Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 24 Nov 2011 14:37:40 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/24/t1322163533nxnym2kepvvojtn.htm/, Retrieved Thu, 31 Oct 2024 23:58:16 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=147170, Retrieved Thu, 31 Oct 2024 23:58:16 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [multiple regression] [2011-11-24 19:37:40] [1a4698f17d8e7f554418314cf0e4bd67] [Current]
Feedback Forum

Post a new message
Dataseries X:
2011-11   	-14	-20	36	-2	3
2011-10   	-7	-8	24	1	5
2011-09   	-9	-15	22	-1	4
2011-08   	-9	-13	17	-1	-4
2011-07   	-4	-6	8	-2	-1
2011-06   	-3	0	12	-1	3
2011-05   	1	5	5	1	2
2011-04   	-1	-1	6	0	2
2011-03   	-2	-5	5	-2	2
2011-02   	1	4	8	3	6
2011-01   	-3	-3	15	0	6
2010-12   	-2	3	16	0	6
2010-11   	0	8	17	2	6
2010-10   	-2	3	23	3	7
2010-09   	-4	3	24	1	4
2010-08   	-4	7	27	1	3
2010-07   	-7	4	31	0	0
2010-06   	-9	-4	40	1	6
2010-05   	-13	-6	47	-1	3
2010-04   	-8	8	43	2	1
2010-03   	-13	2	60	2	6
2010-02   	-15	-1	64	0	5
2010-01   	-15	-2	65	1	7
2009-12   	-15	0	65	1	4
2009-11   	-10	10	55	3	3
2009-10   	-12	3	57	3	6
2009-09   	-11	6	57	1	6
2009-08   	-11	7	57	1	5
2009-07   	-17	-4	65	-2	2
2009-06   	-18	-5	69	1	3
2009-05   	-19	-7	70	1	-2
2009-04   	-22	-10	71	-1	-4
2009-03   	-24	-21	71	-4	0
2009-02   	-24	-22	73	-2	1
2009-01   	-20	-16	68	-1	4
2008-12   	-25	-25	65	-5	-3
2008-11   	-22	-22	57	-4	-3
2008-10   	-17	-22	41	-5	0
2008-09   	-9	-19	21	0	6
2008-08   	-11	-21	21	-2	-1
2008-07   	-13	-31	17	-4	0
2008-06   	-11	-28	9	-6	-1
2008-05   	-9	-23	11	-2	1
2008-04   	-7	-17	6	-2	-4
2008-03   	-3	-12	-2	-2	-1
2008-02   	-3	-14	0	1	-1
2008-01   	-6	-18	5	-2	0
2007-12   	-4	-16	3	0	3
2007-11   	-8	-22	7	-1	0
2007-10   	-1	-9	4	2	8
2007-09   	-2	-10	8	3	8
2007-08   	-2	-10	9	2	8
2007-07   	-1	0	14	3	8
2007-06   	1	3	12	4	11
2007-05   	2	2	12	5	13
2007-04   	2	4	7	5	5
2007-03   	-1	-3	15	4	12
2007-02   	1	0	14	5	13
2007-01   	-1	-1	19	6	9
2006-12   	-8	-7	39	4	11
2006-11   	1	2	12	6	7
2006-10   	2	3	11	6	12
2006-09   	-2	-3	17	3	11
2006-08   	-2	-5	16	5	10
2006-07   	-2	0	25	5	13
2006-06   	-2	-3	24	5	14
2006-05   	-6	-7	28	3	10
2006-04   	-4	-7	25	5	13
2006-03   	-5	-7	31	5	12
2006-02   	-2	-4	24	6	13
2006-01   	-1	-3	24	6	17
2005-12   	-5	-6	33	5	15
2005-11   	-9	-10	37	4	6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'AstonUniversity' @ aston.wessa.net







Multiple Linear Regression - Estimated Regression Equation
ALGEMENEECONOMISCHSITUATIE[t] = + 177.987001468587 -0.0889106703726476JAARTAL[t] + 3.70130403074556CONSUMENTENVERTROUWEN[t] + 0.937369432584482`WERKLOOSHEIDINBELGIË`[t] -0.77658526223252`FINANCIËLESITUATIEVANDEGEZINNEN`[t] -0.827398659996597SPAARVERMOGENVANDEGEZINNEN[t] -0.0313111165458284t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ALGEMENEECONOMISCHSITUATIE[t] =  +  177.987001468587 -0.0889106703726476JAARTAL[t] +  3.70130403074556CONSUMENTENVERTROUWEN[t] +  0.937369432584482`WERKLOOSHEIDINBELGIË`[t] -0.77658526223252`FINANCIËLESITUATIEVANDEGEZINNEN`[t] -0.827398659996597SPAARVERMOGENVANDEGEZINNEN[t] -0.0313111165458284t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ALGEMENEECONOMISCHSITUATIE[t] =  +  177.987001468587 -0.0889106703726476JAARTAL[t] +  3.70130403074556CONSUMENTENVERTROUWEN[t] +  