Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 18 Nov 2011 05:37:11 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/18/t13216126933z084kex1vwocj6.htm/, Retrieved Fri, 01 Nov 2024 00:36:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=145419, Retrieved Fri, 01 Nov 2024 00:36:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W12
Estimated Impact176
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [Inschrijvingen ni...] [2011-11-18 09:57:43] [d700a6813b2ef07b7398fe84f8eae4b7]
-   PD  [(Partial) Autocorrelation Function] [Gemiddelde prijs ...] [2011-11-18 10:32:28] [d700a6813b2ef07b7398fe84f8eae4b7]
- R PD      [(Partial) Autocorrelation Function] [Gemiddelde prijs ...] [2011-11-18 10:37:11] [9b00bb73e1719a6b710100764835da33] [Current]
-   P         [(Partial) Autocorrelation Function] [Gemiddelde prijs ...] [2011-11-18 10:44:45] [d700a6813b2ef07b7398fe84f8eae4b7]
Feedback Forum

Post a new message
Dataseries X:
10.93
10.92
10.89
10.94
10.98
10.99
11.02
11.04
11.05
11.05
11.02
10.91
11.01
11.02
11.03
11.04
11.06
11.08
11.06
11.06
11.09
11.07
11.06
11.08
11.08
11.08
11.11
11.09
11.08
11.05
11.07
11.06
11.06
11.07
11.02
11.01
11.04
11.02
11.03
11.17
11.19
11.15
11.13
11.06
11.01
11.03
10.99
10.94
11
11.06
11.06
11.05
11.04
11.15
11.2
11.16
11.3
11.23
11.25
11.25
11.12
11.14
11.17
11.25
11.27
11.34
11.39
11.44
11.46
11.49
11.51
11.48
11.49
11.52
11.56
11.58
11.58
11.58
11.6
11.62
11.62
11.64
11.67
11.66
11.72
11.82
11.9
12.04
12.08
12.15
12.19
12.22
12.23
12.25
12.26
12.27
12.34
12.38
12.42
12.43
12.48
12.5
12.5
12.49
12.46
12.45
12.45
12.38
12.42
12.37
12.35
12.35
12.36
12.32
12.32
12.34
12.35
12.34
12.31
12.24




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145419&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145419&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145419&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.98468310.78670
20.96652410.58770
30.94603310.36330
40.92434710.12570
50.903359.89570
60.8823629.66580
70.8615839.43820
80.8402489.20450
90.8187068.96850
100.795848.7180
110.7710998.4470
120.742738.13620
130.7160937.84440
140.6871377.52720
150.6569027.1960
160.6263566.86140
170.5947086.51470
180.5621556.15810
190.5292535.79770
200.4964515.43830
210.4649485.09321e-06
220.4336754.75073e-06
230.4031744.41661.1e-05
240.3729864.08594e-05
250.343773.76580.000129
260.3147973.44840.000389
270.2858323.13110.001094
280.2570282.81560.002847
290.2283752.50170.006853
300.2000662.19160.015169
310.1727431.89230.03043
320.1462451.6020.055889
330.1205331.32040.094611
340.0965161.05730.146255
350.0731070.80090.2124
360.0512840.56180.287655
370.0302160.3310.37061
380.0086310.09450.462417
39-0.0117-0.12820.449114
40-0.029351-0.32150.374185
41-0.046228-0.50640.306751
42-0.063187-0.69220.245082
43-0.080028-0.87670.19121
44-0.097324-1.06610.144253
45-0.115345-1.26350.104422
46-0.132158-1.44770.075152
47-0.149053-1.63280.052566
48-0.166777-1.8270.035096

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.984683 & 10.7867 & 0 \tabularnewline
