Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_linear_regression.wasp
Title produced by softwareLinear Regression Graphical Model Validation
Date of computationThu, 17 Nov 2011 11:41:28 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/17/t1321548250qmhrcfg9h9jsm9d.htm/, Retrieved Fri, 01 Nov 2024 00:01:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=145103, Retrieved Fri, 01 Nov 2024 00:01:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
- RMPD  [Blocked Bootstrap Plot - Central Tendency] [Colombia Coffee] [2008-01-07 10:26:26] [74be16979710d4c4e7c6647856088456]
- RMPD      [Linear Regression Graphical Model Validation] [Regression Model 1] [2011-11-17 16:41:28] [e5e604418bec6ffe5109fb01f8a59ccb] [Current]
Feedback Forum

Post a new message
Dataseries X:
61
81
87
87
136
147
168
185
137
125
64
45
35
-4
88
85
95
128
186
182
151
106
60
44
30
54
72
88
153
168
181
180
149
84
85
42
54
30
96
110
141
159
164
155
135
93
28
56
56
22
76
83
121
151
208
179
139
99
103
57
44
70
58
91
126
146
199
194
145
131
74
-3
7
10
34
94
105
151
162
175
128
115
62
11
-7
64
80
77
127
158
173
206
147
103
73
52
52
68
77
94
147
160
166
167
155
104
44
53
56
36
76
99
142
150
190
176
175
112
73
52
48
61
68
97
146
160
155
175
163
117
82
55
32
48
53
82
139
150
184
185
138
147
77
32
48
72
76
94
133
164
174
187
149
102
86
35
31
28
75
102
133
178
190
190
147
83
83
46
40
50
61
102
117
158
170
190
155
117
68
40
56
28
66
103
122
166
176
164
160
139
75
44
22
32
42
86
140
163
222
166
183
140
98
69
75
63
81
126
139
171
170
173
144
105
75
41
68
53
61
87
155
159
180
175
138
105
73
26
12
35
64
115
138
138
182
191
155
113
98
29
Dataseries Y:
80
111
122
131
192
188
216
238
173
160
93
67
60
32
126
131
134
162
230
232
200
143
85
66
54
81
100
126
204
218
227
220
220
120
110
67
81
52
106
156
187
204
204
196
204
124
53
77
77
50
105
125
165
194
263
225
263
140
127
86
71
95
95
133
178
160
250
251
250
173
103
21
29
39
71
148
144
199
206
224
206
152
88
35
23
92
117
120
173
202
217
256
217
143
95
77
76
100
108
132
195
198
204
212
204
129
73
77
80
64
109
138
185
198
237
223
237
146
102
77
70
86
98
141
195
205
191
226
191
147
100
74
56
77
80
120
186
196
229
229
229
176
104
61
72
99
113
140
174
209
205
229
215
136
113
57
55
66
125
149
176
230
238
245
238
124
111
72
63
78
100
149
166
201
214
231
214
151
97
68
81
55
99
146
170
218
218
207
218
178
105
67
47
55
73
124
185
213
278
205
278
171
125
92
96
92
118
185
183
215
207
214
207
142
102
66
87
90
90
133
205
201
220
210
220
136
95
52
40
60
100
169
184
202
226
239
226
149
121
50




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145103&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145103&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145103&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'George Udny Yule' @ yule.wessa.net







Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term20.29329652967541.7592911138797911.53492811370050
slope1.175118838688470.014803802026472279.37952943352770

\begin{tabular}{lllllllll}
\hline
Simple Linear Regression \tabularnewline
Statistics & Estimate & S.D. & T-STAT (H0: coeff=0) & P-value (two-sided) \tabularnewline
constant term & 20.2932965296754 & 1.75929111387979 & 11.5349281137005 & 0 \tabularnewline
slope & 1.17511883868847 & 0.0148038020264722 & 79.3795294335277 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145103&T=1

[TABLE]
[ROW][C]Simple Linear Regression[/C][/ROW]
[ROW][C]Statistics[/C][C]Estimate[/C][C]S.D.[/C][C]T-STAT (H0: coeff=0)[/C][C]P-value (two-sided)[/C][/ROW]
[ROW][C]constant term[/C][C]20.2932965296754[/C][C]1.75929111387979[/C][C]11.5349281137005[/C][C]0[/C][/ROW]
[ROW][C]slope[/C][C]1.17511883868847[/C][C]0.0148038020264722[/C][C]79.3795294335277[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145103&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145103&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term20.29329652967541.7592911138797911.53492811370050
slope1.175118838688470.014803802026472279.37952943352770



Parameters (Session):
par1 = 0 ;
Parameters (R input):
par1 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
library(lattice)
z <- as.data.frame(cbind(x,y))
m <- lm(y~x)
summary(m)
bitmap(file='test1.png')
plot(z,main='Scatterplot, lowess, and regression line')
lines(lowess(z),col='red')
abline(m)
grid()
dev.off()
bitmap(file='test2.png')
m2 <- lm(m$fitted.values ~ x)
summary(m2)
z2 <- as.data.frame(cbind(x,m$fitted.values))
names(z2) <- list('x','Fitted')
plot(z2,main='Scatterplot, lowess, and regression line')
lines(lowess(z2),col='red')
abline(m2)
grid()
dev.off()
bitmap(file='test3.png')
m3 <- lm(m$residuals ~ x)
summary(m3)
z3 <- as.data.frame(cbind(x,m$residuals))
names(z3) <- list('x','Residuals')
plot(z3,main='Scatterplot, lowess, and regression line')
lines(lowess(z3),col='red')
abline(m3)
grid()
dev.off()
bitmap(file='test4.png')
m4 <- lm(m$fitted.values ~ m$residuals)
summary(m4)
z4 <- as.data.frame(cbind(m$residuals,m$fitted.values))
names(z4) <- list('Residuals','Fitted')
plot(z4,main='Scatterplot, lowess, and regression line')
lines(lowess(z4),col='red')
abline(m4)
grid()
dev.off()
bitmap(file='test5.png')
myr <- as.ts(m$residuals)
z5 <- as.data.frame(cbind(lag(myr,1),myr))
names(z5) <- list('Lagged Residuals','Residuals')
plot(z5,main='Lag plot')
m5 <- lm(z5)
summary(m5)
abline(m5)
grid()
dev.off()
bitmap(file='test6.png')
hist(m$residuals,main='Residual Histogram',xlab='Residuals')
dev.off()
bitmap(file='test7.png')
if (par1 > 0)
{
densityplot(~m$residuals,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~m$residuals,col='black',main='Density Plot')
}
dev.off()
bitmap(file='test8.png')
acf(m$residuals,main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test9.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Simple Linear Regression',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistics',1,TRUE)
a<-table.element(a,'Estimate',1,TRUE)
a<-table.element(a,'S.D.',1,TRUE)
a<-table.element(a,'T-STAT (H0: coeff=0)',1,TRUE)
a<-table.element(a,'P-value (two-sided)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'constant term',header=TRUE)
a<-table.element(a,m$coefficients[[1]])
sd <- sqrt(vcov(m)[1,1])
a<-table.element(a,sd)
tstat <- m$coefficients[[1]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'slope',header=TRUE)
a<-table.element(a,m$coefficients[[2]])
sd <- sqrt(vcov(m)[2,2])
a<-table.element(a,sd)
tstat <- m$coefficients[[2]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')