0.937369432584482`WERKLOOSHEIDINBELGIË`[t] -0.77658526223252`FINANCIËLESITUATIEVANDEGEZINNEN`[t] -0.827398659996597SPAARVERMOGENVANDEGEZINNEN[t] -0.0313111165458284t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ALGEMENEECONOMISCHSITUATIE[t] = + 177.987001468587 -0.0889106703726476JAARTAL[t] + 3.70130403074556CONSUMENTENVERTROUWEN[t] + 0.937369432584482`WERKLOOSHEIDINBELGIË`[t] -0.77658526223252`FINANCIËLESITUATIEVANDEGEZINNEN`[t] -0.827398659996597SPAARVERMOGENVANDEGEZINNEN[t] -0.0313111165458284t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)177.98700146858771.2759892.49720.0150220.007511
JAARTAL-0.08891067037264760.035557-2.50050.0148920.007446
CONSUMENTENVERTROUWEN3.701304030745560.1016136.426500
`WERKLOOSHEIDINBELGIË`0.9373694325844820.02549536.766700
`FINANCIËLESITUATIEVANDEGEZINNEN`-0.776585262232520.14078-5.51631e-060
SPAARVERMOGENVANDEGEZINNEN-0.8273986599965970.053355-15.507400
t-0.03131111654582840.010857-2.88410.0052960.002648

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 177.987001468587 & 71.275989 & 2.4972 & 0.015022 & 0.007511 \tabularnewline
JAARTAL & -0.0889106703726476 & 0.035557 & -2.5005 & 0.014892 & 0.007446 \tabularnewline
CONSUMENTENVERTROUWEN & 3.70130403074556 & 0.10161 & 36.4265 & 0 & 0 \tabularnewline
`WERKLOOSHEIDINBELGIË` & 0.937369432584482 & 0.025495 & 36.7667 & 0 & 0 \tabularnewline
`FINANCIËLESITUATIEVANDEGEZINNEN` & -0.77658526223252 & 0.14078 & -5.5163 & 1e-06 & 0 \tabularnewline
SPAARVERMOGENVANDEGEZINNEN & -0.827398659996597 & 0.053355 & -15.5074 & 0 & 0 \tabularnewline
t & -0.0313111165458284 & 0.010857 & -2.8841 & 0.005296 & 0.002648 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]177.987001468587[/C][C]71.275989[/C][C]2.4972[/C][C]0.015022[/C][C]0.007511[/C][/ROW]
[ROW][C]JAARTAL[/C][C]-0.0889106703726476[/C][C]0.035557[/C][C]-2.5005[/C][C]0.014892[/C][C]0.007446[/C][/ROW]
[ROW][C]CONSUMENTENVERTROUWEN[/C][C]3.70130403074556[/C][C]0.10161[/C][C]36.4265[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]`WERKLOOSHEIDINBELGIË`[/C][C]0.937369432584482[/C][C]0.025495[/C][C]36.7667[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]`FINANCIËLESITUATIEVANDEGEZINNEN`[/C][C]-0.77658526223252[/C][C]0.14078[/C][C]-5.5163[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]SPAARVERMOGENVANDEGEZINNEN[/C][C]-0.827398659996597[/C][C]0.053355[/C][C]-15.5074[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]t[/C][C]-0.0313111165458284[/C][C]0.010857[/C][C]-2.8841[/C][C]0.005296[/C][C]0.002648[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)177.98700146858771.2759892.49720.0150220.007511
JAARTAL-0.08891067037264760.035557-2.50050.0148920.007446
CONSUMENTENVERTROUWEN3.701304030745560.1016136.426500
`WERKLOOSHEIDINBELGIË`0.9373694325844820.02549536.766700
`FINANCIËLESITUATIEVANDEGEZINNEN`-0.776585262232520.14078-5.51631e-060
SPAARVERMOGENVANDEGEZINNEN-0.8273986599965970.053355-15.507400
t-0.03131111654582840.010857-2.88410.0052960.002648







Multiple Linear Regression - Regression Statistics
Multiple R0.99385482096443
R-squared0.98774740515424
Adjusted R-squared0.986633532895535
F-TEST (value)886.769014520752
F-TEST (DF numerator)6
F-TEST (DF denominator)66
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.13371599143121
Sum Squared Residuals84.8305886489718

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.99385482096443 \tabularnewline