2 & 0.966524 & 10.5877 & 0 \tabularnewline
3 & 0.946033 & 10.3633 & 0 \tabularnewline
4 & 0.924347 & 10.1257 & 0 \tabularnewline
5 & 0.90335 & 9.8957 & 0 \tabularnewline
6 & 0.882362 & 9.6658 & 0 \tabularnewline
7 & 0.861583 & 9.4382 & 0 \tabularnewline
8 & 0.840248 & 9.2045 & 0 \tabularnewline
9 & 0.818706 & 8.9685 & 0 \tabularnewline
10 & 0.79584 & 8.718 & 0 \tabularnewline
11 & 0.771099 & 8.447 & 0 \tabularnewline
12 & 0.74273 & 8.1362 & 0 \tabularnewline
13 & 0.716093 & 7.8444 & 0 \tabularnewline
14 & 0.687137 & 7.5272 & 0 \tabularnewline
15 & 0.656902 & 7.196 & 0 \tabularnewline
16 & 0.626356 & 6.8614 & 0 \tabularnewline
17 & 0.594708 & 6.5147 & 0 \tabularnewline
18 & 0.562155 & 6.1581 & 0 \tabularnewline
19 & 0.529253 & 5.7977 & 0 \tabularnewline
20 & 0.496451 & 5.4383 & 0 \tabularnewline
21 & 0.464948 & 5.0932 & 1e-06 \tabularnewline
22 & 0.433675 & 4.7507 & 3e-06 \tabularnewline
23 & 0.403174 & 4.4166 & 1.1e-05 \tabularnewline
24 & 0.372986 & 4.0859 & 4e-05 \tabularnewline
25 & 0.34377 & 3.7658 & 0.000129 \tabularnewline
26 & 0.314797 & 3.4484 & 0.000389 \tabularnewline
27 & 0.285832 & 3.1311 & 0.001094 \tabularnewline
28 & 0.257028 & 2.8156 & 0.002847 \tabularnewline
29 & 0.228375 & 2.5017 & 0.006853 \tabularnewline
30 & 0.200066 & 2.1916 & 0.015169 \tabularnewline
31 & 0.172743 & 1.8923 & 0.03043 \tabularnewline
32 & 0.146245 & 1.602 & 0.055889 \tabularnewline
33 & 0.120533 & 1.3204 & 0.094611 \tabularnewline
34 & 0.096516 & 1.0573 & 0.146255 \tabularnewline
35 & 0.073107 & 0.8009 & 0.2124 \tabularnewline
36 & 0.051284 & 0.5618 & 0.287655 \tabularnewline
37 & 0.030216 & 0.331 & 0.37061 \tabularnewline
38 & 0.008631 & 0.0945 & 0.462417 \tabularnewline
39 & -0.0117 & -0.1282 & 0.449114 \tabularnewline
40 & -0.029351 & -0.3215 & 0.374185 \tabularnewline
41 & -0.046228 & -0.5064 & 0.306751 \tabularnewline
42 & -0.063187 & -0.6922 & 0.245082 \tabularnewline
43 & -0.080028 & -0.8767 & 0.19121 \tabularnewline
44 & -0.097324 & -1.0661 & 0.144253 \tabularnewline
45 & -0.115345 & -1.2635 & 0.104422 \tabularnewline
46 & -0.132158 & -1.4477 & 0.075152 \tabularnewline
47 & -0.149053 & -1.6328 & 0.052566 \tabularnewline
48 & -0.166777 & -1.827 & 0.035096 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145419&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.984683[/C][C]10.7867[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.966524[/C][C]10.5877[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.946033[/C][C]10.3633[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.924347[/C][C]10.1257[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.90335[/C][C]9.8957[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.882362[/C][C]9.6658[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.861583[/C][C]9.4382[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.840248[/C][C]9.2045[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.818706[/C][C]8.9685[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.79584[/C][C]8.718[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.771099[