C][C]-6326.4770016297[/C][/ROW]
[ROW][C]103[/C][C]106539[/C][C]113138.198845775[/C][C]-6599.19884577526[/C][/ROW]
[ROW][C]104[/C][C]105615[/C][C]142042.559963417[/C][C]-36427.5599634175[/C][/ROW]
[ROW][C]105[/C][C]105410[/C][C]143381.808221407[/C][C]-37971.8082214068[/C][/ROW]
[ROW][C]106[/C][C]105324[/C][C]104525.003924231[/C][C]798.996075769131[/C][/ROW]
[ROW][C]107[/C][C]103012[/C][C]71450.2370753042[/C][C]31561.7629246958[/C][/ROW]
[ROW][C]108[/C][C]102531[/C][C]111528.443514714[/C][C]-8997.44351471426[/C][/ROW]
[ROW][C]109[/C][C]101324[/C][C]175446.582656003[/C][C]-74122.5826560033[/C][/ROW]
[ROW][C]110[/C][C]100885[/C][C]84791.6964327016[/C][C]16093.3035672984[/C][/ROW]
[ROW][C]111[/C][C]100672[/C][C]107814.870460345[/C][C]-7142.87046034467[/C][/ROW]
[ROW][C]112[/C][C]99946[/C][C]191532.609056348[/C][C]-91586.6090563484[/C][/ROW]
[ROW][C]113[/C][C]99768[/C][C]78629.4308365602[/C][C]21138.5691634397[/C][/ROW]
[ROW][C]114[/C][C]99246[/C][C]93682.9307702023[/C][C]5563.06922979772[/C][/ROW]
[ROW][C]115[/C][C]98599[/C][C]100923.754070365[/C][C]-2324.7540703652[/C][/ROW]
[ROW][C]116[/C][C]98030[/C][C]77295.5806735261[/C][C]20734.4193264739[/C][/ROW]
[ROW][C]117[/C][C]94763[/C][C]166621.453273283[/C][C]-71858.4532732834[/C][/ROW]
[ROW][C]118[/C][C]93340[/C][C]107531.826058672[/C][C]-14191.8260586718[/C][/ROW]
[ROW][C]119[/C][C]93125[/C][C]74375.1040530266[/C][C]18749.8959469734[/C][/ROW]
[ROW][C]120[/C][C]91185[/C][C]119142.374204443[/C][C]-27957.3742044432[/C][/ROW]
[ROW][C]121[/C][C]90961[/C][C]115004.203520718[/C][C]-24043.2035207181[/C][/ROW]
[ROW][C]122[/C][C]90938[/C][C]92789.7607068541[/C][C]-1851.76070685407[/C][/ROW]
[ROW][C]123[/C][C]89318[/C][C]146615.684301412[/C][C]-57297.6843014125[/C][/ROW]
[ROW][C]124[/C][C]88817[/C][C]124627.445544607[/C][C]-35810.4455446067[/C][/ROW]
[ROW][C]125[/C][C]84944[/C][C]133764.551704336[/C][C]-48820.5517043364[/C][/ROW]
[ROW][C]126[/C][C]84572[/C][C]132407.148905161[/C][C]-47835.1489051615[/C][/ROW]
[ROW][C]127[/C][C]84256[/C][C]151018.71418159[/C][C]-66762.7141815895[/C][/ROW]
[ROW][C]128[/C][C]80953[/C][C]95457.8138105452[/C][C]-14504.8138105452[/C][/ROW]
[ROW][C]129[/C][C]78800[/C][C]78448.0230510404[/C][C]351.976948959625[/C][/ROW]
[ROW][C]130[/C][C]78776[/C][C]64192.3830736586[/C][C]14583.6169263414[/C][/ROW]
[ROW][C]131[/C][C]75812[/C][C]82991.4191824219[/C][C]-7179.41918242189[/C][/ROW]
[ROW][C]132[/C][C]75426[/C][C]49160.061587665[/C][C]26265.938412335[/C][/ROW]
[ROW][C]133[/C][C]74398[/C][C]85019.730833868[/C][C]-10621.730833868[/C][/ROW]
[ROW][C]134[/C][C]74112[/C][C]111316.55522333[/C][C]-37204.5552233298[/C][/ROW]
[ROW][C]135[/C][C]73567[/C][C]69067.7041520048[/C][C]4499.29584799522[/C][/ROW]
[ROW][C]136[/C][C]69471[/C][C]78147.8471609022[/C][C]-8676.84716090215[/C][/ROW]
[ROW][C]137[/C][C]68948[/C][C]84779.6083408256[/C][C]-15831.6083408256[/C][/ROW]
[ROW][C]138[/C][C]67746[/C][C]78810.8692305104[/C][C]-11064.8692305104[/C][/ROW]
[ROW][C]139[/C][C]67507[/C][C]175092.630808902[/C][C]-107585.630808902[/C][/ROW]
[ROW][C]140[/C][C]65029[/C][C]76443.8008694542[/C][C]-11414.8008694542[/C][/ROW]
[ROW][C]141[/C][C]64320[/C][C]75780.307088894[/C][C]-11460.307088894[/C][/ROW]
[ROW][C]142[/C][C]61857[/C][C]63146.2348534351[/C][C]-1289.23485343511[/C][/ROW]
[ROW][C]143[/C][C]61499[/C][C]86902.6057849317[/C][C]-25403.6057849317[/C][/ROW]
[ROW][C]144[/C][C]50999[/C][C]66095.2834649052[/C][C]-15096.2834649052[/C][/ROW]
[ROW][C]145[/C][C]46660[/C][C]38191.6477539335[/C][C]8468.35224606651[/C][/ROW]
[ROW][C]146[/C][C]43287[/C][C]84939.1410917032[/C][C]-41652.1410917032[/C][/ROW]
[ROW][C]147[/C][C]38214[/C][C]46616.194985098[/C][C]-8402.19498509803[/C][/ROW]
[ROW][C]148[/C][C]35523[/C][C]65666.5438490152[/C][C]-30143.5438490152[/C][/ROW]
[ROW][C]149[/C][C]32750[/C][C]34961.9661955954[/C][C]-2211.96619559537[/C][/ROW]
[ROW][C]150[/C][C]31414[/C][C]51266.2600434663[/C][C]-19852.2600434663[/C][/ROW]
[ROW][C]151[/C][C]24188[/C][C]30037.6214415502[/C][C]-5849.62144155024[/C][/ROW]
[ROW][C]152[/C][C]22938[/C][C]29877.3496352933[/C][C]-6939.34963529332[/C][/ROW]
[ROW][C]153[/C][C]21054[/C][C]21748.0148736473[/C][C]-694.01487364726[/C][/ROW]
[ROW][C]154[/C][C]17547[/C][C]21217.2791869658[/C][C]-3670.2791869658[/C][/ROW]
[ROW][C]155[/C][C]14688[/C][C]22926.4193495886[/C][C]-8238.4193495886[/C][/ROW]
[ROW][C]156[/C][C]7199[/C][C]24663.2032260934[/C][C]-17464.2032260934[/C][/ROW]
[ROW][C]157[/C][C]969[/C][C]17385.6432597228[/C][C]-16416.6432597228[/C][/ROW]
[ROW][C]158[/C][C]455[/C][C]17385.6432597228[/C][C]-16930.6432597228[/C][/ROW]
[ROW][C]159[/C][C]203[/C][C]17385.6432597228[/C][C]-17182.6432597228[/C][/ROW]
[ROW][C]160[/C][C]98[/C][C]17385.6432597228[/C][C]-17287.6432597228[/C][/ROW]
[ROW][C]161[/C][C]0[/C][C]17385.6432597228[/C][C]-17385.6432597228[/C][/ROW]
[ROW][C]162[/C][C]0[/C][C]17385.6432597228[/C][C]-17385.6432597228[/C][/ROW]
[ROW][C]163[/C][C]0[/C][C]17385.6432597228[/C][C]-17385.6432597228[/C][/ROW]
[ROW][C]164[/C][C]0[/C][C]17385.6432597228[/C][C]-17385.6432597228[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1293403190517.633323432102885.366676568
2277108138577.120172294138530.879827706
3264020155120.074191502108899.925808498
4260646173766.36326353586879.636736465
5246100184188.56036631261911.4396336878
6244051180850.12905679363200.8709432066
7241329130398.350038153110930.649961847
8234730233687.0541531081042.9458468925
9234509222268.01143390812240.9885660923
10233482149258.23340141384223.7665985869
11233406188081.28081248645324.7191875136
12228548216867.09681356211680.9031864376
13223914187301.09118880236612.9088111982
14223696179305.69613382144390.3038661787
15223004185359.98057277337644.0194272273
16213765169474.27646917444290.7235308258
17210554175680.90932690734873.0906730933
18202204120080.25100279982123.7489972006
19199512138645.77508967960866.2249103208
20195304177677.63198260217626.3680173982
21191467159749.59518934131717.4048106589
22191381209568.778614705-18187.7786147047
23191276206383.335278695-15107.3352786947
24190410175822.93167412614587.0683258745
25188967160343.02343233928623.9765676615
26188780176549.06775408812230.9322459122
27185139203878.72305994-18739.7230599402
28185039166278.4355039818760.56449602
29184217127134.02626246257082.9737375383
30181853174376.4885468247476.51145317573
31181379193194.806187644-11815.8061876436
32181344178764.7132114022579.28678859827
33179562169087.74980054710474.2501994531
34178863158309.85715066520553.1428493354
35178140143263.34411169634876.6558883036
36176789205396.025277216-28607.0252772158
37176460164152.86537637912307.1346236213
38175877168547.9430345977329.05696540335
39175568181212.36687506-5644.36687506036
40174107133953.02516513440153.9748348665
41173587148415.57465549425171.4253445059
4217326097321.874439910375938.1255600897
43172684189237.103458152-16553.1034581517
44167845199791.857787482-31946.8577874824
45167131128497.66741374238633.3325862581
46167105112274.00785865854830.9921413422
47166790105560.16459861229.8354019999
48164767141657.21592438523109.7840756145
49162810131437.1924001931372.8075998102
50162336210993.94209538-48657.9420953801
51161678140703.67848397420974.3215160259