R-squared & 0.98774740515424 \tabularnewline
Adjusted R-squared & 0.986633532895535 \tabularnewline
F-TEST (value) & 886.769014520752 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 66 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.13371599143121 \tabularnewline
Sum Squared Residuals & 84.8305886489718 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.99385482096443[/C][/ROW]
[ROW][C]R-squared[/C][C]0.98774740515424[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.986633532895535[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]886.769014520752[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]66[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.13371599143121[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]84.8305886489718[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.99385482096443
R-squared0.98774740515424
Adjusted R-squared0.986633532895535
F-TEST (value)886.769014520752
F-TEST (DF numerator)6
F-TEST (DF denominator)66
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.13371599143121
Sum Squared Residuals84.8305886489718







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1-20-18.8676327061752-1.13236729382476
2-8-8.311712575579320.311712575579323
3-15-15.32871210469630.328712104696304
4-13-13.51659177456440.516591774564366
5-6-5.27222901877265-0.727770981227345
60-2.027848946826562.02784894682656
755.36978749667737-0.369787496677374
8-1-0.439087656915212-0.560912343084788
9-5-3.64481238269868-1.35518761730132
1042.958465269223971.04153473077603
11-3-3.07563082588780.075630825887803
1232.598659565368180.40134043463182
1389.26524474806026-1.26524474806026
1435.76264757292845-2.76264757292845
1533.21255366155817-0.212553661558169
1676.731838832389740.268161167610262
1742.515963925794841.48403607420516
18-4-2.31151825156652-1.68848174843348
19-6-6.640003628921010.640003628921012
2087.3218585408460.678141459154003
2120.4934036541529471.50659634584705
22-1-0.899379279457069-0.100620720542931
23-2-2.513614216016780.513614216016781
2401.00419869189895-1.00419869189895
25109.2910308683950.708969131605007
2631.160743905164581.83925609483542
2766.2949966734567-0.294996673456696
2877.00217354653482-0.00217354653481666
29-4-3.01496519749379-0.985034802506214
30-5-6.244167731514041.24416773151405
31-7-4.99133081661061-2.00866918338939
32-10-12.0701274187232.07012741872304
33-21-20.5727961204215-0.427203879578548
34-22-21.1988482266326-0.801151773367401
35-16-14.4594822957136-1.54051770428642
36-25-25.84436215036260.844362150362595
37-22-23.13621256795281.13621256795279
38-22-21.4534358402525-0.546564159747534
39-19-19.55793230403830.557932304038316
40-21-19.7358010080067-1.26419899199331
41-31-30.2823367222858-0.717663277714241
42-28-28.11833672392730.11833672392734
43-23-23.7223499531090.722349953109015
44-17-16.9898175414758-0.0101824585241963
45-12-12.28597464607770.28597464607771
46-14-12.8612133545248-1.13878664547522
47-18-17.8961429440565-0.103857055943453
48-16-15.3680233242633-0.631976675736709
49-22-23.28520226160381.28520226160375
50-9-9.257349197727120.257349197727115
51-10-10.10598254728570.105982547285742
52-10-8.51224963938722-1.48775036061278
530-1.020905494870241.02090549487024
5431.127960672311121.87203932768888
5522.27766033391248-0.27766033391248
5644.08978066404437-0.0897806640443704
57-3-4.650603112178571.65060311217857
