Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 24 Nov 2011 10:47:05 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t132214964066umu7nnccnkgcl.htm/, Retrieved Thu, 31 Oct 2024 23:06:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=147000, Retrieved Thu, 31 Oct 2024 23:06:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact153
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2011-11-24 15:47:05] [4126eca3aa45270aa47093f41b7f56ff] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	13534	80	15	54
2	21392	36	12	41
3	31809	39	13	48
4	41947	45	15	59
5	51294	20	14	46
6	61020	23	11	43
7	71094	47	18	71
8	81574	39	9	26
9	91312	21	17	62
10	101055	39	10	30
11	111244	51	12	40
12	12890	29	10	34
13	131221	46	15	40
14	14592	28	13	49
15	15960	30	8	32
16	161190	23	13	46
17	171116	29	11	37
18	18916	40	12	48
19	191189	19	7	23
20	201681	24	12	46
21	211061	42	9	32
22	22650	19	10	29
23	23797	41	9	34
24	241405	37	12	28
25	25623	31	15	39
26	261079	39	10	31
27	27744	26	8	23
28	28947	22	6	20
29	291157	35	10	34
30	30854	15	10	35
31	31718	33	13	43
32	321151	35	15	29
33	33558	10	11	37
34	34609	36	10	38
35	351602	38	20	62
36	36880	11	13	45
37	371684	39	12	31
38	381062	26	12	32
39	39688	18	9	35
40	40788	28	8	24
41	41923	48	16	63
42	42538	26	7	21
43	43611	19	7	22
44	44815	21	10	30
45	451140	14	16	55
46	46834	35	6	24
47	47965	9	13	31
48	481183	35	8	24
49	49588	11	9	21
50	50566	27	13	49
51	51626	8	10	30
52	521108	24	9	26
53	531066	24	11	31
54	54929	31	12	41
55	56753	20	14	41
56	57793	25	7	17
57	58853	11	12	25
58	59830	13	5	20
59	60769	11	8	32
60	61771	24	12	44




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
ranking[t] = + 56.0010234656397 + 2.64925503775987e-05pages[t] -0.613511444631174blogs[t] + 0.179461096070821pr[t] -0.355845436769928lfm[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ranking[t] =  +  56.0010234656397 +  2.64925503775987e-05pages[t] -0.613511444631174blogs[t] +  0.179461096070821pr[t] -0.355845436769928lfm[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ranking[t] =  +  56.0010234656397 +  2.64925503775987e-05pages[t] -0.613511444631174blogs[t] +  0.179461096070821pr[t] -0.355845436769928lfm[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ranking[t] = + 56.0010234656397 + 2.64925503775987e-05pages[t] -0.613511444631174blogs[t] + 0.179461096070821pr[t] -0.355845436769928lfm[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)56.00102346563977.3551637.613800
pages2.64925503775987e-051.4e-051.84560.0703420.035171
blogs-0.6135114446311740.155514-3.94510.0002280.000114
pr0.1794610960708211.2262830.14630.8841840.442092
lfm-0.3558454367699280.318706-1.11650.2690490.134524

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 56.0010234656397 & 7.355163 & 7.6138 & 0 & 0 \tabularnewline
pages & 2.64925503775987e-05 & 1.4e-05 & 1.8456 & 0.070342 & 0.035171 \tabularnewline
blogs & -0.613511444631174 & 0.155514 & -3.9451 & 0.000228 & 0.000114 \tabularnewline
pr & 0.179461096070821 & 1.226283 & 0.1463 & 0.884184 & 0.442092 \tabularnewline
lfm & -0.355845436769928 & 0.318706 & -1.1165 & 0.269049 & 0.134524 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]56.0010234656397[/C][C]7.355163[/C][C]7.6138[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]pages[/C][C]2.64925503775987e-05[/C][C]1.4e-05[/C][C]1.8456[/C][C]0.070342[/C][C]0.035171[/C][/ROW]
[ROW][C]blogs[/C][C]-0.613511444631174[/C][C]0.155514[/C][C]-3.9451[/C][C]0.000228[/C][C]0.000114[/C][/ROW]
[ROW][C]pr[/C][C]0.179461096070821[/C][C]1.226283[/C][C]0.1463[/C][C]0.884184[/C][C]0.442092[/C][/ROW]
[ROW][C]lfm[/C][C]-0.355845436769928[/C][C]0.318706[/C][C]-1.1165[/C][C]0.269049[/C][C]0.134524[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)56.00102346563977.3551637.613800
pages2.64925503775987e-051.4e-051.84560.0703420.035171
blogs-0.6135114446311740.155514-3.94510.0002280.000114
pr0.1794610960708211.2262830.14630.8841840.442092
lfm-0.3558454367699280.318706-1.11650.2690490.134524







Multiple Linear Regression - Regression Statistics
Multiple R0.609804774362215
R-squared0.371861862834952
Adjusted R-squared0.326179089222948