52158980176140.481337011-17160.4813370106
53157250178636.741811273-21386.7418112727
54156833148737.2224324748095.77756752643
55155383159633.068921583-4250.06892158314
56154991150755.4578189314235.54218106929
57154730162942.478557917-8212.4785579172
58151503169634.165364432-18131.1653644318
59146455160271.198730612-13816.198730612
60143937183189.144015959-39252.1440159588
61142339176460.185849378-34121.1858493777
62142146201023.571069498-58877.5710694975
63142141149625.906942531-7484.90694253119
64142069148003.581866384-5934.58186638406
65141933163041.843942967-21108.8439429673
66139350154835.845318744-15485.8453187441
67139144132876.3570503946267.64294960609
68137793143520.030264147-5727.03026414713
69136911177248.718755703-40337.7187557028
70136548182486.566272617-45938.5662726175
71135171145570.141821956-10399.1418219562
72134043119127.47981247514915.5201875253
7313187698585.946216087333290.0537839127
74131122125370.2214308985751.77856910196
75130539115177.74731755515361.2526824453
76130533143567.668070204-13034.6680702043
77130232178194.598030445-47962.5980304446
78129100118856.33869132510243.6613086749
79128655158069.599673939-29414.599673939
80128066107838.00111968520227.9988803149
81127619101279.61071347726339.3892865233
82127324163431.008915056-36107.008915056
83126683166408.610211747-39725.6102117469
84126681130372.416719424-3691.41671942442
85125971115104.77912545510866.2208745446
86125366106785.28465327718580.715346723
87122433133509.666254365-11076.6662543646
88121135110195.85596499510939.1440350052
89119291148933.782464773-29642.7824647729
90118958118551.718694385406.281305614859
91118807132800.370592956-13993.3705929558
92118372149758.809967405-31386.8099674054
9311690090653.539484178226246.4605158218
94116775134824.96156418-18049.9615641801
95115199143464.275454572-28265.2754545718
96114928127504.320903121-12576.3209031212
97114397139523.290368863-25126.2903688629
98113337111558.9789433771778.02105662257
99111664128615.71677656-16951.7167765603
100108715114925.573061584-6210.57306158402
101107342152049.105060205-44707.1050602052
102107335113661.47700163-6326.4770016297
103106539113138.198845775-6599.19884577526
104105615142042.559963417-36427.5599634175
105105410143381.808221407-37971.8082214068
106105324104525.003924231798.996075769131
10710301271450.237075304231561.7629246958
108102531111528.443514714-8997.44351471426
109101324175446.582656003-74122.5826560033
11010088584791.696432701616093.3035672984
111100672107814.870460345-7142.87046034467
11299946191532.609056348-91586.6090563484
1139976878629.430836560221138.5691634397
1149924693682.93077020235563.06922979772
11598599100923.754070365-2324.7540703652
1169803077295.580673526120734.4193264739
11794763166621.453273283-71858.4532732834
11893340107531.826058672-14191.8260586718
1199312574375.104053026618749.8959469734
12091185119142.374204443-27957.3742044432
12190961115004.203520718-24043.2035207181
1229093892789.7607068541-1851.76070685407
12389318146615.684301412-57297.6843014125
12488817124627.445544607-35810.4455446067
12584944133764.551704336-48820.5517043364
12684572132407.148905161-47835.1489051615
12784256151018.71418159-66762.7141815895
1288095395457.8138105452-14504.8138105452
1297880078448.0230510404351.976948959625
1307877664192.383073658614583.6169263414
1317581282991.4191824219-7179.41918242189
1327542649160.06158766526265.938412335
1337439885019.730833868-10621.730833868
13474112111316.55522333-37204.5552233298
1357356769067.70415200484499.29584799522
1366947178147.8471609022-8676.84716090215
1376894884779.6083408256-15831.6083408256
1386774678810.8692305104-11064.8692305104
13967507175092.630808902-107585.630808902
1406502976443.8008694542-11414.8008694542
1416432075780.307088894-11460.307088894
1426185763146.2348534351-1289.23485343511
1436149986902.6057849317-25403.6057849317
1445099966095.2834649052-15096.2834649052
1454666038191.64775393358468.35224606651
1464328784939.1410917032-41652.1410917032
1473821446616.194985098-8402.19498509803
1483552365666.5438490152-30143.5438490152
1493275034961.9661955954-2211.96619559537
1503141451266.2600434663-19852.2600434663
1512418830037.6214415502-5849.62144155024
1522293829877.3496352933-6939.34963529332
1532105421748.0148736473-694.01487364726
1541754721217.2791869658-3670.2791869658
1551468822926.4193495886-8238.4193495886
156719924663.2032260934-17464.2032260934
15796917385.6432597228-16416.6432597228
15845517385.6432597228-16930.6432597228
15920317385.6432597228-17182.6432597228
1609817385.6432597228-17287.6432597228
161017385.6432597228-17385.6432597228
162017385.6432597228-17385.6432597228
163017385.6432597228-17385.6432597228
164017385.6432597228-17385.6432597228







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
90.2822556038400240.5645112076800480.717744396159976
100.2245090514452190.4490181028904380.775490948554781
110.1500563665592250.3001127331184490.849943633440775
120.1777831742225650.355566348445130.822216825777435
130.2113001849743550.4226003699487090.788699815025645
140.2122010960060750.424402192012150.787798903993925
150.1674944861160670.3349889722321340.832505513883933
160.1519214490685020.3038428981370030.848078550931498
170.1968766156704550.393753231340910.803123384329545
180.3012546749989530.6025093499979070.698745325001047
190.4650174090084050.930034818016810.534982590991595
200.4770562196049660.9541124392099310.522943780395034
210.5255796042175890.9488407915648230.474420395782411
220.508415764244180.9831684715116390.49158423575582
230.516838007045640.9663239859087190.48316199295436
240.6232368930432640.7535262139134710.376763106956736
250.6813816663847310.6372366672305380.318618333615269
260.773334500388540.453330999222920.22666549961146
270.8191380376545050.361723924690990.180861962345495
280.8404287243965120.3191425512069750.159571275603488
290.8937431735524060.2125136528951880.106256826447594
300.9238845107524730.1522309784950540.076115489247527
310.9300278064220780.1399443871558440.0699721935779218
320.9256886092963840.1486227814072320.0743113907036161
330.9227173447096090.1545653105807820.0772826552903908
340.9284178500554150.143164299889170.0715821499445848
350.9356814365591880.1286371268816230.0643185634408117
360.9533776932128570.0932446135742850.0466223067871425
370.9510690906013460.09786181879730870.0489309093986544
380.9496070707713830.1007858584572340.0503929292286169
390.9501066414319640.09978671713607150.0498933585680357
400.9634588670522330.07308226589553430.0365411329477671
410.9688364519686290.06232709606274140.0311635480313707
420.9844211948364920.03115761032701680.0155788051635084
430.9855018208726220.02899635825475670.0144981791273783
440.9876037710314080.02479245793718490.0123962289685925
450.9910839479321680.01783210413566460.00891605206783231
460.9969882973586550.006023405282690230.00301170264134511
470.9988442191825440.002311561634912820.00115578081745641
480.9991729303390970.001654139321804950.000827069660902476
490.9994851061334140.001029787733172350.000514893866586173
500.9996709916271610.0006580167456783490.000329008372839175
510.9998294040382970.0003411919234062850.000170595961703143