5800.090429807580466-0.090429807580466
59-1-0.212543500152847-0.787456499847153
60-7-6.44029293128431-0.559707068715689
6123.19867099424755-1.19867099424755
6231.705390505507171.29460949449283
63-3-4.438676362192491.43867636219249
64-5-6.222039446163891.22203944616389
650-0.3881323198118150.388132319811815
66-3-2.27312219931137-0.72687780068863
67-7-8.586317214422711.58631721442271
68-7-8.151405742058351.15140574205835
69-7-5.5213163042189-1.4786836957811
70-4-2.7031959492212-1.2968040507788
71-3-2.4317083453805-0.568291654619497
72-6-5.33360006495074-0.666399935049264
73-10-8.28638704231161-1.71361295768839

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & -20 & -18.8676327061752 & -1.13236729382476 \tabularnewline
2 & -8 & -8.31171257557932 & 0.311712575579323 \tabularnewline
3 & -15 & -15.3287121046963 & 0.328712104696304 \tabularnewline
4 & -13 & -13.5165917745644 & 0.516591774564366 \tabularnewline
5 & -6 & -5.27222901877265 & -0.727770981227345 \tabularnewline
6 & 0 & -2.02784894682656 & 2.02784894682656 \tabularnewline
7 & 5 & 5.36978749667737 & -0.369787496677374 \tabularnewline
8 & -1 & -0.439087656915212 & -0.560912343084788 \tabularnewline
9 & -5 & -3.64481238269868 & -1.35518761730132 \tabularnewline
10 & 4 & 2.95846526922397 & 1.04153473077603 \tabularnewline
11 & -3 & -3.0756308258878 & 0.075630825887803 \tabularnewline
12 & 3 & 2.59865956536818 & 0.40134043463182 \tabularnewline
13 & 8 & 9.26524474806026 & -1.26524474806026 \tabularnewline
14 & 3 & 5.76264757292845 & -2.76264757292845 \tabularnewline
15 & 3 & 3.21255366155817 & -0.212553661558169 \tabularnewline
16 & 7 & 6.73183883238974 & 0.268161167610262 \tabularnewline
17 & 4 & 2.51596392579484 & 1.48403607420516 \tabularnewline
18 & -4 & -2.31151825156652 & -1.68848174843348 \tabularnewline
19 & -6 & -6.64000362892101 & 0.640003628921012 \tabularnewline
20 & 8 & 7.321858540846 & 0.678141459154003 \tabularnewline
21 & 2 & 0.493403654152947 & 1.50659634584705 \tabularnewline
22 & -1 & -0.899379279457069 & -0.100620720542931 \tabularnewline
23 & -2 & -2.51361421601678 & 0.513614216016781 \tabularnewline
24 & 0 & 1.00419869189895 & -1.00419869189895 \tabularnewline
25 & 10 & 9.291030868395 & 0.708969131605007 \tabularnewline
26 & 3 & 1.16074390516458 & 1.83925609483542 \tabularnewline
27 & 6 & 6.2949966734567 & -0.294996673456696 \tabularnewline
28 & 7 & 7.00217354653482 & -0.00217354653481666 \tabularnewline
29 & -4 & -3.01496519749379 & -0.985034802506214 \tabularnewline
30 & -5 & -6.24416773151404 & 1.24416773151405 \tabularnewline
31 & -7 & -4.99133081661061 & -2.00866918338939 \tabularnewline
32 & -10 & -12.070127418723 & 2.07012741872304 \tabularnewline
33 & -21 & -20.5727961204215 & -0.427203879578548 \tabularnewline
34 & -22 & -21.1988482266326 & -0.801151773367401 \tabularnewline
35 & -16 & -14.4594822957136 & -1.54051770428642 \tabularnewline
36 & -25 & -25.8443621503626 & 0.844362150362595 \tabularnewline
37 & -22 & -23.1362125679528 & 1.13621256795279 \tabularnewline
38 & -22 & -21.4534358402525 & -0.546564159747534 \tabularnewline
39 & -19 & -19.5579323040383 & 0.557932304038316 \tabularnewline
40 & -21 & -19.7358010080067 & -1.26419899199331 \tabularnewline
41 & -31 & -30.2823367222858 & -0.717663277714241 \tabularnewline
42 & -28 & -28.1183367239273 & 0.11833672392734 \tabularnewline