F-TEST (value)8.14008943487709
F-TEST (DF numerator)4
F-TEST (DF denominator)55
p-value3.13869982985215e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation14.3358075387123
Sum Squared Residuals11303.345778285

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.609804774362215 \tabularnewline
R-squared & 0.371861862834952 \tabularnewline
Adjusted R-squared & 0.326179089222948 \tabularnewline
F-TEST (value) & 8.14008943487709 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 55 \tabularnewline
p-value & 3.13869982985215e-05 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 14.3358075387123 \tabularnewline
Sum Squared Residuals & 11303.345778285 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.609804774362215[/C][/ROW]
[ROW][C]R-squared[/C][C]0.371861862834952[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.326179089222948[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]8.14008943487709[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]55[/C][/ROW]
[ROW][C]p-value[/C][C]3.13869982985215e-05[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]14.3358075387123[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]11303.345778285[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.609804774362215
R-squared0.371861862834952
Adjusted R-squared0.326179089222948
F-TEST (value)8.14008943487709
F-TEST (DF numerator)4
F-TEST (DF denominator)55
p-value3.13869982985215e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation14.3358075387123
Sum Squared Residuals11303.345778285







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11-9.2450790725577110.2450790725577
2222.0452103418778-20.0452103418778
3318.1691919439491-15.1691919439491
4411.2013271395625-7.20132713956255
5531.2332687056596-26.2332687056596
6630.1795539388359-24.1795539388359
777.01472066312939-0.0147206631293924
8826.5983489381454-18.5983489381454
9926.5247924419327-17.5247924419327
101025.8705296610425-15.8705296610425
111115.5787927457081-4.57879274570814
121228.2465466562335-16.2465466562335
131319.7139749359698-6.71397493596976
141424.1058501582709-10.1058501582709
151528.0671360226598-13.0671360226598
161632.1246985919918-16.1246985919918
171731.5502817180405-14.5502817180405
181817.03465095122870.965349048771309
191942.4811728585775-23.4811728585775
202032.4044359086291-12.4044359086291
212126.0531828543764-5.05318285437643
222236.4194555780803-14.4194555780803
232320.99390247155712.00609752844289
242431.8863950614823-7.88639506148233
252526.4749317074336-1.47493170743362
262629.7541281058974-3.75412810589743
272734.0359789457635-7.03597894576349
282837.2305093805606-9.23050938056058
292931.9374805043698-2.93748050436975
303036.9557736192832-6.95577361928323
313123.62707697350147.37292302649861
323235.4086307245992-3.40863072459919
333339.5627369211911-6.56273692119109
343423.103976498386710.8960235016133
353523.529227109200411.4707728907996
363636.5493924268965-0.549392426896518
373733.04325883255343.95674116744663
383840.9115093134298-2.91150931342982
393935.16981337935463.8301866206454
404032.79867944685667.20132055314339
41418.1162363334510732.8837636665489
424234.96013951351877.03986048648128
434338.92730069572224.07269930427783
444435.42379463116758.57620536883251
454542.66359093294022.3364090670598
464628.305351101879717.6946488981203
474743.05192135187353.94807864812645
484840.1712860579817.82871394201904
494944.708505855294.29149414470996
505025.672404610185824.3275953898142
515143.57988417199467.42011582800543
525247.44539724528054.55460275471954
535346.28890507023266.71109492976741
545426.001248227047227.9987517729528
555533.157118722020521.8428812779795
565637.401176561239918.5988234387601
575744.068960875671212.9310391243288
585843.390820719481714.6091792805183
595940.910958160521918.0890418394781
606029.409554058839230.5904459411608

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 1 & -9.24507907255771 & 10.2450790725577 \tabularnewline
2 & 2 & 22.0452103418778 & -20.0452103418778 \tabularnewline
3 & 3 & 18.1691919439491 & -15.1691919439491 \tabularnewline
4 & 4 & 11.2013271395625 & -7.20132713956255 \tabularnewline