520.9998583023708050.0002833952583908190.00014169762919541
530.9998540268141550.0002919463716897390.000145973185844869
540.9998754147630190.0002491704739626690.000124585236981334
550.9998806106853630.0002387786292730870.000119389314636544
560.9998746658612780.0002506682774436490.000125334138721825
570.9998815108566150.0002369782867689870.000118489143384494
580.9998834008633680.0002331982732631980.000116599136631599
590.9998855072477880.0002289855044245620.000114492752212281
600.9999079949153440.0001840101693119399.20050846559695e-05
610.9999356588123910.0001286823752178046.43411876089018e-05
620.9999713885265445.72229469119681e-052.8611473455984e-05
630.9999807179512313.8564097537531e-051.92820487687655e-05
640.9999806185412023.87629175960712e-051.93814587980356e-05
650.999979886925594.02261488190901e-052.0113074409545e-05
660.9999828480068123.43039863766195e-051.71519931883098e-05
670.9999837565316613.24869366782951e-051.62434683391475e-05
680.9999839323522423.21352955158364e-051.60676477579182e-05
690.9999883614402172.32771195652501e-051.1638559782625e-05
700.999990568486371.88630272601287e-059.43151363006437e-06
710.9999915430296131.69139407739564e-058.45697038697819e-06
720.9999947133404021.05733191949899e-055.28665959749495e-06
730.9999971042091935.79158161319775e-062.89579080659888e-06
740.9999969673797666.06524046787886e-063.03262023393943e-06
750.9999978264146814.34717063693265e-062.17358531846633e-06
760.9999978089799974.38204000659127e-062.19102000329563e-06
770.9999978646833964.27063320871907e-062.13531660435953e-06
780.999997615799254.76840150021233e-062.38420075010616e-06
790.9999973563362715.28732745898612e-062.64366372949306e-06
800.9999974821648235.03567035400809e-062.51783517700404e-06
810.999998721626342.5567473207227e-061.27837366036135e-06
820.9999984825843473.03483130519545e-061.51741565259773e-06
830.9999982787077573.44258448531194e-061.72129224265597e-06
840.9999981678132933.66437341370928e-061.83218670685464e-06
850.9999984660704573.06785908656244e-061.53392954328122e-06
860.999999237642811.52471438046897e-067.62357190234487e-07
870.9999990390775071.92184498586678e-069.60922492933391e-07
880.9999991803406641.63931867180816e-068.19659335904079e-07
890.9999989831208432.03375831335372e-061.01687915667686e-06
900.9999990385677941.92286441239839e-069.61432206199193e-07
910.9999987941216232.41175675427554e-061.20587837713777e-06
920.9999982626494483.47470110331928e-061.73735055165964e-06
930.9999990778060161.84438796716047e-069.22193983580236e-07
940.9999985799553682.84008926370289e-061.42004463185145e-06
950.9999983696053893.26078922207897e-061.63039461103949e-06
960.9999973335898465.33282030783704e-062.66641015391852e-06
970.9999964849462227.03010755579839e-063.51505377789919e-06
980.9999974190653745.1618692529237e-062.58093462646185e-06
990.9999960159570667.96808586724656e-063.98404293362328e-06
1000.9999959799783738.04004325466307e-064.02002162733153e-06
1010.9999953932794589.21344108422912e-064.60672054211456e-06
1020.9999944212708451.11574583097803e-055.57872915489017e-06
1030.9999933464024551.33071950903121e-056.65359754515605e-06
1040.9999949560116771.00879766458294e-055.0439883229147e-06
1050.9999931857057561.36285884884679e-056.81429424423395e-06
1060.9999924656393591.50687212814154e-057.53436064070772e-06
1070.9999968691920856.26161582979672e-063.13080791489836e-06
1080.9999958130038458.37399231042033e-064.18699615521016e-06
1090.9999976288420654.74231587075463e-062.37115793537732e-06
1100.9999988188741442.36225171175409e-061.18112585587704e-06
1110.9999983806799423.23864011684925e-061.61932005842462e-06
1120.9999998326329693.34734061530898e-071.67367030765449e-07
1130.9999999306398541.38720291496356e-076.93601457481779e-08
1140.9999999099276741.80144652728098e-079.0072326364049e-08
1150.9999998613079822.77384035791774e-071.38692017895887e-07
1160.9999999726605555.46788893609538e-082.73394446804769e-08
1170.9999999789810534.20378930829001e-082.10189465414501e-08
1180.9999999720049475.59901062500643e-082.79950531250322e-08
1190.999999988558372.28832604180192e-081.14416302090096e-08
1200.9999999812233233.75533538998777e-081.87766769499388e-08
1210.9999999713669185.72661638232703e-082.86330819116351e-08
1220.9999999696868956.06262095089076e-083.03131047544538e-08
1230.9999999554049648.91900719974386e-084.45950359987193e-08
1240.9999999322429311.35514138471429e-076.77570692357145e-08
1250.9999999013488851.97302229537398e-079.8651114768699e-08
1260.9999998434696253.13060749299664e-071.56530374649832e-07
1270.9999998330846463.33830707829235e-071.66915353914617e-07
1280.999999638594247.22811520838863e-073.61405760419432e-07
1290.9999996807932226.3841355606473e-073.19206778032365e-07
1300.9999999152584031.69483194537074e-078.4741597268537e-08
1310.9999999184437141.63112571130569e-078.15562855652844e-08
1320.9999998365247473.26950505395307e-071.63475252697653e-07
1330.9999998810096232.37980753986128e-071.18990376993064e-07
1340.999999773764724.52470559257319e-072.26235279628659e-07
1350.9999999922712161.54575685574378e-087.72878427871888e-09
1360.9999999756735194.86529625162205e-082.43264812581102e-08
1370.9999999218577761.56284448318227e-077.81422241591136e-08
1380.9999997772227584.45554482996767e-072.22777241498384e-07
1390.999999999692926.14159976365612e-103.07079988182806e-10
1400.9999999991963981.60720400596911e-098.03602002984554e-10
1410.9999999975777574.84448612868632e-092.42224306434316e-09
1420.9999999884356142.31287710835392e-081.15643855417696e-08
1430.9999999888016592.23966825300232e-081.11983412650116e-08
1440.9999999898138092.03723826428196e-081.01861913214098e-08
1450.9999999975604974.87900695571395e-092.43950347785697e-09
1460.9999999846003333.07993345212315e-081.53996672606158e-08
1470.9999999008077871.98384425041843e-079.91922125209214e-08
1480.9999997338240175.32351967027103e-072.66175983513552e-07
1490.9999987990589462.40188210861774e-061.20094105430887e-06
1500.9999996678927566.64214488105477e-073.32107244052738e-07
1510.999999802120853.95758300086159e-071.97879150043079e-07
1520.9999999999961957.61082842411565e-123.80541421205782e-12
1530.9999999995892458.21509824288003e-104.10754912144001e-10
1540.9999999593253238.13493530425685e-084.06746765212843e-08
1550.9999963656921097.26861578249555e-063.63430789124777e-06

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
9 & 0.282255603840024 & 0.564511207680048 & 0.717744396159976 \tabularnewline
10 & 0.224509051445219 & 0.449018102890438 & 0.775490948554781 \tabularnewline
11 & 0.150056366559225 & 0.300112733118449 & 0.849943633440775 \tabularnewline
12 & 0.177783174222565 & 0.35556634844513 & 0.822216825777435 \tabularnewline
13 & 0.211300184974355 & 0.422600369948709 & 0.788699815025645 \tabularnewline
14 & 0.212201096006075 & 0.42440219201215 & 0.787798903993925 \tabularnewline
15 & 0.167494486116067 & 0.334988972232134 & 0.832505513883933 \tabularnewline
16 & 0.151921449068502 & 0.303842898137003 & 0.848078550931498 \tabularnewline
17 & 0.196876615670455 & 0.39375323134091 & 0.803123384329545 \tabularnewline
18 & 0.301254674998953 & 0.602509349997907 & 0.698745325001047 \tabularnewline