43 & -23 & -23.722349953109 & 0.722349953109015 \tabularnewline
44 & -17 & -16.9898175414758 & -0.0101824585241963 \tabularnewline
45 & -12 & -12.2859746460777 & 0.28597464607771 \tabularnewline
46 & -14 & -12.8612133545248 & -1.13878664547522 \tabularnewline
47 & -18 & -17.8961429440565 & -0.103857055943453 \tabularnewline
48 & -16 & -15.3680233242633 & -0.631976675736709 \tabularnewline
49 & -22 & -23.2852022616038 & 1.28520226160375 \tabularnewline
50 & -9 & -9.25734919772712 & 0.257349197727115 \tabularnewline
51 & -10 & -10.1059825472857 & 0.105982547285742 \tabularnewline
52 & -10 & -8.51224963938722 & -1.48775036061278 \tabularnewline
53 & 0 & -1.02090549487024 & 1.02090549487024 \tabularnewline
54 & 3 & 1.12796067231112 & 1.87203932768888 \tabularnewline
55 & 2 & 2.27766033391248 & -0.27766033391248 \tabularnewline
56 & 4 & 4.08978066404437 & -0.0897806640443704 \tabularnewline
57 & -3 & -4.65060311217857 & 1.65060311217857 \tabularnewline
58 & 0 & 0.090429807580466 & -0.090429807580466 \tabularnewline
59 & -1 & -0.212543500152847 & -0.787456499847153 \tabularnewline
60 & -7 & -6.44029293128431 & -0.559707068715689 \tabularnewline
61 & 2 & 3.19867099424755 & -1.19867099424755 \tabularnewline
62 & 3 & 1.70539050550717 & 1.29460949449283 \tabularnewline
63 & -3 & -4.43867636219249 & 1.43867636219249 \tabularnewline
64 & -5 & -6.22203944616389 & 1.22203944616389 \tabularnewline
65 & 0 & -0.388132319811815 & 0.388132319811815 \tabularnewline
66 & -3 & -2.27312219931137 & -0.72687780068863 \tabularnewline
67 & -7 & -8.58631721442271 & 1.58631721442271 \tabularnewline
68 & -7 & -8.15140574205835 & 1.15140574205835 \tabularnewline
69 & -7 & -5.5213163042189 & -1.4786836957811 \tabularnewline
70 & -4 & -2.7031959492212 & -1.2968040507788 \tabularnewline
71 & -3 & -2.4317083453805 & -0.568291654619497 \tabularnewline
72 & -6 & -5.33360006495074 & -0.666399935049264 \tabularnewline
73 & -10 & -8.28638704231161 & -1.71361295768839 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]-20[/C][C]-18.8676327061752[/C][C]-1.13236729382476[/C][/ROW]
[ROW][C]2[/C][C]-8[/C][C]-8.31171257557932[/C][C]0.311712575579323[/C][/ROW]
[ROW][C]3[/C][C]-15[/C][C]-15.3287121046963[/C][C]0.328712104696304[/C][/ROW]
[ROW][C]4[/C][C]-13[/C][C]-13.5165917745644[/C][C]0.516591774564366[/C][/ROW]
[ROW][C]5[/C][C]-6[/C][C]-5.27222901877265[/C][C]-0.727770981227345[/C][/ROW]
[ROW][C]6[/C][C]0[/C][C]-2.02784894682656[/C][C]2.02784894682656[/C][/ROW]
[ROW][C]7[/C][C]5[/C][C]5.36978749667737[/C][C]-0.369787496677374[/C][/ROW]
[ROW][C]8[/C][C]-1[/C][C]-0.439087656915212[/C][C]-0.560912343084788[/C][/ROW]
[ROW][C]9[/C][C]-5[/C][C]-3.64481238269868[/C][C]-1.35518761730132[/C][/ROW]
[ROW][C]10[/C][C]4[/C][C]2.95846526922397[/C][C]1.04153473077603[/C][/ROW]
[ROW][C]11[/C][C]-3[/C][C]-3.0756308258878[/C][C]0.075630825887803[/C][/ROW]
[ROW][C]12[/C][C]3[/C][C]2.59865956536818[/C][C]0.40134043463182[/C][/ROW]
[ROW][C]13[/C][C]8[/C][C]9.26524474806026[/C][C]-1.26524474806026[/C][/ROW]
[ROW][C]14[/C][C]3[/C][C]5.76264757292845[/C][C]-2.76264757292845[/C][/ROW]
[ROW][C]15[/C][C]3[/C][C]3.21255366155817[/C][C]-0.212553661558169[/C][/ROW]
[ROW][C]16[/C][C]7[/C][C]6.73183883238974[/C][C]0.268161167610262[/C][/ROW]
[ROW][C]17[/C][C]4[/C][C]2.51596392579484[/C][C]1.48403607420516[/C][/ROW]