5 & 5 & 31.2332687056596 & -26.2332687056596 \tabularnewline
6 & 6 & 30.1795539388359 & -24.1795539388359 \tabularnewline
7 & 7 & 7.01472066312939 & -0.0147206631293924 \tabularnewline
8 & 8 & 26.5983489381454 & -18.5983489381454 \tabularnewline
9 & 9 & 26.5247924419327 & -17.5247924419327 \tabularnewline
10 & 10 & 25.8705296610425 & -15.8705296610425 \tabularnewline
11 & 11 & 15.5787927457081 & -4.57879274570814 \tabularnewline
12 & 12 & 28.2465466562335 & -16.2465466562335 \tabularnewline
13 & 13 & 19.7139749359698 & -6.71397493596976 \tabularnewline
14 & 14 & 24.1058501582709 & -10.1058501582709 \tabularnewline
15 & 15 & 28.0671360226598 & -13.0671360226598 \tabularnewline
16 & 16 & 32.1246985919918 & -16.1246985919918 \tabularnewline
17 & 17 & 31.5502817180405 & -14.5502817180405 \tabularnewline
18 & 18 & 17.0346509512287 & 0.965349048771309 \tabularnewline
19 & 19 & 42.4811728585775 & -23.4811728585775 \tabularnewline
20 & 20 & 32.4044359086291 & -12.4044359086291 \tabularnewline
21 & 21 & 26.0531828543764 & -5.05318285437643 \tabularnewline
22 & 22 & 36.4194555780803 & -14.4194555780803 \tabularnewline
23 & 23 & 20.9939024715571 & 2.00609752844289 \tabularnewline
24 & 24 & 31.8863950614823 & -7.88639506148233 \tabularnewline
25 & 25 & 26.4749317074336 & -1.47493170743362 \tabularnewline
26 & 26 & 29.7541281058974 & -3.75412810589743 \tabularnewline
27 & 27 & 34.0359789457635 & -7.03597894576349 \tabularnewline
28 & 28 & 37.2305093805606 & -9.23050938056058 \tabularnewline
29 & 29 & 31.9374805043698 & -2.93748050436975 \tabularnewline
30 & 30 & 36.9557736192832 & -6.95577361928323 \tabularnewline
31 & 31 & 23.6270769735014 & 7.37292302649861 \tabularnewline
32 & 32 & 35.4086307245992 & -3.40863072459919 \tabularnewline
33 & 33 & 39.5627369211911 & -6.56273692119109 \tabularnewline
34 & 34 & 23.1039764983867 & 10.8960235016133 \tabularnewline
35 & 35 & 23.5292271092004 & 11.4707728907996 \tabularnewline
36 & 36 & 36.5493924268965 & -0.549392426896518 \tabularnewline
37 & 37 & 33.0432588325534 & 3.95674116744663 \tabularnewline
38 & 38 & 40.9115093134298 & -2.91150931342982 \tabularnewline
39 & 39 & 35.1698133793546 & 3.8301866206454 \tabularnewline
40 & 40 & 32.7986794468566 & 7.20132055314339 \tabularnewline
41 & 41 & 8.11623633345107 & 32.8837636665489 \tabularnewline
42 & 42 & 34.9601395135187 & 7.03986048648128 \tabularnewline
43 & 43 & 38.9273006957222 & 4.07269930427783 \tabularnewline
44 & 44 & 35.4237946311675 & 8.57620536883251 \tabularnewline
45 & 45 & 42.6635909329402 & 2.3364090670598 \tabularnewline
46 & 46 & 28.3053511018797 & 17.6946488981203 \tabularnewline
47 & 47 & 43.0519213518735 & 3.94807864812645 \tabularnewline
48 & 48 & 40.171286057981 & 7.82871394201904 \tabularnewline
49 & 49 & 44.70850585529 & 4.29149414470996 \tabularnewline
50 & 50 & 25.6724046101858 & 24.3275953898142 \tabularnewline
51 & 51 & 43.5798841719946 & 7.42011582800543 \tabularnewline
52 & 52 & 47.4453972452805 & 4.55460275471954 \tabularnewline
53 & 53 & 46.2889050702326 & 6.71109492976741 \tabularnewline
54 & 54 & 26.0012482270472 & 27.9987517729528 \tabularnewline
55 & 55 & 33.1571187220205 & 21.8428812779795 \tabularnewline
56 & 56 & 37.4011765612399 & 18.5988234387601 \tabularnewline
57 & 57 & 44.0689608756712 & 12.9310391243288 \tabularnewline
58 & 58 & 43.3908207194817 & 14.6091792805183 \tabularnewline
59 & 59 & 40.9109581605219 & 18.0890418394781 \tabularnewline
60 & 60 & 29.4095540588392 & 30.5904459411608 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]1[/C][C]-9.24507907255771[/C][C]10.2450790725577[/C][/ROW]
[ROW][C]2[/C][C]2[/C][C]22.0452103418778[/C][C]-20.0452103418778[/C][/ROW]
[ROW][C]3[/C][C]3[/C][C]18.1691919439491[/C][C]-15.1691919439491[/C][/ROW]
[ROW][C]4[/C][C]4[/C][C]11.2013271395625[/C][C]-7.20132713956255[/C][/ROW]
[ROW][C]5[/C][C]5[/C][C]31.2332687056596[/C][C]-26.2332687056596[/C][/ROW]
[ROW][C]6[/C][C]6[/C][C]30.1795539388359[/C][C]-24.1795539388359[/C][/ROW]
[ROW][C]7[/C][C]7[/C][C]7.01472066312939[/C][C]-0.0147206631293924[/C][/ROW]
[ROW][C]8[/C][C]8[/C][C]26.5983489381454[/C][C]-18.5983489381454[/C][/ROW]