/C][C]8.447[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.74273[/C][C]8.1362[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.716093[/C][C]7.8444[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.687137[/C][C]7.5272[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.656902[/C][C]7.196[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.626356[/C][C]6.8614[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.594708[/C][C]6.5147[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.562155[/C][C]6.1581[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.529253[/C][C]5.7977[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.496451[/C][C]5.4383[/C][C]0[/C][/ROW]
[ROW][C]21[/C][C]0.464948[/C][C]5.0932[/C][C]1e-06[/C][/ROW]
[ROW][C]22[/C][C]0.433675[/C][C]4.7507[/C][C]3e-06[/C][/ROW]
[ROW][C]23[/C][C]0.403174[/C][C]4.4166[/C][C]1.1e-05[/C][/ROW]
[ROW][C]24[/C][C]0.372986[/C][C]4.0859[/C][C]4e-05[/C][/ROW]
[ROW][C]25[/C][C]0.34377[/C][C]3.7658[/C][C]0.000129[/C][/ROW]
[ROW][C]26[/C][C]0.314797[/C][C]3.4484[/C][C]0.000389[/C][/ROW]
[ROW][C]27[/C][C]0.285832[/C][C]3.1311[/C][C]0.001094[/C][/ROW]
[ROW][C]28[/C][C]0.257028[/C][C]2.8156[/C][C]0.002847[/C][/ROW]
[ROW][C]29[/C][C]0.228375[/C][C]2.5017[/C][C]0.006853[/C][/ROW]
[ROW][C]30[/C][C]0.200066[/C][C]2.1916[/C][C]0.015169[/C][/ROW]
[ROW][C]31[/C][C]0.172743[/C][C]1.8923[/C][C]0.03043[/C][/ROW]
[ROW][C]32[/C][C]0.146245[/C][C]1.602[/C][C]0.055889[/C][/ROW]
[ROW][C]33[/C][C]0.120533[/C][C]1.3204[/C][C]0.094611[/C][/ROW]
[ROW][C]34[/C][C]0.096516[/C][C]1.0573[/C][C]0.146255[/C][/ROW]
[ROW][C]35[/C][C]0.073107[/C][C]0.8009[/C][C]0.2124[/C][/ROW]
[ROW][C]36[/C][C]0.051284[/C][C]0.5618[/C][C]0.287655[/C][/ROW]
[ROW][C]37[/C][C]0.030216[/C][C]0.331[/C][C]0.37061[/C][/ROW]
[ROW][C]38[/C][C]0.008631[/C][C]0.0945[/C][C]0.462417[/C][/ROW]
[ROW][C]39[/C][C]-0.0117[/C][C]-0.1282[/C][C]0.449114[/C][/ROW]
[ROW][C]40[/C][C]-0.029351[/C][C]-0.3215[/C][C]0.374185[/C][/ROW]
[ROW][C]41[/C][C]-0.046228[/C][C]-0.5064[/C][C]0.306751[/C][/ROW]
[ROW][C]42[/C][C]-0.063187[/C][C]-0.6922[/C][C]0.245082[/C][/ROW]
[ROW][C]43[/C][C]-0.080028[/C][C]-0.8767[/C][C]0.19121[/C][/ROW]
[ROW][C]44[/C][C]-0.097324[/C][C]-1.0661[/C][C]0.144253[/C][/ROW]
[ROW][C]45[/C][C]-0.115345[/C][C]-1.2635[/C][C]0.104422[/C][/ROW]
[ROW][C]46[/C][C]-0.132158[/C][C]-1.4477[/C][C]0.075152[/C][/ROW]
[ROW][C]47[/C][C]-0.149053[/C][C]-1.6328[/C][C]0.052566[/C][/ROW]
[ROW][C]48[/C][C]-0.166777[/C][C]-1.827[/C][C]0.035096[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145419&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145419&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.98468310.78670
20.96652410.58770
30.94603310.36330
40.92434710.12570
50.903359.89570
60.8823629.66580
70.8615839.43820
80.8402489.20450
90.8187068.96850
100.795848.7180
110.7710998.4470
120.742738.13620
130.7160937.84440
140.6871377.52720
150.6569027.1960
160.6263566.86140
170.5947086.51470
180.5621556.15810
190.5292535.79770
200.4964515.43830
210.4649485.09321e-06
220.4336754.75073e-06