[ROW][C]18[/C][C]-4[/C][C]-2.31151825156652[/C][C]-1.68848174843348[/C][/ROW]
[ROW][C]19[/C][C]-6[/C][C]-6.64000362892101[/C][C]0.640003628921012[/C][/ROW]
[ROW][C]20[/C][C]8[/C][C]7.321858540846[/C][C]0.678141459154003[/C][/ROW]
[ROW][C]21[/C][C]2[/C][C]0.493403654152947[/C][C]1.50659634584705[/C][/ROW]
[ROW][C]22[/C][C]-1[/C][C]-0.899379279457069[/C][C]-0.100620720542931[/C][/ROW]
[ROW][C]23[/C][C]-2[/C][C]-2.51361421601678[/C][C]0.513614216016781[/C][/ROW]
[ROW][C]24[/C][C]0[/C][C]1.00419869189895[/C][C]-1.00419869189895[/C][/ROW]
[ROW][C]25[/C][C]10[/C][C]9.291030868395[/C][C]0.708969131605007[/C][/ROW]
[ROW][C]26[/C][C]3[/C][C]1.16074390516458[/C][C]1.83925609483542[/C][/ROW]
[ROW][C]27[/C][C]6[/C][C]6.2949966734567[/C][C]-0.294996673456696[/C][/ROW]
[ROW][C]28[/C][C]7[/C][C]7.00217354653482[/C][C]-0.00217354653481666[/C][/ROW]
[ROW][C]29[/C][C]-4[/C][C]-3.01496519749379[/C][C]-0.985034802506214[/C][/ROW]
[ROW][C]30[/C][C]-5[/C][C]-6.24416773151404[/C][C]1.24416773151405[/C][/ROW]
[ROW][C]31[/C][C]-7[/C][C]-4.99133081661061[/C][C]-2.00866918338939[/C][/ROW]
[ROW][C]32[/C][C]-10[/C][C]-12.070127418723[/C][C]2.07012741872304[/C][/ROW]
[ROW][C]33[/C][C]-21[/C][C]-20.5727961204215[/C][C]-0.427203879578548[/C][/ROW]
[ROW][C]34[/C][C]-22[/C][C]-21.1988482266326[/C][C]-0.801151773367401[/C][/ROW]
[ROW][C]35[/C][C]-16[/C][C]-14.4594822957136[/C][C]-1.54051770428642[/C][/ROW]
[ROW][C]36[/C][C]-25[/C][C]-25.8443621503626[/C][C]0.844362150362595[/C][/ROW]
[ROW][C]37[/C][C]-22[/C][C]-23.1362125679528[/C][C]1.13621256795279[/C][/ROW]
[ROW][C]38[/C][C]-22[/C][C]-21.4534358402525[/C][C]-0.546564159747534[/C][/ROW]
[ROW][C]39[/C][C]-19[/C][C]-19.5579323040383[/C][C]0.557932304038316[/C][/ROW]
[ROW][C]40[/C][C]-21[/C][C]-19.7358010080067[/C][C]-1.26419899199331[/C][/ROW]
[ROW][C]41[/C][C]-31[/C][C]-30.2823367222858[/C][C]-0.717663277714241[/C][/ROW]
[ROW][C]42[/C][C]-28[/C][C]-28.1183367239273[/C][C]0.11833672392734[/C][/ROW]
[ROW][C]43[/C][C]-23[/C][C]-23.722349953109[/C][C]0.722349953109015[/C][/ROW]
[ROW][C]44[/C][C]-17[/C][C]-16.9898175414758[/C][C]-0.0101824585241963[/C][/ROW]
[ROW][C]45[/C][C]-12[/C][C]-12.2859746460777[/C][C]0.28597464607771[/C][/ROW]
[ROW][C]46[/C][C]-14[/C][C]-12.8612133545248[/C][C]-1.13878664547522[/C][/ROW]
[ROW][C]47[/C][C]-18[/C][C]-17.8961429440565[/C][C]-0.103857055943453[/C][/ROW]
[ROW][C]48[/C][C]-16[/C][C]-15.3680233242633[/C][C]-0.631976675736709[/C][/ROW]
[ROW][C]49[/C][C]-22[/C][C]-23.2852022616038[/C][C]1.28520226160375[/C][/ROW]
[ROW][C]50[/C][C]-9[/C][C]-9.25734919772712[/C][C]0.257349197727115[/C][/ROW]
[ROW][C]51[/C][C]-10[/C][C]-10.1059825472857[/C][C]0.105982547285742[/C][/ROW]
[ROW][C]52[/C][C]-10[/C][C]-8.51224963938722[/C][C]-1.48775036061278[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]-1.02090549487024[/C][C]1.02090549487024[/C][/ROW]
[ROW][C]54[/C][C]3[/C][C]1.12796067231112[/C][C]1.87203932768888[/C][/ROW]
[ROW][C]55[/C][C]2[/C][C]2.27766033391248[/C][C]-0.27766033391248[/C][/ROW]
[ROW][C]56[/C][C]4[/C][C]4.08978066404437[/C][C]-0.0897806640443704[/C][/ROW]
[ROW][C]57[/C][C]-3[/C][C]-4.65060311217857[/C][C]1.65060311217857[/C][/ROW]
[ROW][C]58[/C][C]0[/C][C]0.090429807580466[/C][C]-0.090429807580466[/C][/ROW]
[ROW][C]59[/C][C]-1[/C][C]-0.212543500152847[/C][C]-0.787456499847153[/C][/ROW]
[ROW][C]60[/C][C]-7[/C][C]-6.44029293128431[/C][C]-0.559707068715689[/C][/ROW]