19 & 0.465017409008405 & 0.93003481801681 & 0.534982590991595 \tabularnewline
20 & 0.477056219604966 & 0.954112439209931 & 0.522943780395034 \tabularnewline
21 & 0.525579604217589 & 0.948840791564823 & 0.474420395782411 \tabularnewline
22 & 0.50841576424418 & 0.983168471511639 & 0.49158423575582 \tabularnewline
23 & 0.51683800704564 & 0.966323985908719 & 0.48316199295436 \tabularnewline
24 & 0.623236893043264 & 0.753526213913471 & 0.376763106956736 \tabularnewline
25 & 0.681381666384731 & 0.637236667230538 & 0.318618333615269 \tabularnewline
26 & 0.77333450038854 & 0.45333099922292 & 0.22666549961146 \tabularnewline
27 & 0.819138037654505 & 0.36172392469099 & 0.180861962345495 \tabularnewline
28 & 0.840428724396512 & 0.319142551206975 & 0.159571275603488 \tabularnewline
29 & 0.893743173552406 & 0.212513652895188 & 0.106256826447594 \tabularnewline
30 & 0.923884510752473 & 0.152230978495054 & 0.076115489247527 \tabularnewline
31 & 0.930027806422078 & 0.139944387155844 & 0.0699721935779218 \tabularnewline
32 & 0.925688609296384 & 0.148622781407232 & 0.0743113907036161 \tabularnewline
33 & 0.922717344709609 & 0.154565310580782 & 0.0772826552903908 \tabularnewline
34 & 0.928417850055415 & 0.14316429988917 & 0.0715821499445848 \tabularnewline
35 & 0.935681436559188 & 0.128637126881623 & 0.0643185634408117 \tabularnewline
36 & 0.953377693212857 & 0.093244613574285 & 0.0466223067871425 \tabularnewline
37 & 0.951069090601346 & 0.0978618187973087 & 0.0489309093986544 \tabularnewline
38 & 0.949607070771383 & 0.100785858457234 & 0.0503929292286169 \tabularnewline
39 & 0.950106641431964 & 0.0997867171360715 & 0.0498933585680357 \tabularnewline
40 & 0.963458867052233 & 0.0730822658955343 & 0.0365411329477671 \tabularnewline
41 & 0.968836451968629 & 0.0623270960627414 & 0.0311635480313707 \tabularnewline
42 & 0.984421194836492 & 0.0311576103270168 & 0.0155788051635084 \tabularnewline
43 & 0.985501820872622 & 0.0289963582547567 & 0.0144981791273783 \tabularnewline
44 & 0.987603771031408 & 0.0247924579371849 & 0.0123962289685925 \tabularnewline
45 & 0.991083947932168 & 0.0178321041356646 & 0.00891605206783231 \tabularnewline
46 & 0.996988297358655 & 0.00602340528269023 & 0.00301170264134511 \tabularnewline
47 & 0.998844219182544 & 0.00231156163491282 & 0.00115578081745641 \tabularnewline
48 & 0.999172930339097 & 0.00165413932180495 & 0.000827069660902476 \tabularnewline
49 & 0.999485106133414 & 0.00102978773317235 & 0.000514893866586173 \tabularnewline
50 & 0.999670991627161 & 0.000658016745678349 & 0.000329008372839175 \tabularnewline
51 & 0.999829404038297 & 0.000341191923406285 & 0.000170595961703143 \tabularnewline
52 & 0.999858302370805 & 0.000283395258390819 & 0.00014169762919541 \tabularnewline
53 & 0.999854026814155 & 0.000291946371689739 & 0.000145973185844869 \tabularnewline
54 & 0.999875414763019 & 0.000249170473962669 & 0.000124585236981334 \tabularnewline
55 & 0.999880610685363 & 0.000238778629273087 & 0.000119389314636544 \tabularnewline
56 & 0.999874665861278 & 0.000250668277443649 & 0.000125334138721825 \tabularnewline
57 & 0.999881510856615 & 0.000236978286768987 & 0.000118489143384494 \tabularnewline
58 & 0.999883400863368 & 0.000233198273263198 & 0.000116599136631599 \tabularnewline
59 & 0.999885507247788 & 0.000228985504424562 & 0.000114492752212281 \tabularnewline
60 & 0.999907994915344 & 0.000184010169311939 & 9.20050846559695e-05 \tabularnewline
61 & 0.999935658812391 & 0.000128682375217804 & 6.43411876089018e-05 \tabularnewline
62 & 0.999971388526544 & 5.72229469119681e-05 & 2.8611473455984e-05 \tabularnewline
63 & 0.999980717951231 & 3.8564097537531e-05 & 1.92820487687655e-05 \tabularnewline
64 & 0.999980618541202 & 3.87629175960712e-05 & 1.93814587980356e-05 \tabularnewline
65 & 0.99997988692559 & 4.02261488190901e-05 & 2.0113074409545e-05 \tabularnewline
66 & 0.999982848006812 & 3.43039863766195e-05 & 1.71519931883098e-05 \tabularnewline
67 & 0.999983756531661 & 3.24869366782951e-05 & 1.62434683391475e-05 \tabularnewline
68 & 0.999983932352242 & 3.21352955158364e-05 & 1.60676477579182e-05 \tabularnewline
69 & 0.999988361440217 & 2.32771195652501e-05 & 1.1638559782625e-05 \tabularnewline
70 & 0.99999056848637 & 1.88630272601287e-05 & 9.43151363006437e-06 \tabularnewline
71 & 0.999991543029613 & 1.69139407739564e-05 & 8.45697038697819e-06 \tabularnewline
72 & 0.999994713340402 & 1.05733191949899e-05 & 5.28665959749495e-06 \tabularnewline
73 & 0.999997104209193 & 5.79158161319775e-06 & 2.89579080659888e-06 \tabularnewline
74 & 0.999996967379766 & 6.06524046787886e-06 & 3.03262023393943e-06 \tabularnewline
75 & 0.999997826414681 & 4.34717063693265e-06 & 2.17358531846633e-06 \tabularnewline
76 & 0.999997808979997 & 4.38204000659127e-06 & 2.19102000329563e-06 \tabularnewline
77 & 0.999997864683396 & 4.27063320871907e-06 & 2.13531660435953e-06 \tabularnewline
78 & 0.99999761579925 & 4.76840150021233e-06 & 2.38420075010616e-06 \tabularnewline
79 & 0.999997356336271 & 5.28732745898612e-06 & 2.64366372949306e-06 \tabularnewline
80 & 0.999997482164823 & 5.03567035400809e-06 & 2.51783517700404e-06 \tabularnewline
81 & 0.99999872162634 & 2.5567473207227e-06 & 1.27837366036135e-06 \tabularnewline
82 & 0.999998482584347 & 3.03483130519545e-06 & 1.51741565259773e-06 \tabularnewline
83 & 0.999998278707757 & 3.44258448531194e-06 & 1.72129224265597e-06 \tabularnewline
84 & 0.999998167813293 & 3.66437341370928e-06 & 1.83218670685464e-06 \tabularnewline
85 & 0.999998466070457 & 3.06785908656244e-06 & 1.53392954328122e-06 \tabularnewline
86 & 0.99999923764281 & 1.52471438046897e-06 & 7.62357190234487e-07 \tabularnewline
87 & 0.999999039077507 & 1.92184498586678e-06 & 9.60922492933391e-07 \tabularnewline
88 & 0.999999180340664 & 1.63931867180816e-06 & 8.19659335904079e-07 \tabularnewline
89 & 0.999998983120843 & 2.03375831335372e-06 & 1.01687915667686e-06 \tabularnewline
90 & 0.999999038567794 & 1.92286441239839e-06 & 9.61432206199193e-07 \tabularnewline
91 & 0.999998794121623 & 2.41175675427554e-06 & 1.20587837713777e-06 \tabularnewline
92 & 0.999998262649448 & 3.47470110331928e-06 & 1.73735055165964e-06 \tabularnewline
93 & 0.999999077806016 & 1.84438796716047e-06 & 9.22193983580236e-07 \tabularnewline
94 & 0.999998579955368 & 2.84008926370289e-06 & 1.42004463185145e-06 \tabularnewline
95 & 0.999998369605389 & 3.26078922207897e-06 & 1.63039461103949e-06 \tabularnewline
96 & 0.999997333589846 & 5.33282030783704e-06 & 2.66641015391852e-06 \tabularnewline
97 & 0.999996484946222 & 7.03010755579839e-06 & 3.51505377789919e-06 \tabularnewline
98 & 0.999997419065374 & 5.1618692529237e-06 & 2.58093462646185e-06 \tabularnewline
99 & 0.999996015957066 & 7.96808586724656e-06 & 3.98404293362328e-06 \tabularnewline
100 & 0.999995979978373 & 8.04004325466307e-06 & 4.02002162733153e-06 \tabularnewline
101 & 0.999995393279458 & 9.21344108422912e-06 & 4.60672054211456e-06 \tabularnewline
102 & 0.999994421270845 & 1.11574583097803e-05 & 5.57872915489017e-06 \tabularnewline
103 & 0.999993346402455 & 1.33071950903121e-05 & 6.65359754515605e-06 \tabularnewline
104 & 0.999994956011677 & 1.00879766458294e-05 & 5.0439883229147e-06 \tabularnewline