[ROW][C]9[/C][C]9[/C][C]26.5247924419327[/C][C]-17.5247924419327[/C][/ROW]
[ROW][C]10[/C][C]10[/C][C]25.8705296610425[/C][C]-15.8705296610425[/C][/ROW]
[ROW][C]11[/C][C]11[/C][C]15.5787927457081[/C][C]-4.57879274570814[/C][/ROW]
[ROW][C]12[/C][C]12[/C][C]28.2465466562335[/C][C]-16.2465466562335[/C][/ROW]
[ROW][C]13[/C][C]13[/C][C]19.7139749359698[/C][C]-6.71397493596976[/C][/ROW]
[ROW][C]14[/C][C]14[/C][C]24.1058501582709[/C][C]-10.1058501582709[/C][/ROW]
[ROW][C]15[/C][C]15[/C][C]28.0671360226598[/C][C]-13.0671360226598[/C][/ROW]
[ROW][C]16[/C][C]16[/C][C]32.1246985919918[/C][C]-16.1246985919918[/C][/ROW]
[ROW][C]17[/C][C]17[/C][C]31.5502817180405[/C][C]-14.5502817180405[/C][/ROW]
[ROW][C]18[/C][C]18[/C][C]17.0346509512287[/C][C]0.965349048771309[/C][/ROW]
[ROW][C]19[/C][C]19[/C][C]42.4811728585775[/C][C]-23.4811728585775[/C][/ROW]
[ROW][C]20[/C][C]20[/C][C]32.4044359086291[/C][C]-12.4044359086291[/C][/ROW]
[ROW][C]21[/C][C]21[/C][C]26.0531828543764[/C][C]-5.05318285437643[/C][/ROW]
[ROW][C]22[/C][C]22[/C][C]36.4194555780803[/C][C]-14.4194555780803[/C][/ROW]
[ROW][C]23[/C][C]23[/C][C]20.9939024715571[/C][C]2.00609752844289[/C][/ROW]
[ROW][C]24[/C][C]24[/C][C]31.8863950614823[/C][C]-7.88639506148233[/C][/ROW]
[ROW][C]25[/C][C]25[/C][C]26.4749317074336[/C][C]-1.47493170743362[/C][/ROW]
[ROW][C]26[/C][C]26[/C][C]29.7541281058974[/C][C]-3.75412810589743[/C][/ROW]
[ROW][C]27[/C][C]27[/C][C]34.0359789457635[/C][C]-7.03597894576349[/C][/ROW]
[ROW][C]28[/C][C]28[/C][C]37.2305093805606[/C][C]-9.23050938056058[/C][/ROW]
[ROW][C]29[/C][C]29[/C][C]31.9374805043698[/C][C]-2.93748050436975[/C][/ROW]
[ROW][C]30[/C][C]30[/C][C]36.9557736192832[/C][C]-6.95577361928323[/C][/ROW]
[ROW][C]31[/C][C]31[/C][C]23.6270769735014[/C][C]7.37292302649861[/C][/ROW]
[ROW][C]32[/C][C]32[/C][C]35.4086307245992[/C][C]-3.40863072459919[/C][/ROW]
[ROW][C]33[/C][C]33[/C][C]39.5627369211911[/C][C]-6.56273692119109[/C][/ROW]
[ROW][C]34[/C][C]34[/C][C]23.1039764983867[/C][C]10.8960235016133[/C][/ROW]
[ROW][C]35[/C][C]35[/C][C]23.5292271092004[/C][C]11.4707728907996[/C][/ROW]
[ROW][C]36[/C][C]36[/C][C]36.5493924268965[/C][C]-0.549392426896518[/C][/ROW]
[ROW][C]37[/C][C]37[/C][C]33.0432588325534[/C][C]3.95674116744663[/C][/ROW]
[ROW][C]38[/C][C]38[/C][C]40.9115093134298[/C][C]-2.91150931342982[/C][/ROW]
[ROW][C]39[/C][C]39[/C][C]35.1698133793546[/C][C]3.8301866206454[/C][/ROW]
[ROW][C]40[/C][C]40[/C][C]32.7986794468566[/C][C]7.20132055314339[/C][/ROW]
[ROW][C]41[/C][C]41[/C][C]8.11623633345107[/C][C]32.8837636665489[/C][/ROW]
[ROW][C]42[/C][C]42[/C][C]34.9601395135187[/C][C]7.03986048648128[/C][/ROW]
[ROW][C]43[/C][C]43[/C][C]38.9273006957222[/C][C]4.07269930427783[/C][/ROW]
[ROW][C]44[/C][C]44[/C][C]35.4237946311675[/C][C]8.57620536883251[/C][/ROW]
[ROW][C]45[/C][C]45[/C][C]42.6635909329402[/C][C]2.3364090670598[/C][/ROW]
[ROW][C]46[/C][C]46[/C][C]28.3053511018797[/C][C]17.6946488981203[/C][/ROW]
[ROW][C]47[/C][C]47[/C][C]43.0519213518735[/C][C]3.94807864812645[/C][/ROW]
[ROW][C]48[/C][C]48[/C][C]40.171286057981[/C][C]7.82871394201904[/C][/ROW]
[ROW][C]49[/C][C]49[/C][C]44.70850585529[/C][C]4.29149414470996[/C][/ROW]
[ROW][C]50[/C][C]50[/C][C]25.6724046101858[/C][C]24.3275953898142[/C][/ROW]
[ROW][C]51[/C][C]51[/C][C]43.5798841719946[/C][C]7.42011582800543[/C][/ROW]
[ROW][C]52[/C][C]52[/C][C]47.4453972452805[/C][C]4.55460275471954[/C][/ROW]
[ROW][C]53[/C][C]53[/C][C]46.2889050702326[/C][C]6.71109492976741[/C][/ROW]
[ROW][C]54[/C][C]54[/C][C]26.0012482270472[/C][C]27.9987517729528[/C][/ROW]
[ROW][C]55[/C][C]55[/C][C]33.1571187220205[/C][C]21.8428812779795[/C][/ROW]
[ROW][C]56[/C][C]56[/C][C]37.4011765612399[/C][C]18.5988234387601[/C][/ROW]
[ROW][C]57[/C][C]57[/C][C]44.0689608756712[/C][C]12.9310391243288[/C][/ROW]
[ROW][C]58[/C][C]58[/C][C]43.3908207194817[/C][C]14.6091792805183[/C][/ROW]
[ROW][C]59[/C][C]59[/C][C]40.9109581605219[/C][C]18.0890418394781[/C][/ROW]
[ROW][C]60[/C][C]60[/C][C]29.4095540588392[/C][C]30.5904459411608[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11-9.2450790725577110.2450790725577
2222.0452103418778-20.0452103418778
3318.1691919439491-15.1691919439491