[ROW][C]61[/C][C]2[/C][C]3.19867099424755[/C][C]-1.19867099424755[/C][/ROW]
[ROW][C]62[/C][C]3[/C][C]1.70539050550717[/C][C]1.29460949449283[/C][/ROW]
[ROW][C]63[/C][C]-3[/C][C]-4.43867636219249[/C][C]1.43867636219249[/C][/ROW]
[ROW][C]64[/C][C]-5[/C][C]-6.22203944616389[/C][C]1.22203944616389[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]-0.388132319811815[/C][C]0.388132319811815[/C][/ROW]
[ROW][C]66[/C][C]-3[/C][C]-2.27312219931137[/C][C]-0.72687780068863[/C][/ROW]
[ROW][C]67[/C][C]-7[/C][C]-8.58631721442271[/C][C]1.58631721442271[/C][/ROW]
[ROW][C]68[/C][C]-7[/C][C]-8.15140574205835[/C][C]1.15140574205835[/C][/ROW]
[ROW][C]69[/C][C]-7[/C][C]-5.5213163042189[/C][C]-1.4786836957811[/C][/ROW]
[ROW][C]70[/C][C]-4[/C][C]-2.7031959492212[/C][C]-1.2968040507788[/C][/ROW]
[ROW][C]71[/C][C]-3[/C][C]-2.4317083453805[/C][C]-0.568291654619497[/C][/ROW]
[ROW][C]72[/C][C]-6[/C][C]-5.33360006495074[/C][C]-0.666399935049264[/C][/ROW]
[ROW][C]73[/C][C]-10[/C][C]-8.28638704231161[/C][C]-1.71361295768839[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1-20-18.8676327061752-1.13236729382476
2-8-8.311712575579320.311712575579323
3-15-15.32871210469630.328712104696304
4-13-13.51659177456440.516591774564366
5-6-5.27222901877265-0.727770981227345
60-2.027848946826562.02784894682656
755.36978749667737-0.369787496677374
8-1-0.439087656915212-0.560912343084788
9-5-3.64481238269868-1.35518761730132
1042.958465269223971.04153473077603
11-3-3.07563082588780.075630825887803
1232.598659565368180.40134043463182
1389.26524474806026-1.26524474806026
1435.76264757292845-2.76264757292845
1533.21255366155817-0.212553661558169
1676.731838832389740.268161167610262
1742.515963925794841.48403607420516
18-4-2.31151825156652-1.68848174843348
19-6-6.640003628921010.640003628921012
2087.3218585408460.678141459154003
2120.4934036541529471.50659634584705
22-1-0.899379279457069-0.100620720542931
23-2-2.513614216016780.513614216016781
2401.00419869189895-1.00419869189895
25109.2910308683950.708969131605007
2631.160743905164581.83925609483542
2766.2949966734567-0.294996673456696
2877.00217354653482-0.00217354653481666
29-4-3.01496519749379-0.985034802506214
30-5-6.244167731514041.24416773151405
31-7-4.99133081661061-2.00866918338939
32-10-12.0701274187232.07012741872304
33-21-20.5727961204215-0.427203879578548
34-22-21.1988482266326-0.801151773367401
35-16-14.4594822957136-1.54051770428642
36-25-25.84436215036260.844362150362595
37-22-23.13621256795281.13621256795279
38-22-21.4534358402525-0.546564159747534
39-19-19.55793230403830.557932304038316
40-21-19.7358010080067-1.26419899199331
41-31-30.2823367222858-0.717663277714241
42-28-28.11833672392730.11833672392734
43-23-23.7223499531090.722349953109015
44-17-16.9898175414758-0.0101824585241963
45-12-12.28597464607770.28597464607771
46-14-12.8612133545248-1.13878664547522
47-18-17.8961429440565-0.103857055943453
48-16-15.3680233242633-0.631976675736709
49-22-23.28520226160381.28520226160375
50-9-9.257349197727120.257349197727115
51-10-10.10598254728570.105982547285742
52-10-8.51224963938722-1.48775036061278
530-1.020905494870241.02090549487024
5431.127960672311121.87203932768888
5522.27766033391248-0.27766033391248
5644.08978066404437-0.0897806640443704
57-3-4.650603112178571.65060311217857
5800.090429807580466-0.090429807580466