105 & 0.999993185705756 & 1.36285884884679e-05 & 6.81429424423395e-06 \tabularnewline
106 & 0.999992465639359 & 1.50687212814154e-05 & 7.53436064070772e-06 \tabularnewline
107 & 0.999996869192085 & 6.26161582979672e-06 & 3.13080791489836e-06 \tabularnewline
108 & 0.999995813003845 & 8.37399231042033e-06 & 4.18699615521016e-06 \tabularnewline
109 & 0.999997628842065 & 4.74231587075463e-06 & 2.37115793537732e-06 \tabularnewline
110 & 0.999998818874144 & 2.36225171175409e-06 & 1.18112585587704e-06 \tabularnewline
111 & 0.999998380679942 & 3.23864011684925e-06 & 1.61932005842462e-06 \tabularnewline
112 & 0.999999832632969 & 3.34734061530898e-07 & 1.67367030765449e-07 \tabularnewline
113 & 0.999999930639854 & 1.38720291496356e-07 & 6.93601457481779e-08 \tabularnewline
114 & 0.999999909927674 & 1.80144652728098e-07 & 9.0072326364049e-08 \tabularnewline
115 & 0.999999861307982 & 2.77384035791774e-07 & 1.38692017895887e-07 \tabularnewline
116 & 0.999999972660555 & 5.46788893609538e-08 & 2.73394446804769e-08 \tabularnewline
117 & 0.999999978981053 & 4.20378930829001e-08 & 2.10189465414501e-08 \tabularnewline
118 & 0.999999972004947 & 5.59901062500643e-08 & 2.79950531250322e-08 \tabularnewline
119 & 0.99999998855837 & 2.28832604180192e-08 & 1.14416302090096e-08 \tabularnewline
120 & 0.999999981223323 & 3.75533538998777e-08 & 1.87766769499388e-08 \tabularnewline
121 & 0.999999971366918 & 5.72661638232703e-08 & 2.86330819116351e-08 \tabularnewline
122 & 0.999999969686895 & 6.06262095089076e-08 & 3.03131047544538e-08 \tabularnewline
123 & 0.999999955404964 & 8.91900719974386e-08 & 4.45950359987193e-08 \tabularnewline
124 & 0.999999932242931 & 1.35514138471429e-07 & 6.77570692357145e-08 \tabularnewline
125 & 0.999999901348885 & 1.97302229537398e-07 & 9.8651114768699e-08 \tabularnewline
126 & 0.999999843469625 & 3.13060749299664e-07 & 1.56530374649832e-07 \tabularnewline
127 & 0.999999833084646 & 3.33830707829235e-07 & 1.66915353914617e-07 \tabularnewline
128 & 0.99999963859424 & 7.22811520838863e-07 & 3.61405760419432e-07 \tabularnewline
129 & 0.999999680793222 & 6.3841355606473e-07 & 3.19206778032365e-07 \tabularnewline
130 & 0.999999915258403 & 1.69483194537074e-07 & 8.4741597268537e-08 \tabularnewline
131 & 0.999999918443714 & 1.63112571130569e-07 & 8.15562855652844e-08 \tabularnewline
132 & 0.999999836524747 & 3.26950505395307e-07 & 1.63475252697653e-07 \tabularnewline
133 & 0.999999881009623 & 2.37980753986128e-07 & 1.18990376993064e-07 \tabularnewline
134 & 0.99999977376472 & 4.52470559257319e-07 & 2.26235279628659e-07 \tabularnewline
135 & 0.999999992271216 & 1.54575685574378e-08 & 7.72878427871888e-09 \tabularnewline
136 & 0.999999975673519 & 4.86529625162205e-08 & 2.43264812581102e-08 \tabularnewline
137 & 0.999999921857776 & 1.56284448318227e-07 & 7.81422241591136e-08 \tabularnewline
138 & 0.999999777222758 & 4.45554482996767e-07 & 2.22777241498384e-07 \tabularnewline
139 & 0.99999999969292 & 6.14159976365612e-10 & 3.07079988182806e-10 \tabularnewline
140 & 0.999999999196398 & 1.60720400596911e-09 & 8.03602002984554e-10 \tabularnewline
141 & 0.999999997577757 & 4.84448612868632e-09 & 2.42224306434316e-09 \tabularnewline
142 & 0.999999988435614 & 2.31287710835392e-08 & 1.15643855417696e-08 \tabularnewline
143 & 0.999999988801659 & 2.23966825300232e-08 & 1.11983412650116e-08 \tabularnewline
144 & 0.999999989813809 & 2.03723826428196e-08 & 1.01861913214098e-08 \tabularnewline
145 & 0.999999997560497 & 4.87900695571395e-09 & 2.43950347785697e-09 \tabularnewline
146 & 0.999999984600333 & 3.07993345212315e-08 & 1.53996672606158e-08 \tabularnewline
147 & 0.999999900807787 & 1.98384425041843e-07 & 9.91922125209214e-08 \tabularnewline
148 & 0.999999733824017 & 5.32351967027103e-07 & 2.66175983513552e-07 \tabularnewline
149 & 0.999998799058946 & 2.40188210861774e-06 & 1.20094105430887e-06 \tabularnewline
150 & 0.999999667892756 & 6.64214488105477e-07 & 3.32107244052738e-07 \tabularnewline
151 & 0.99999980212085 & 3.95758300086159e-07 & 1.97879150043079e-07 \tabularnewline
152 & 0.999999999996195 & 7.61082842411565e-12 & 3.80541421205782e-12 \tabularnewline
153 & 0.999999999589245 & 8.21509824288003e-10 & 4.10754912144001e-10 \tabularnewline
154 & 0.999999959325323 & 8.13493530425685e-08 & 4.06746765212843e-08 \tabularnewline
155 & 0.999996365692109 & 7.26861578249555e-06 & 3.63430789124777e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]9[/C][C]0.282255603840024[/C][C]0.564511207680048[/C][C]0.717744396159976[/C][/ROW]
[ROW][C]10[/C][C]0.224509051445219[/C][C]0.449018102890438[/C][C]0.775490948554781[/C][/ROW]
[ROW][C]11[/C][C]0.150056366559225[/C][C]0.300112733118449[/C][C]0.849943633440775[/C][/ROW]
[ROW][C]12[/C][C]0.177783174222565[/C][C]0.35556634844513[/C][C]0.822216825777435[/C][/ROW]
[ROW][C]13[/C][C]0.211300184974355[/C][C]0.422600369948709[/C][C]0.788699815025645[/C][/ROW]
[ROW][C]14[/C][C]0.212201096006075[/C][C]0.42440219201215[/C][C]0.787798903993925[/C][/ROW]
[ROW][C]15[/C][C]0.167494486116067[/C][C]0.334988972232134[/C][C]0.832505513883933[/C][/ROW]
[ROW][C]16[/C][C]0.151921449068502[/C][C]0.303842898137003[/C][C]0.848078550931498[/C][/ROW]
[ROW][C]17[/C][C]0.196876615670455[/C][C]0.39375323134091[/C][C]0.803123384329545[/C][/ROW]
[ROW][C]18[/C][C]0.301254674998953[/C][C]0.602509349997907[/C][C]0.698745325001047[/C][/ROW]
[ROW][C]19[/C][C]0.465017409008405[/C][C]0.93003481801681[/C][C]0.534982590991595[/C][/ROW]
[ROW][C]20[/C][C]0.477056219604966[/C][C]0.954112439209931[/C][C]0.522943780395034[/C][/ROW]
[ROW][C]21[/C][C]0.525579604217589[/C][C]0.948840791564823[/C][C]0.474420395782411[/C][/ROW]
[ROW][C]22[/C][C]0.50841576424418[/C][C]0.983168471511639[/C][C]0.49158423575582[/C][/ROW]
[ROW][C]23[/C][C]0.51683800704564[/C][C]0.966323985908719[/C][C]0.48316199295436[/C][/ROW]
[ROW][C]24[/C][C]0.623236893043264[/C][C]0.753526213913471[/C][C]0.376763106956736[/C][/ROW]
[ROW][C]25[/C][C]0.681381666384731[/C][C]0.637236667230538[/C][C]0.318618333615269[/C][/ROW]
[ROW][C]26[/C][C]0.77333450038854[/C][C]0.45333099922292[/C][C]0.22666549961146[/C][/ROW]
[ROW][C]27[/C][C]0.819138037654505[/C][C]0.36172392469099[/C][C]0.180861962345495[/C][/ROW]
[ROW][C]28[/C][C]0.840428724396512[/C][C]0.319142551206975[/C][C]0.159571275603488[/C][/ROW]
[ROW][C]29[/C][C]0.893743173552406[/C][C]0.212513652895188[/C][C]0.106256826447594[/C][/ROW]
[ROW][C]30[/C][C]0.923884510752473[/C][C]0.152230978495054[/C][C]0.076115489247527[/C][/ROW]
[ROW][C]31[/C][C]0.930027806422078[/C][C]0.139944387155844[/C][C]0.0699721935779218[/C][/ROW]
[ROW][C]32[/C][C]0.925688609296384[/C][C]0.148622781407232[/C][C]0.0743113907036161[/C][/ROW]
[ROW][C]33[/C][C]0.922717344709609[/C][C]0.154565310580782[/C][C]0.0772826552903908[/C][/ROW]
[ROW][C]34[/C][C]0.928417850055415[/C][C]0.14316429988917[/C][C]0.0715821499445848[/C][/ROW]
[ROW][C]35[/C][C]0.935681436559188[/C][C]0.128637126881623[/C][C]0.0643185634408117[/C][/ROW]
[ROW][C]36[/C][C]0.953377693212857[/C][C]0.093244613574285[/C][C]0.0466223067871425[/C][/ROW]
[ROW][C]37[/C][C]0.951069090601346[/C][C]0.0978618187973087[/C][C]0.0489309093986544[/C][/ROW]