4411.2013271395625-7.20132713956255
5531.2332687056596-26.2332687056596
6630.1795539388359-24.1795539388359
777.01472066312939-0.0147206631293924
8826.5983489381454-18.5983489381454
9926.5247924419327-17.5247924419327
101025.8705296610425-15.8705296610425
111115.5787927457081-4.57879274570814
121228.2465466562335-16.2465466562335
131319.7139749359698-6.71397493596976
141424.1058501582709-10.1058501582709
151528.0671360226598-13.0671360226598
161632.1246985919918-16.1246985919918
171731.5502817180405-14.5502817180405
181817.03465095122870.965349048771309
191942.4811728585775-23.4811728585775
202032.4044359086291-12.4044359086291
212126.0531828543764-5.05318285437643
222236.4194555780803-14.4194555780803
232320.99390247155712.00609752844289
242431.8863950614823-7.88639506148233
252526.4749317074336-1.47493170743362
262629.7541281058974-3.75412810589743
272734.0359789457635-7.03597894576349
282837.2305093805606-9.23050938056058
292931.9374805043698-2.93748050436975
303036.9557736192832-6.95577361928323
313123.62707697350147.37292302649861
323235.4086307245992-3.40863072459919
333339.5627369211911-6.56273692119109
343423.103976498386710.8960235016133
353523.529227109200411.4707728907996
363636.5493924268965-0.549392426896518
373733.04325883255343.95674116744663
383840.9115093134298-2.91150931342982
393935.16981337935463.8301866206454
404032.79867944685667.20132055314339
41418.1162363334510732.8837636665489
424234.96013951351877.03986048648128
434338.92730069572224.07269930427783
444435.42379463116758.57620536883251
454542.66359093294022.3364090670598
464628.305351101879717.6946488981203
474743.05192135187353.94807864812645
484840.1712860579817.82871394201904
494944.708505855294.29149414470996
505025.672404610185824.3275953898142
515143.57988417199467.42011582800543
525247.44539724528054.55460275471954
535346.28890507023266.71109492976741
545426.001248227047227.9987517729528
555533.157118722020521.8428812779795
565637.401176561239918.5988234387601
575744.068960875671212.9310391243288
585843.390820719481714.6091792805183
595940.910958160521918.0890418394781
606029.409554058839230.5904459411608







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
83.76366296160732e-087.52732592321464e-080.99999996236337
92.80759746850787e-105.61519493701573e-100.99999999971924
101.24271534583977e-122.48543069167954e-120.999999999998757
114.10903499396709e-158.21806998793418e-150.999999999999996
120.0004051445780514170.0008102891561028340.999594855421949
130.000116586360837020.000233172721674040.999883413639163
140.0005806665446486910.001161333089297380.999419333455351
150.0006808593394923550.001361718678984710.999319140660508
160.0003762376200569050.0007524752401138090.999623762379943
170.0001852028038469610.0003704056076939220.999814797196153
180.000697558333344660.001395116666689320.999302441666655
190.0005674823277706440.001134964655541290.999432517672229
200.0005064480000737160.001012896000147430.999493551999926
210.0002818017009118140.0005636034018236280.999718198299088
220.002108698066934470.004217396133868950.997891301933066
230.005281689358631560.01056337871726310.994718310641368
240.005372666072952370.01074533214590470.994627333927048
250.01722794001294460.03445588002588930.982772059987055
260.01693523911925660.03387047823851320.983064760880743
270.02837393443251430.05674786886502860.971626065567486
280.05011170106429650.1002234021285930.949888298935704
290.06645159141399080.1329031828279820.933548408586009
300.1646720349012320.3293440698024640.835327965098768
310.3282537023704490.6565074047408970.671746297629552
320.3050756500430730.6101513000861460.694924349956927
330.4951370211452820.9902740422905630.504862978854718
340.6851766999189960.6296466001620070.314823300081004
350.7318015188554830.5363969622890340.268198481144517
360.8700863953057530.2598272093884950.129913604694247
370.8542111109676780.2915777780646430.145788889032322
380.8708957610806560.2582084778386890.129104238919344
390.9424797649446270.1150404701107460.0575202350553728
400.9629735395102490.07405292097950290.0370264604897514
410.986143795681650.02771240863670.01385620431835