230.4031744.41661.1e-05
240.3729864.08594e-05
250.343773.76580.000129
260.3147973.44840.000389
270.2858323.13110.001094
280.2570282.81560.002847
290.2283752.50170.006853
300.2000662.19160.015169
310.1727431.89230.03043
320.1462451.6020.055889
330.1205331.32040.094611
340.0965161.05730.146255
350.0731070.80090.2124
360.0512840.56180.287655
370.0302160.3310.37061
380.0086310.09450.462417
39-0.0117-0.12820.449114
40-0.029351-0.32150.374185
41-0.046228-0.50640.306751
42-0.063187-0.69220.245082
43-0.080028-0.87670.19121
44-0.097324-1.06610.144253
45-0.115345-1.26350.104422
46-0.132158-1.44770.075152
47-0.149053-1.63280.052566
48-0.166777-1.8270.035096







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.98468310.78670
2-0.101193-1.10850.134929
3-0.078116-0.85570.196929
4-0.037635-0.41230.340438
50.0225310.24680.402738
6-0.010863-0.1190.452736
7-0.007094-0.07770.469092
8-0.032766-0.35890.360138
9-0.015218-0.16670.43394
10-0.052958-0.58010.28146
11-0.066368-0.7270.234313
12-0.122204-1.33870.091602
130.0707770.77530.219838
14-0.090673-0.99330.161288
15-0.054585-0.5980.275499
16-0.026728-0.29280.385093
17-0.041928-0.45930.323427
18-0.049821-0.54580.293121
19-0.022488-0.24630.402918
20-0.015639-0.17130.432131
210.0342640.37530.354035
22-0.01911-0.20930.417267
230.0050570.05540.477958
24-0.026675-0.29220.385315
250.0390910.42820.334631
26-0.022894-0.25080.401203
27-0.018888-0.20690.418214
28-0.006682-0.07320.470885
29-0.009238-0.10120.459782
30-0.01684-0.18450.426976
310.008920.09770.461162
32-0.011457-0.12550.450168
330.0044880.04920.480435
340.0146340.16030.436452
35-0.013921-0.15250.439527
360.011420.12510.450326
37-0.001354-0.01480.494093
38-0.056476-0.61870.268655
390.0147150.16120.436107
400.0680460.74540.228743
41-0.015728-0.17230.43175
42-0.051346-0.56250.287424
43-0.021444-0.23490.407342
44-0.041335-0.45280.325753
45-0.05102-0.55890.288638
460.0202590.22190.412374
47-0.046179-0.50590.306938
48-0.059002-0.64630.259649

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.984683 & 10.7867 & 0 \tabularnewline
2 & -0.101193 & -1.1085 & 0.134929 \tabularnewline
3 & -0.078116 & -0.8557 & 0.196929 \tabularnewline
4 & -0.037635 & -0.4123 & 0.340438 \tabularnewline
5 & 0.022531 & 0.2468 & 0.402738 \tabularnewline
6 & -0.010863 & -0.119 & 0.452736 \tabularnewline
7 & -0.007094 & -0.0777 & 0.469092 \tabularnewline
8 & -0.032766 & -0.3589 & 0.360138 \tabularnewline
9 & -0.015218 & -0.1667 & 0.43394 \tabularnewline
10 & -0.052958 & -0.5801 & 0.28146 \tabularnewline
11 & -0.066368 & -0.727 & 0.234313 \tabularnewline
12 & -0.122204 & -1.3387 & 0.091602 \tabularnewline
13 & 0.070777 & 0.7753 & 0.219838 \tabularnewline
14 & -0.090673 & -0.9933 & 0.161288 \tabularnewline
15 & -0.054585 & -0.598 & 0.275499 \tabularnewline
16 & -0.026728 & -0.2928 & 0.385093 \tabularnewline
17 & -0.041928 & -0.4593 & 0.323427 \tabularnewline
18 & -0.049821 & -0.5458 & 0.293121 \tabularnewline
19 & -0.022488 & -0.2463 & 0.402918 \tabularnewline
20 & -0.015639 & -0.1713 & 0.432131 \tabularnewline