[ROW][C]38[/C][C]0.949607070771383[/C][C]0.100785858457234[/C][C]0.0503929292286169[/C][/ROW]
[ROW][C]39[/C][C]0.950106641431964[/C][C]0.0997867171360715[/C][C]0.0498933585680357[/C][/ROW]
[ROW][C]40[/C][C]0.963458867052233[/C][C]0.0730822658955343[/C][C]0.0365411329477671[/C][/ROW]
[ROW][C]41[/C][C]0.968836451968629[/C][C]0.0623270960627414[/C][C]0.0311635480313707[/C][/ROW]
[ROW][C]42[/C][C]0.984421194836492[/C][C]0.0311576103270168[/C][C]0.0155788051635084[/C][/ROW]
[ROW][C]43[/C][C]0.985501820872622[/C][C]0.0289963582547567[/C][C]0.0144981791273783[/C][/ROW]
[ROW][C]44[/C][C]0.987603771031408[/C][C]0.0247924579371849[/C][C]0.0123962289685925[/C][/ROW]
[ROW][C]45[/C][C]0.991083947932168[/C][C]0.0178321041356646[/C][C]0.00891605206783231[/C][/ROW]
[ROW][C]46[/C][C]0.996988297358655[/C][C]0.00602340528269023[/C][C]0.00301170264134511[/C][/ROW]
[ROW][C]47[/C][C]0.998844219182544[/C][C]0.00231156163491282[/C][C]0.00115578081745641[/C][/ROW]
[ROW][C]48[/C][C]0.999172930339097[/C][C]0.00165413932180495[/C][C]0.000827069660902476[/C][/ROW]
[ROW][C]49[/C][C]0.999485106133414[/C][C]0.00102978773317235[/C][C]0.000514893866586173[/C][/ROW]
[ROW][C]50[/C][C]0.999670991627161[/C][C]0.000658016745678349[/C][C]0.000329008372839175[/C][/ROW]
[ROW][C]51[/C][C]0.999829404038297[/C][C]0.000341191923406285[/C][C]0.000170595961703143[/C][/ROW]
[ROW][C]52[/C][C]0.999858302370805[/C][C]0.000283395258390819[/C][C]0.00014169762919541[/C][/ROW]
[ROW][C]53[/C][C]0.999854026814155[/C][C]0.000291946371689739[/C][C]0.000145973185844869[/C][/ROW]
[ROW][C]54[/C][C]0.999875414763019[/C][C]0.000249170473962669[/C][C]0.000124585236981334[/C][/ROW]
[ROW][C]55[/C][C]0.999880610685363[/C][C]0.000238778629273087[/C][C]0.000119389314636544[/C][/ROW]
[ROW][C]56[/C][C]0.999874665861278[/C][C]0.000250668277443649[/C][C]0.000125334138721825[/C][/ROW]
[ROW][C]57[/C][C]0.999881510856615[/C][C]0.000236978286768987[/C][C]0.000118489143384494[/C][/ROW]
[ROW][C]58[/C][C]0.999883400863368[/C][C]0.000233198273263198[/C][C]0.000116599136631599[/C][/ROW]
[ROW][C]59[/C][C]0.999885507247788[/C][C]0.000228985504424562[/C][C]0.000114492752212281[/C][/ROW]
[ROW][C]60[/C][C]0.999907994915344[/C][C]0.000184010169311939[/C][C]9.20050846559695e-05[/C][/ROW]
[ROW][C]61[/C][C]0.999935658812391[/C][C]0.000128682375217804[/C][C]6.43411876089018e-05[/C][/ROW]
[ROW][C]62[/C][C]0.999971388526544[/C][C]5.72229469119681e-05[/C][C]2.8611473455984e-05[/C][/ROW]
[ROW][C]63[/C][C]0.999980717951231[/C][C]3.8564097537531e-05[/C][C]1.92820487687655e-05[/C][/ROW]
[ROW][C]64[/C][C]0.999980618541202[/C][C]3.87629175960712e-05[/C][C]1.93814587980356e-05[/C][/ROW]
[ROW][C]65[/C][C]0.99997988692559[/C][C]4.02261488190901e-05[/C][C]2.0113074409545e-05[/C][/ROW]
[ROW][C]66[/C][C]0.999982848006812[/C][C]3.43039863766195e-05[/C][C]1.71519931883098e-05[/C][/ROW]
[ROW][C]67[/C][C]0.999983756531661[/C][C]3.24869366782951e-05[/C][C]1.62434683391475e-05[/C][/ROW]
[ROW][C]68[/C][C]0.999983932352242[/C][C]3.21352955158364e-05[/C][C]1.60676477579182e-05[/C][/ROW]
[ROW][C]69[/C][C]0.999988361440217[/C][C]2.32771195652501e-05[/C][C]1.1638559782625e-05[/C][/ROW]
[ROW][C]70[/C][C]0.99999056848637[/C][C]1.88630272601287e-05[/C][C]9.43151363006437e-06[/C][/ROW]
[ROW][C]71[/C][C]0.999991543029613[/C][C]1.69139407739564e-05[/C][C]8.45697038697819e-06[/C][/ROW]
[ROW][C]72[/C][C]0.999994713340402[/C][C]1.05733191949899e-05[/C][C]5.28665959749495e-06[/C][/ROW]
[ROW][C]73[/C][C]0.999997104209193[/C][C]5.79158161319775e-06[/C][C]2.89579080659888e-06[/C][/ROW]
[ROW][C]74[/C][C]0.999996967379766[/C][C]6.06524046787886e-06[/C][C]3.03262023393943e-06[/C][/ROW]
[ROW][C]75[/C][C]0.999997826414681[/C][C]4.34717063693265e-06[/C][C]2.17358531846633e-06[/C][/ROW]
[ROW][C]76[/C][C]0.999997808979997[/C][C]4.38204000659127e-06[/C][C]2.19102000329563e-06[/C][/ROW]
[ROW][C]77[/C][C]0.999997864683396[/C][C]4.27063320871907e-06[/C][C]2.13531660435953e-06[/C][/ROW]
[ROW][C]78[/C][C]0.99999761579925[/C][C]4.76840150021233e-06[/C][C]2.38420075010616e-06[/C][/ROW]
[ROW][C]79[/C][C]0.999997356336271[/C][C]5.28732745898612e-06[/C][C]2.64366372949306e-06[/C][/ROW]
[ROW][C]80[/C][C]0.999997482164823[/C][C]5.03567035400809e-06[/C][C]2.51783517700404e-06[/C][/ROW]
[ROW][C]81[/C][C]0.99999872162634[/C][C]2.5567473207227e-06[/C][C]1.27837366036135e-06[/C][/ROW]
[ROW][C]82[/C][C]0.999998482584347[/C][C]3.03483130519545e-06[/C][C]1.51741565259773e-06[/C][/ROW]
[ROW][C]83[/C][C]0.999998278707757[/C][C]3.44258448531194e-06[/C][C]1.72129224265597e-06[/C][/ROW]
[ROW][C]84[/C][C]0.999998167813293[/C][C]3.66437341370928e-06[/C][C]1.83218670685464e-06[/C][/ROW]
[ROW][C]85[/C][C]0.999998466070457[/C][C]3.06785908656244e-06[/C][C]1.53392954328122e-06[/C][/ROW]
[ROW][C]86[/C][C]0.99999923764281[/C][C]1.52471438046897e-06[/C][C]7.62357190234487e-07[/C][/ROW]
[ROW][C]87[/C][C]0.999999039077507[/C][C]1.92184498586678e-06[/C][C]9.60922492933391e-07[/C][/ROW]
[ROW][C]88[/C][C]0.999999180340664[/C][C]1.63931867180816e-06[/C][C]8.19659335904079e-07[/C][/ROW]
[ROW][C]89[/C][C]0.999998983120843[/C][C]2.03375831335372e-06[/C][C]1.01687915667686e-06[/C][/ROW]
[ROW][C]90[/C][C]0.999999038567794[/C][C]1.92286441239839e-06[/C][C]9.61432206199193e-07[/C][/ROW]
[ROW][C]91[/C][C]0.999998794121623[/C][C]2.41175675427554e-06[/C][C]1.20587837713777e-06[/C][/ROW]
[ROW][C]92[/C][C]0.999998262649448[/C][C]3.47470110331928e-06[/C][C]1.73735055165964e-06[/C][/ROW]
[ROW][C]93[/C][C]0.999999077806016[/C][C]1.84438796716047e-06[/C][C]9.22193983580236e-07[/C][/ROW]
[ROW][C]94[/C][C]0.999998579955368[/C][C]2.84008926370289e-06[/C][C]1.42004463185145e-06[/C][/ROW]
[ROW][C]95[/C][C]0.999998369605389[/C][C]3.26078922207897e-06[/C][C]1.63039461103949e-06[/C][/ROW]
[ROW][C]96[/C][C]0.999997333589846[/C][C]5.33282030783704e-06[/C][C]2.66641015391852e-06[/C][/ROW]
[ROW][C]97[/C][C]0.999996484946222[/C][C]7.03010755579839e-06[/C][C]3.51505377789919e-06[/C][/ROW]
[ROW][C]98[/C][C]0.999997419065374[/C][C]5.1618692529237e-06[/C][C]2.58093462646185e-06[/C][/ROW]
[ROW][C]99[/C][C]0.999996015957066[/C][C]7.96808586724656e-06[/C][C]3.98404293362328e-06[/C][/ROW]
[ROW][C]100[/C][C]0.999995979978373[/C][C]8.04004325466307e-06[/C][C]4.02002162733153e-06[/C][/ROW]
[ROW][C]101[/C][C]0.999995393279458[/C][C]9.21344108422912e-06[/C][C]4.60672054211456e-06[/C][/ROW]
[ROW][C]102[/C][C]0.999994421270845[/C][C]1.11574583097803e-05[/C][C]5.57872915489017e-06[/C][/ROW]
[ROW][C]103[/C][C]0.999993346402455[/C][C]1.33071950903121e-05[/C][C]6.65359754515605e-06[/C][/ROW]
[ROW][C]104[/C][C]0.999994956011677[/C][C]1.00879766458294e-05[/C][C]5.0439883229147e-06[/C][/ROW]
[ROW][C]105[/C][C]0.999993185705756[/C][C]1.36285884884679e-05[/C][C]6.81429424423395e-06[/C][/ROW]
[ROW][C]106[/C][C]0.999992465639359[/C][C]1.50687212814154e-05[/C][C]7.53436064070772e-06[/C][/ROW]
[ROW][C]107[/C][C]0.999996869192085[/C][C]6.26161582979672e-06[/C][C]3.13080791489836e-06[/C][/ROW]
[ROW][C]108[/C][C]0.999995813003845[/C][C]8.37399231042033e-06[/C][C]4.18699615521016e-06[/C][/ROW]
[ROW][C]109[/C][C]0.999997628842065[/C][C]4.74231587075463e-06[/C][C]2.37115793537732e-06[/C][/ROW]
[ROW][C]110[/C][C]0.999998818874144[/C][C]2.36225171175409e-06[/C][C]1.18112585587704e-06[/C][/ROW]