420.9904449917341080.01911001653178390.00955500826589193
430.9946415799088640.01071684018227130.00535842009113565
440.9967522952264840.006495409547032530.00324770477351626
450.9970647374612260.005870525077547490.00293526253877374
460.998183526947860.003632946104278990.0018164730521395
470.9978637478051950.004272504389608960.00213625219480448
480.9959529329417350.008094134116530910.00404706705826546
490.9960984674323730.007803065135253460.00390153256762673
500.9965289629372170.006942074125565170.00347103706278258
510.9988784950593180.002243009881363150.00112150494068157
520.9928516890399510.01429662192009850.00714831096004924

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 & 3.76366296160732e-08 & 7.52732592321464e-08 & 0.99999996236337 \tabularnewline
9 & 2.80759746850787e-10 & 5.61519493701573e-10 & 0.99999999971924 \tabularnewline
10 & 1.24271534583977e-12 & 2.48543069167954e-12 & 0.999999999998757 \tabularnewline
11 & 4.10903499396709e-15 & 8.21806998793418e-15 & 0.999999999999996 \tabularnewline
12 & 0.000405144578051417 & 0.000810289156102834 & 0.999594855421949 \tabularnewline
13 & 0.00011658636083702 & 0.00023317272167404 & 0.999883413639163 \tabularnewline
14 & 0.000580666544648691 & 0.00116133308929738 & 0.999419333455351 \tabularnewline
15 & 0.000680859339492355 & 0.00136171867898471 & 0.999319140660508 \tabularnewline
16 & 0.000376237620056905 & 0.000752475240113809 & 0.999623762379943 \tabularnewline
17 & 0.000185202803846961 & 0.000370405607693922 & 0.999814797196153 \tabularnewline
18 & 0.00069755833334466 & 0.00139511666668932 & 0.999302441666655 \tabularnewline
19 & 0.000567482327770644 & 0.00113496465554129 & 0.999432517672229 \tabularnewline
20 & 0.000506448000073716 & 0.00101289600014743 & 0.999493551999926 \tabularnewline
21 & 0.000281801700911814 & 0.000563603401823628 & 0.999718198299088 \tabularnewline
22 & 0.00210869806693447 & 0.00421739613386895 & 0.997891301933066 \tabularnewline
23 & 0.00528168935863156 & 0.0105633787172631 & 0.994718310641368 \tabularnewline
24 & 0.00537266607295237 & 0.0107453321459047 & 0.994627333927048 \tabularnewline
25 & 0.0172279400129446 & 0.0344558800258893 & 0.982772059987055 \tabularnewline
26 & 0.0169352391192566 & 0.0338704782385132 & 0.983064760880743 \tabularnewline
27 & 0.0283739344325143 & 0.0567478688650286 & 0.971626065567486 \tabularnewline
28 & 0.0501117010642965 & 0.100223402128593 & 0.949888298935704 \tabularnewline
29 & 0.0664515914139908 & 0.132903182827982 & 0.933548408586009 \tabularnewline
30 & 0.164672034901232 & 0.329344069802464 & 0.835327965098768 \tabularnewline
31 & 0.328253702370449 & 0.656507404740897 & 0.671746297629552 \tabularnewline
32 & 0.305075650043073 & 0.610151300086146 & 0.694924349956927 \tabularnewline
33 & 0.495137021145282 & 0.990274042290563 & 0.504862978854718 \tabularnewline
34 & 0.685176699918996 & 0.629646600162007 & 0.314823300081004 \tabularnewline
35 & 0.731801518855483 & 0.536396962289034 & 0.268198481144517 \tabularnewline
36 & 0.870086395305753 & 0.259827209388495 & 0.129913604694247 \tabularnewline
37 & 0.854211110967678 & 0.291577778064643 & 0.145788889032322 \tabularnewline
38 & 0.870895761080656 & 0.258208477838689 & 0.129104238919344 \tabularnewline
39 & 0.942479764944627 & 0.115040470110746 & 0.0575202350553728 \tabularnewline
40 & 0.962973539510249 & 0.0740529209795029 & 0.0370264604897514 \tabularnewline
41 & 0.98614379568165 & 0.0277124086367 & 0.01385620431835 \tabularnewline
42 & 0.990444991734108 & 0.0191100165317839 & 0.00955500826589193 \tabularnewline
43 & 0.994641579908864 & 0.0107168401822713 & 0.00535842009113565 \tabularnewline
44 & 0.996752295226484 & 0.00649540954703253 & 0.00324770477351626 \tabularnewline
45 & 0.997064737461226 & 0.00587052507754749 & 0.00293526253877374 \tabularnewline
46 & 0.99818352694786 & 0.00363294610427899 & 0.0018164730521395 \tabularnewline
47 & 0.997863747805195 & 0.00427250438960896 & 0.00213625219480448 \tabularnewline
48 & 0.995952932941735 & 0.00809413411653091 & 0.00404706705826546 \tabularnewline
49 & 0.996098467432373 & 0.00780306513525346 & 0.00390153256762673 \tabularnewline