21 & 0.034264 & 0.3753 & 0.354035 \tabularnewline
22 & -0.01911 & -0.2093 & 0.417267 \tabularnewline
23 & 0.005057 & 0.0554 & 0.477958 \tabularnewline
24 & -0.026675 & -0.2922 & 0.385315 \tabularnewline
25 & 0.039091 & 0.4282 & 0.334631 \tabularnewline
26 & -0.022894 & -0.2508 & 0.401203 \tabularnewline
27 & -0.018888 & -0.2069 & 0.418214 \tabularnewline
28 & -0.006682 & -0.0732 & 0.470885 \tabularnewline
29 & -0.009238 & -0.1012 & 0.459782 \tabularnewline
30 & -0.01684 & -0.1845 & 0.426976 \tabularnewline
31 & 0.00892 & 0.0977 & 0.461162 \tabularnewline
32 & -0.011457 & -0.1255 & 0.450168 \tabularnewline
33 & 0.004488 & 0.0492 & 0.480435 \tabularnewline
34 & 0.014634 & 0.1603 & 0.436452 \tabularnewline
35 & -0.013921 & -0.1525 & 0.439527 \tabularnewline
36 & 0.01142 & 0.1251 & 0.450326 \tabularnewline
37 & -0.001354 & -0.0148 & 0.494093 \tabularnewline
38 & -0.056476 & -0.6187 & 0.268655 \tabularnewline
39 & 0.014715 & 0.1612 & 0.436107 \tabularnewline
40 & 0.068046 & 0.7454 & 0.228743 \tabularnewline
41 & -0.015728 & -0.1723 & 0.43175 \tabularnewline
42 & -0.051346 & -0.5625 & 0.287424 \tabularnewline
43 & -0.021444 & -0.2349 & 0.407342 \tabularnewline
44 & -0.041335 & -0.4528 & 0.325753 \tabularnewline
45 & -0.05102 & -0.5589 & 0.288638 \tabularnewline
46 & 0.020259 & 0.2219 & 0.412374 \tabularnewline
47 & -0.046179 & -0.5059 & 0.306938 \tabularnewline
48 & -0.059002 & -0.6463 & 0.259649 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=145419&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.984683[/C][C]10.7867[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.101193[/C][C]-1.1085[/C][C]0.134929[/C][/ROW]
[ROW][C]3[/C][C]-0.078116[/C][C]-0.8557[/C][C]0.196929[/C][/ROW]
[ROW][C]4[/C][C]-0.037635[/C][C]-0.4123[/C][C]0.340438[/C][/ROW]
[ROW][C]5[/C][C]0.022531[/C][C]0.2468[/C][C]0.402738[/C][/ROW]
[ROW][C]6[/C][C]-0.010863[/C][C]-0.119[/C][C]0.452736[/C][/ROW]
[ROW][C]7[/C][C]-0.007094[/C][C]-0.0777[/C][C]0.469092[/C][/ROW]
[ROW][C]8[/C][C]-0.032766[/C][C]-0.3589[/C][C]0.360138[/C][/ROW]
[ROW][C]9[/C][C]-0.015218[/C][C]-0.1667[/C][C]0.43394[/C][/ROW]
[ROW][C]10[/C][C]-0.052958[/C][C]-0.5801[/C][C]0.28146[/C][/ROW]
[ROW][C]11[/C][C]-0.066368[/C][C]-0.727[/C][C]0.234313[/C][/ROW]
[ROW][C]12[/C][C]-0.122204[/C][C]-1.3387[/C][C]0.091602[/C][/ROW]
[ROW][C]13[/C][C]0.070777[/C][C]0.7753[/C][C]0.219838[/C][/ROW]
[ROW][C]14[/C][C]-0.090673[/C][C]-0.9933[/C][C]0.161288[/C][/ROW]
[ROW][C]15[/C][C]-0.054585[/C][C]-0.598[/C][C]0.275499[/C][/ROW]
[ROW][C]16[/C][C]-0.026728[/C][C]-0.2928[/C][C]0.385093[/C][/ROW]
[ROW][C]17[/C][C]-0.041928[/C][C]-0.4593[/C][C]0.323427[/C][/ROW]
[ROW][C]18[/C][C]-0.049821[/C][C]-0.5458[/C][C]0.293121[/C][/ROW]
[ROW][C]19[/C][C]-0.022488[/C][C]-0.2463[/C][C]0.402918[/C][/ROW]
[ROW][C]20[/C][C]-0.015639[/C][C]-0.1713[/C][C]0.432131[/C][/ROW]
[ROW][C]21[/C][C]0.034264[/C][C]0.3753[/C][C]0.354035[/C][/ROW]
[ROW][C]22[/C][C]-0.01911[/C][C]-0.2093[/C][C]0.417267[/C][/ROW]
[ROW][C]23[/C][C]0.005057[/C][C]0.0554[/C][C]0.477958[/C][/ROW]
[ROW][C]24[/C][C]-0.026675[/C][C]-0.2922[/C][C]0.385315[/C][/ROW]