[ROW][C]111[/C][C]0.999998380679942[/C][C]3.23864011684925e-06[/C][C]1.61932005842462e-06[/C][/ROW]
[ROW][C]112[/C][C]0.999999832632969[/C][C]3.34734061530898e-07[/C][C]1.67367030765449e-07[/C][/ROW]
[ROW][C]113[/C][C]0.999999930639854[/C][C]1.38720291496356e-07[/C][C]6.93601457481779e-08[/C][/ROW]
[ROW][C]114[/C][C]0.999999909927674[/C][C]1.80144652728098e-07[/C][C]9.0072326364049e-08[/C][/ROW]
[ROW][C]115[/C][C]0.999999861307982[/C][C]2.77384035791774e-07[/C][C]1.38692017895887e-07[/C][/ROW]
[ROW][C]116[/C][C]0.999999972660555[/C][C]5.46788893609538e-08[/C][C]2.73394446804769e-08[/C][/ROW]
[ROW][C]117[/C][C]0.999999978981053[/C][C]4.20378930829001e-08[/C][C]2.10189465414501e-08[/C][/ROW]
[ROW][C]118[/C][C]0.999999972004947[/C][C]5.59901062500643e-08[/C][C]2.79950531250322e-08[/C][/ROW]
[ROW][C]119[/C][C]0.99999998855837[/C][C]2.28832604180192e-08[/C][C]1.14416302090096e-08[/C][/ROW]
[ROW][C]120[/C][C]0.999999981223323[/C][C]3.75533538998777e-08[/C][C]1.87766769499388e-08[/C][/ROW]
[ROW][C]121[/C][C]0.999999971366918[/C][C]5.72661638232703e-08[/C][C]2.86330819116351e-08[/C][/ROW]
[ROW][C]122[/C][C]0.999999969686895[/C][C]6.06262095089076e-08[/C][C]3.03131047544538e-08[/C][/ROW]
[ROW][C]123[/C][C]0.999999955404964[/C][C]8.91900719974386e-08[/C][C]4.45950359987193e-08[/C][/ROW]
[ROW][C]124[/C][C]0.999999932242931[/C][C]1.35514138471429e-07[/C][C]6.77570692357145e-08[/C][/ROW]
[ROW][C]125[/C][C]0.999999901348885[/C][C]1.97302229537398e-07[/C][C]9.8651114768699e-08[/C][/ROW]
[ROW][C]126[/C][C]0.999999843469625[/C][C]3.13060749299664e-07[/C][C]1.56530374649832e-07[/C][/ROW]
[ROW][C]127[/C][C]0.999999833084646[/C][C]3.33830707829235e-07[/C][C]1.66915353914617e-07[/C][/ROW]
[ROW][C]128[/C][C]0.99999963859424[/C][C]7.22811520838863e-07[/C][C]3.61405760419432e-07[/C][/ROW]
[ROW][C]129[/C][C]0.999999680793222[/C][C]6.3841355606473e-07[/C][C]3.19206778032365e-07[/C][/ROW]
[ROW][C]130[/C][C]0.999999915258403[/C][C]1.69483194537074e-07[/C][C]8.4741597268537e-08[/C][/ROW]
[ROW][C]131[/C][C]0.999999918443714[/C][C]1.63112571130569e-07[/C][C]8.15562855652844e-08[/C][/ROW]
[ROW][C]132[/C][C]0.999999836524747[/C][C]3.26950505395307e-07[/C][C]1.63475252697653e-07[/C][/ROW]
[ROW][C]133[/C][C]0.999999881009623[/C][C]2.37980753986128e-07[/C][C]1.18990376993064e-07[/C][/ROW]
[ROW][C]134[/C][C]0.99999977376472[/C][C]4.52470559257319e-07[/C][C]2.26235279628659e-07[/C][/ROW]
[ROW][C]135[/C][C]0.999999992271216[/C][C]1.54575685574378e-08[/C][C]7.72878427871888e-09[/C][/ROW]
[ROW][C]136[/C][C]0.999999975673519[/C][C]4.86529625162205e-08[/C][C]2.43264812581102e-08[/C][/ROW]
[ROW][C]137[/C][C]0.999999921857776[/C][C]1.56284448318227e-07[/C][C]7.81422241591136e-08[/C][/ROW]
[ROW][C]138[/C][C]0.999999777222758[/C][C]4.45554482996767e-07[/C][C]2.22777241498384e-07[/C][/ROW]
[ROW][C]139[/C][C]0.99999999969292[/C][C]6.14159976365612e-10[/C][C]3.07079988182806e-10[/C][/ROW]
[ROW][C]140[/C][C]0.999999999196398[/C][C]1.60720400596911e-09[/C][C]8.03602002984554e-10[/C][/ROW]
[ROW][C]141[/C][C]0.999999997577757[/C][C]4.84448612868632e-09[/C][C]2.42224306434316e-09[/C][/ROW]
[ROW][C]142[/C][C]0.999999988435614[/C][C]2.31287710835392e-08[/C][C]1.15643855417696e-08[/C][/ROW]
[ROW][C]143[/C][C]0.999999988801659[/C][C]2.23966825300232e-08[/C][C]1.11983412650116e-08[/C][/ROW]
[ROW][C]144[/C][C]0.999999989813809[/C][C]2.03723826428196e-08[/C][C]1.01861913214098e-08[/C][/ROW]
[ROW][C]145[/C][C]0.999999997560497[/C][C]4.87900695571395e-09[/C][C]2.43950347785697e-09[/C][/ROW]
[ROW][C]146[/C][C]0.999999984600333[/C][C]3.07993345212315e-08[/C][C]1.53996672606158e-08[/C][/ROW]
[ROW][C]147[/C][C]0.999999900807787[/C][C]1.98384425041843e-07[/C][C]9.91922125209214e-08[/C][/ROW]
[ROW][C]148[/C][C]0.999999733824017[/C][C]5.32351967027103e-07[/C][C]2.66175983513552e-07[/C][/ROW]
[ROW][C]149[/C][C]0.999998799058946[/C][C]2.40188210861774e-06[/C][C]1.20094105430887e-06[/C][/ROW]
[ROW][C]150[/C][C]0.999999667892756[/C][C]6.64214488105477e-07[/C][C]3.32107244052738e-07[/C][/ROW]
[ROW][C]151[/C][C]0.99999980212085[/C][C]3.95758300086159e-07[/C][C]1.97879150043079e-07[/C][/ROW]
[ROW][C]152[/C][C]0.999999999996195[/C][C]7.61082842411565e-12[/C][C]3.80541421205782e-12[/C][/ROW]
[ROW][C]153[/C][C]0.999999999589245[/C][C]8.21509824288003e-10[/C][C]4.10754912144001e-10[/C][/ROW]
[ROW][C]154[/C][C]0.999999959325323[/C][C]8.13493530425685e-08[/C][C]4.06746765212843e-08[/C][/ROW]
[ROW][C]155[/C][C]0.999996365692109[/C][C]7.26861578249555e-06[/C][C]3.63430789124777e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
90.2822556038400240.5645112076800480.717744396159976
100.2245090514452190.4490181028904380.775490948554781
110.1500563665592250.3001127331184490.849943633440775
120.1777831742225650.355566348445130.822216825777435
130.2113001849743550.4226003699487090.788699815025645
140.2122010960060750.424402192012150.787798903993925
150.1674944861160670.3349889722321340.832505513883933
160.1519214490685020.3038428981370030.848078550931498
170.1968766156704550.393753231340910.803123384329545
180.3012546749989530.6025093499979070.698745325001047
190.4650174090084050.930034818016810.534982590991595
200.4770562196049660.9541124392099310.522943780395034
210.5255796042175890.9488407915648230.474420395782411
220.508415764244180.9831684715116390.49158423575582
230.516838007045640.9663239859087190.48316199295436
240.6232368930432640.7535262139134710.376763106956736
250.6813816663847310.6372366672305380.318618333615269
260.773334500388540.453330999222920.22666549961146
270.8191380376545050.361723924690990.180861962345495
280.8404287243965120.3191425512069750.159571275603488
290.8937431735524060.2125136528951880.106256826447594
300.9238845107524730.1522309784950540.076115489247527
310.9300278064220780.1399443871558440.0699721935779218
320.9256886092963840.1486227814072320.0743113907036161
330.9227173447096090.1545653105807820.0772826552903908
340.9284178500554150.143164299889170.0715821499445848
350.9356814365591880.1286371268816230.0643185634408117
360.9533776932128570.0932446135742850.0466223067871425
370.9510690906013460.09786181879730870.0489309093986544
380.9496070707713830.1007858584572340.0503929292286169
390.9501066414319640.09978671713607150.0498933585680357
400.9634588670522330.07308226589553430.0365411329477671
410.9688364519686290.06232709606274140.0311635480313707
420.9844211948364920.03115761032701680.0155788051635084
430.9855018208726220.02899635825475670.0144981791273783
440.9876037710314080.02479245793718490.0123962289685925
450.9910839479321680.01783210413566460.00891605206783231
460.9969882973586550.006023405282690230.00301170264134511
470.9988442191825440.002311561634912820.00115578081745641
480.9991729303390970.001654139321804950.000827069660902476
490.9994851061334140.001029787733172350.000514893866586173
500.9996709916271610.0006580167456783490.000329008372839175
510.9998294040382970.0003411919234062850.000170595961703143
520.9998583023708050.0002833952583908190.00014169762919541
530.9998540268141550.0002919463716897390.000145973185844869
540.9998754147630190.0002491704739626690.000124585236981334