50 & 0.996528962937217 & 0.00694207412556517 & 0.00347103706278258 \tabularnewline
51 & 0.998878495059318 & 0.00224300988136315 & 0.00112150494068157 \tabularnewline
52 & 0.992851689039951 & 0.0142966219200985 & 0.00714831096004924 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C]3.76366296160732e-08[/C][C]7.52732592321464e-08[/C][C]0.99999996236337[/C][/ROW]
[ROW][C]9[/C][C]2.80759746850787e-10[/C][C]5.61519493701573e-10[/C][C]0.99999999971924[/C][/ROW]
[ROW][C]10[/C][C]1.24271534583977e-12[/C][C]2.48543069167954e-12[/C][C]0.999999999998757[/C][/ROW]
[ROW][C]11[/C][C]4.10903499396709e-15[/C][C]8.21806998793418e-15[/C][C]0.999999999999996[/C][/ROW]
[ROW][C]12[/C][C]0.000405144578051417[/C][C]0.000810289156102834[/C][C]0.999594855421949[/C][/ROW]
[ROW][C]13[/C][C]0.00011658636083702[/C][C]0.00023317272167404[/C][C]0.999883413639163[/C][/ROW]
[ROW][C]14[/C][C]0.000580666544648691[/C][C]0.00116133308929738[/C][C]0.999419333455351[/C][/ROW]
[ROW][C]15[/C][C]0.000680859339492355[/C][C]0.00136171867898471[/C][C]0.999319140660508[/C][/ROW]
[ROW][C]16[/C][C]0.000376237620056905[/C][C]0.000752475240113809[/C][C]0.999623762379943[/C][/ROW]
[ROW][C]17[/C][C]0.000185202803846961[/C][C]0.000370405607693922[/C][C]0.999814797196153[/C][/ROW]
[ROW][C]18[/C][C]0.00069755833334466[/C][C]0.00139511666668932[/C][C]0.999302441666655[/C][/ROW]
[ROW][C]19[/C][C]0.000567482327770644[/C][C]0.00113496465554129[/C][C]0.999432517672229[/C][/ROW]
[ROW][C]20[/C][C]0.000506448000073716[/C][C]0.00101289600014743[/C][C]0.999493551999926[/C][/ROW]
[ROW][C]21[/C][C]0.000281801700911814[/C][C]0.000563603401823628[/C][C]0.999718198299088[/C][/ROW]
[ROW][C]22[/C][C]0.00210869806693447[/C][C]0.00421739613386895[/C][C]0.997891301933066[/C][/ROW]
[ROW][C]23[/C][C]0.00528168935863156[/C][C]0.0105633787172631[/C][C]0.994718310641368[/C][/ROW]
[ROW][C]24[/C][C]0.00537266607295237[/C][C]0.0107453321459047[/C][C]0.994627333927048[/C][/ROW]
[ROW][C]25[/C][C]0.0172279400129446[/C][C]0.0344558800258893[/C][C]0.982772059987055[/C][/ROW]
[ROW][C]26[/C][C]0.0169352391192566[/C][C]0.0338704782385132[/C][C]0.983064760880743[/C][/ROW]
[ROW][C]27[/C][C]0.0283739344325143[/C][C]0.0567478688650286[/C][C]0.971626065567486[/C][/ROW]
[ROW][C]28[/C][C]0.0501117010642965[/C][C]0.100223402128593[/C][C]0.949888298935704[/C][/ROW]
[ROW][C]29[/C][C]0.0664515914139908[/C][C]0.132903182827982[/C][C]0.933548408586009[/C][/ROW]
[ROW][C]30[/C][C]0.164672034901232[/C][C]0.329344069802464[/C][C]0.835327965098768[/C][/ROW]
[ROW][C]31[/C][C]0.328253702370449[/C][C]0.656507404740897[/C][C]0.671746297629552[/C][/ROW]
[ROW][C]32[/C][C]0.305075650043073[/C][C]0.610151300086146[/C][C]0.694924349956927[/C][/ROW]
[ROW][C]33[/C][C]0.495137021145282[/C][C]0.990274042290563[/C][C]0.504862978854718[/C][/ROW]
[ROW][C]34[/C][C]0.685176699918996[/C][C]0.629646600162007[/C][C]0.314823300081004[/C][/ROW]
[ROW][C]35[/C][C]0.731801518855483[/C][C]0.536396962289034[/C][C]0.268198481144517[/C][/ROW]
[ROW][C]36[/C][C]0.870086395305753[/C][C]0.259827209388495[/C][C]0.129913604694247[/C][/ROW]
[ROW][C]37[/C][C]0.854211110967678[/C][C]0.291577778064643[/C][C]0.145788889032322[/C][/ROW]
[ROW][C]38[/C][C]0.870895761080656[/C][C]0.258208477838689[/C][C]0.129104238919344[/C][/ROW]
[ROW][C]39[/C][C]0.942479764944627[/C][C]0.115040470110746[/C][C]0.0575202350553728[/C][/ROW]
[ROW][C]40[/C][C]0.962973539510249[/C][C]0.0740529209795029[/C][C]0.0370264604897514[/C][/ROW]
[ROW][C]41[/C][C]0.98614379568165[/C][C]0.0277124086367[/C][C]0.01385620431835[/C][/ROW]
[ROW][C]42[/C][C]0.990444991734108[/C][C]0.0191100165317839[/C][C]0.00955500826589193[/C][/ROW]
[ROW][C]43[/C][C]0.994641579908864[/C][C]0.0107168401822713[/C][C]0.00535842009113565[/C][/ROW]
[ROW][C]44[/C][C]0.996752295226484[/C][C]0.00649540954703253[/C][C]0.00324770477351626[/C][/ROW]
[ROW][C]45[/C][C]0.997064737461226[/C][C]0.00587052507754749[/C][C]0.00293526253877374[/C][/ROW]
[ROW][C]46[/C][C]0.99818352694786[/C][C]0.00363294610427899[/C][C]0.0018164730521395[/C][/ROW]
[ROW][C]47[/C][C]0.997863747805195[/C][C]0.00427250438960896[/C][C]0.00213625219480448[/C][/ROW]