[ROW][C]25[/C][C]0.039091[/C][C]0.4282[/C][C]0.334631[/C][/ROW]
[ROW][C]26[/C][C]-0.022894[/C][C]-0.2508[/C][C]0.401203[/C][/ROW]
[ROW][C]27[/C][C]-0.018888[/C][C]-0.2069[/C][C]0.418214[/C][/ROW]
[ROW][C]28[/C][C]-0.006682[/C][C]-0.0732[/C][C]0.470885[/C][/ROW]
[ROW][C]29[/C][C]-0.009238[/C][C]-0.1012[/C][C]0.459782[/C][/ROW]
[ROW][C]30[/C][C]-0.01684[/C][C]-0.1845[/C][C]0.426976[/C][/ROW]
[ROW][C]31[/C][C]0.00892[/C][C]0.0977[/C][C]0.461162[/C][/ROW]
[ROW][C]32[/C][C]-0.011457[/C][C]-0.1255[/C][C]0.450168[/C][/ROW]
[ROW][C]33[/C][C]0.004488[/C][C]0.0492[/C][C]0.480435[/C][/ROW]
[ROW][C]34[/C][C]0.014634[/C][C]0.1603[/C][C]0.436452[/C][/ROW]
[ROW][C]35[/C][C]-0.013921[/C][C]-0.1525[/C][C]0.439527[/C][/ROW]
[ROW][C]36[/C][C]0.01142[/C][C]0.1251[/C][C]0.450326[/C][/ROW]
[ROW][C]37[/C][C]-0.001354[/C][C]-0.0148[/C][C]0.494093[/C][/ROW]
[ROW][C]38[/C][C]-0.056476[/C][C]-0.6187[/C][C]0.268655[/C][/ROW]
[ROW][C]39[/C][C]0.014715[/C][C]0.1612[/C][C]0.436107[/C][/ROW]
[ROW][C]40[/C][C]0.068046[/C][C]0.7454[/C][C]0.228743[/C][/ROW]
[ROW][C]41[/C][C]-0.015728[/C][C]-0.1723[/C][C]0.43175[/C][/ROW]
[ROW][C]42[/C][C]-0.051346[/C][C]-0.5625[/C][C]0.287424[/C][/ROW]
[ROW][C]43[/C][C]-0.021444[/C][C]-0.2349[/C][C]0.407342[/C][/ROW]
[ROW][C]44[/C][C]-0.041335[/C][C]-0.4528[/C][C]0.325753[/C][/ROW]
[ROW][C]45[/C][C]-0.05102[/C][C]-0.5589[/C][C]0.288638[/C][/ROW]
[ROW][C]46[/C][C]0.020259[/C][C]0.2219[/C][C]0.412374[/C][/ROW]
[ROW][C]47[/C][C]-0.046179[/C][C]-0.5059[/C][C]0.306938[/C][/ROW]
[ROW][C]48[/C][C]-0.059002[/C][C]-0.6463[/C][C]0.259649[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=145419&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=145419&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.98468310.78670
2-0.101193-1.10850.134929
3-0.078116-0.85570.196929
4-0.037635-0.41230.340438
50.0225310.24680.402738
6-0.010863-0.1190.452736
7-0.007094-0.07770.469092
8-0.032766-0.35890.360138
9-0.015218-0.16670.43394
10-0.052958-0.58010.28146
11-0.066368-0.7270.234313
12-0.122204-1.33870.091602
130.0707770.77530.219838
14-0.090673-0.99330.161288
15-0.054585-0.5980.275499
16-0.026728-0.29280.385093
17-0.041928-0.45930.323427
18-0.049821-0.54580.293121
19-0.022488-0.24630.402918
20-0.015639-0.17130.432131
210.0342640.37530.354035
22-0.01911-0.20930.417267
230.0050570.05540.477958
24-0.026675-0.29220.385315
250.0390910.42820.334631
26-0.022894-0.25080.401203
27-0.018888-0.20690.418214
28-0.006682-0.07320.470885
29-0.009238-0.10120.459782
30-0.01684-0.18450.426976
310.008920.09770.461162
32-0.011457-0.12550.450168
330.0044880.04920.480435
340.0146340.16030.436452
35-0.013921-0.15250.439527
360.011420.12510.450326
37-0.001354-0.01480.494093
38-0.056476-0.61870.268655
390.0147150.16120.436107
400.0680460.74540.228743
41-0.015728-0.17230.43175
42-0.051346-0.56250.287424
43-0.021444-0.23490.407342
44-0.041335-0.45280.325753
45-0.05102-0.55890.288638
460.0202590.22190.412374
47-0.046179-0.50590.306938
48-0.059002-0.64630.259649



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')