550.9998806106853630.0002387786292730870.000119389314636544
560.9998746658612780.0002506682774436490.000125334138721825
570.9998815108566150.0002369782867689870.000118489143384494
580.9998834008633680.0002331982732631980.000116599136631599
590.9998855072477880.0002289855044245620.000114492752212281
600.9999079949153440.0001840101693119399.20050846559695e-05
610.9999356588123910.0001286823752178046.43411876089018e-05
620.9999713885265445.72229469119681e-052.8611473455984e-05
630.9999807179512313.8564097537531e-051.92820487687655e-05
640.9999806185412023.87629175960712e-051.93814587980356e-05
650.999979886925594.02261488190901e-052.0113074409545e-05
660.9999828480068123.43039863766195e-051.71519931883098e-05
670.9999837565316613.24869366782951e-051.62434683391475e-05
680.9999839323522423.21352955158364e-051.60676477579182e-05
690.9999883614402172.32771195652501e-051.1638559782625e-05
700.999990568486371.88630272601287e-059.43151363006437e-06
710.9999915430296131.69139407739564e-058.45697038697819e-06
720.9999947133404021.05733191949899e-055.28665959749495e-06
730.9999971042091935.79158161319775e-062.89579080659888e-06
740.9999969673797666.06524046787886e-063.03262023393943e-06
750.9999978264146814.34717063693265e-062.17358531846633e-06
760.9999978089799974.38204000659127e-062.19102000329563e-06
770.9999978646833964.27063320871907e-062.13531660435953e-06
780.999997615799254.76840150021233e-062.38420075010616e-06
790.9999973563362715.28732745898612e-062.64366372949306e-06
800.9999974821648235.03567035400809e-062.51783517700404e-06
810.999998721626342.5567473207227e-061.27837366036135e-06
820.9999984825843473.03483130519545e-061.51741565259773e-06
830.9999982787077573.44258448531194e-061.72129224265597e-06
840.9999981678132933.66437341370928e-061.83218670685464e-06
850.9999984660704573.06785908656244e-061.53392954328122e-06
860.999999237642811.52471438046897e-067.62357190234487e-07
870.9999990390775071.92184498586678e-069.60922492933391e-07
880.9999991803406641.63931867180816e-068.19659335904079e-07
890.9999989831208432.03375831335372e-061.01687915667686e-06
900.9999990385677941.92286441239839e-069.61432206199193e-07
910.9999987941216232.41175675427554e-061.20587837713777e-06
920.9999982626494483.47470110331928e-061.73735055165964e-06
930.9999990778060161.84438796716047e-069.22193983580236e-07
940.9999985799553682.84008926370289e-061.42004463185145e-06
950.9999983696053893.26078922207897e-061.63039461103949e-06
960.9999973335898465.33282030783704e-062.66641015391852e-06
970.9999964849462227.03010755579839e-063.51505377789919e-06
980.9999974190653745.1618692529237e-062.58093462646185e-06
990.9999960159570667.96808586724656e-063.98404293362328e-06
1000.9999959799783738.04004325466307e-064.02002162733153e-06
1010.9999953932794589.21344108422912e-064.60672054211456e-06
1020.9999944212708451.11574583097803e-055.57872915489017e-06
1030.9999933464024551.33071950903121e-056.65359754515605e-06
1040.9999949560116771.00879766458294e-055.0439883229147e-06
1050.9999931857057561.36285884884679e-056.81429424423395e-06
1060.9999924656393591.50687212814154e-057.53436064070772e-06
1070.9999968691920856.26161582979672e-063.13080791489836e-06
1080.9999958130038458.37399231042033e-064.18699615521016e-06
1090.9999976288420654.74231587075463e-062.37115793537732e-06
1100.9999988188741442.36225171175409e-061.18112585587704e-06
1110.9999983806799423.23864011684925e-061.61932005842462e-06
1120.9999998326329693.34734061530898e-071.67367030765449e-07
1130.9999999306398541.38720291496356e-076.93601457481779e-08
1140.9999999099276741.80144652728098e-079.0072326364049e-08
1150.9999998613079822.77384035791774e-071.38692017895887e-07
1160.9999999726605555.46788893609538e-082.73394446804769e-08
1170.9999999789810534.20378930829001e-082.10189465414501e-08
1180.9999999720049475.59901062500643e-082.79950531250322e-08
1190.999999988558372.28832604180192e-081.14416302090096e-08
1200.9999999812233233.75533538998777e-081.87766769499388e-08
1210.9999999713669185.72661638232703e-082.86330819116351e-08
1220.9999999696868956.06262095089076e-083.03131047544538e-08
1230.9999999554049648.91900719974386e-084.45950359987193e-08
1240.9999999322429311.35514138471429e-076.77570692357145e-08
1250.9999999013488851.97302229537398e-079.8651114768699e-08
1260.9999998434696253.13060749299664e-071.56530374649832e-07
1270.9999998330846463.33830707829235e-071.66915353914617e-07
1280.999999638594247.22811520838863e-073.61405760419432e-07
1290.9999996807932226.3841355606473e-073.19206778032365e-07
1300.9999999152584031.69483194537074e-078.4741597268537e-08
1310.9999999184437141.63112571130569e-078.15562855652844e-08
1320.9999998365247473.26950505395307e-071.63475252697653e-07
1330.9999998810096232.37980753986128e-071.18990376993064e-07
1340.999999773764724.52470559257319e-072.26235279628659e-07
1350.9999999922712161.54575685574378e-087.72878427871888e-09
1360.9999999756735194.86529625162205e-082.43264812581102e-08
1370.9999999218577761.56284448318227e-077.81422241591136e-08
1380.9999997772227584.45554482996767e-072.22777241498384e-07
1390.999999999692926.14159976365612e-103.07079988182806e-10
1400.9999999991963981.60720400596911e-098.03602002984554e-10
1410.9999999975777574.84448612868632e-092.42224306434316e-09
1420.9999999884356142.31287710835392e-081.15643855417696e-08
1430.9999999888016592.23966825300232e-081.11983412650116e-08
1440.9999999898138092.03723826428196e-081.01861913214098e-08
1450.9999999975604974.87900695571395e-092.43950347785697e-09
1460.9999999846003333.07993345212315e-081.53996672606158e-08
1470.9999999008077871.98384425041843e-079.91922125209214e-08
1480.9999997338240175.32351967027103e-072.66175983513552e-07
1490.9999987990589462.40188210861774e-061.20094105430887e-06
1500.9999996678927566.64214488105477e-073.32107244052738e-07
1510.999999802120853.95758300086159e-071.97879150043079e-07
1520.9999999999961957.61082842411565e-123.80541421205782e-12
1530.9999999995892458.21509824288003e-104.10754912144001e-10
1540.9999999593253238.13493530425685e-084.06746765212843e-08
1550.9999963656921097.26861578249555e-063.63430789124777e-06







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1100.748299319727891NOK
5% type I error level1140.775510204081633NOK
10% type I error level1190.80952380952381NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 110 & 0.748299319727891 & NOK \tabularnewline
5% type I error level & 114 & 0.775510204081633 & NOK \tabularnewline
10% type I error level & 119 & 0.80952380952381 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=158339&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]110[/C][C]0.748299319727891[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]114[/C][C]0.775510204081633[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]119[/C][C]0.80952380952381[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=158339&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=158339&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1100.748299319727891NOK
5% type I error level1140.775510204081633NOK
10% type I error level1190.80952380952381NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}