[ROW][C]48[/C][C]0.995952932941735[/C][C]0.00809413411653091[/C][C]0.00404706705826546[/C][/ROW]
[ROW][C]49[/C][C]0.996098467432373[/C][C]0.00780306513525346[/C][C]0.00390153256762673[/C][/ROW]
[ROW][C]50[/C][C]0.996528962937217[/C][C]0.00694207412556517[/C][C]0.00347103706278258[/C][/ROW]
[ROW][C]51[/C][C]0.998878495059318[/C][C]0.00224300988136315[/C][C]0.00112150494068157[/C][/ROW]
[ROW][C]52[/C][C]0.992851689039951[/C][C]0.0142966219200985[/C][C]0.00714831096004924[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
83.76366296160732e-087.52732592321464e-080.99999996236337
92.80759746850787e-105.61519493701573e-100.99999999971924
101.24271534583977e-122.48543069167954e-120.999999999998757
114.10903499396709e-158.21806998793418e-150.999999999999996
120.0004051445780514170.0008102891561028340.999594855421949
130.000116586360837020.000233172721674040.999883413639163
140.0005806665446486910.001161333089297380.999419333455351
150.0006808593394923550.001361718678984710.999319140660508
160.0003762376200569050.0007524752401138090.999623762379943
170.0001852028038469610.0003704056076939220.999814797196153
180.000697558333344660.001395116666689320.999302441666655
190.0005674823277706440.001134964655541290.999432517672229
200.0005064480000737160.001012896000147430.999493551999926
210.0002818017009118140.0005636034018236280.999718198299088
220.002108698066934470.004217396133868950.997891301933066
230.005281689358631560.01056337871726310.994718310641368
240.005372666072952370.01074533214590470.994627333927048
250.01722794001294460.03445588002588930.982772059987055
260.01693523911925660.03387047823851320.983064760880743
270.02837393443251430.05674786886502860.971626065567486
280.05011170106429650.1002234021285930.949888298935704
290.06645159141399080.1329031828279820.933548408586009
300.1646720349012320.3293440698024640.835327965098768
310.3282537023704490.6565074047408970.671746297629552
320.3050756500430730.6101513000861460.694924349956927
330.4951370211452820.9902740422905630.504862978854718
340.6851766999189960.6296466001620070.314823300081004
350.7318015188554830.5363969622890340.268198481144517
360.8700863953057530.2598272093884950.129913604694247
370.8542111109676780.2915777780646430.145788889032322
380.8708957610806560.2582084778386890.129104238919344
390.9424797649446270.1150404701107460.0575202350553728
400.9629735395102490.07405292097950290.0370264604897514
410.986143795681650.02771240863670.01385620431835
420.9904449917341080.01911001653178390.00955500826589193
430.9946415799088640.01071684018227130.00535842009113565
440.9967522952264840.006495409547032530.00324770477351626
450.9970647374612260.005870525077547490.00293526253877374
460.998183526947860.003632946104278990.0018164730521395
470.9978637478051950.004272504389608960.00213625219480448
480.9959529329417350.008094134116530910.00404706705826546
490.9960984674323730.007803065135253460.00390153256762673
500.9965289629372170.006942074125565170.00347103706278258
510.9988784950593180.002243009881363150.00112150494068157
520.9928516890399510.01429662192009850.00714831096004924







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.511111111111111NOK
5% type I error level310.688888888888889NOK
10% type I error level330.733333333333333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 23 & 0.511111111111111 & NOK \tabularnewline
5% type I error level & 31 & 0.688888888888889 & NOK \tabularnewline
10% type I error level & 33 & 0.733333333333333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147000&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]23[/C][C]0.511111111111111[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]31[/C][C]0.688888888888889[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]33[/C][C]0.733333333333333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147000&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147000&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.511111111111111NOK
5% type I error level310.688888888888889NOK
10% type I error level330.733333333333333NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}