59-1-0.212543500152847-0.787456499847153
60-7-6.44029293128431-0.559707068715689
6123.19867099424755-1.19867099424755
6231.705390505507171.29460949449283
63-3-4.438676362192491.43867636219249
64-5-6.222039446163891.22203944616389
650-0.3881323198118150.388132319811815
66-3-2.27312219931137-0.72687780068863
67-7-8.586317214422711.58631721442271
68-7-8.151405742058351.15140574205835
69-7-5.5213163042189-1.4786836957811
70-4-2.7031959492212-1.2968040507788
71-3-2.4317083453805-0.568291654619497
72-6-5.33360006495074-0.666399935049264
73-10-8.28638704231161-1.71361295768839







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
100.8648400449844290.2703199100311430.135159955015571
110.7659427913974920.4681144172050160.234057208602508
120.6450697384325820.7098605231348370.354930261567418
130.6542766297498190.6914467405003620.345723370250181
140.797931343321750.40413731335650.20206865667825
150.8296203992712780.3407592014574450.170379600728722
160.8163855792871860.3672288414256280.183614420712814
170.8182324548783350.3635350902433310.181767545121665
180.8705838232438360.2588323535123290.129416176756164
190.8289186531755750.3421626936488510.171081346824425
200.7695686650603290.4608626698793430.230431334939672
210.7338640720935270.5322718558129450.266135927906473
220.7120591885789680.5758816228420650.287940811421032
230.6380355785173730.7239288429652530.361964421482627
240.6094075585368460.7811848829263080.390592441463154
250.5614305250007380.8771389499985230.438569474999262
260.6649748712396650.670050257520670.335025128760335
270.5959749491435230.8080501017129540.404025050856477
280.5197813193074460.9604373613851090.480218680692554
290.5125944505580560.9748110988838870.487405549441944
300.4791467216149990.9582934432299980.520853278385001
310.7227080679187920.5545838641624160.277291932081208
320.8613100226344340.2773799547311310.138689977365566
330.8184358661219290.3631282677561430.181564133878071
340.779333937903570.4413321241928590.220666062096429
350.7869256963269960.4261486073460080.213074303673004
360.8076076039482210.3847847921035580.192392396051779
370.8762265899127660.2475468201744680.123773410087234
380.8343705663411750.3312588673176490.165629433658825
390.8056811016036310.3886377967927380.194318898396369
400.7887081005699120.4225837988601750.211291899430088
410.7461306365685760.5077387268628470.253869363431423
420.7130946908653440.5738106182693130.286905309134656
430.6688237486028310.6623525027943380.331176251397169
440.6026913784386450.7946172431227110.397308621561355
450.5301610250518470.9396779498963060.469838974948153
460.5074225230209590.9851549539580830.492577476979041
470.454336602827760.908673205655520.54566339717224
480.479293343940040.958586687880080.52070665605996
490.4495229730505990.8990459461011990.5504770269494
500.3965850568704610.7931701137409220.60341494312954
510.3274895883796780.6549791767593550.672510411620322
520.9739207480677070.05215850386458560.0260792519322928
530.9634965294892660.07300694102146860.0365034705107343
540.9673345900205960.06533081995880880.0326654099794044
550.967097026320950.0658059473580980.032902973679049
560.9453188522842670.1093622954314660.0546811477157332
570.9183569328378440.1632861343243120.0816430671621562
580.921523556953920.1569528860921590.0784764430460793
590.8701411370893950.2597177258212090.129858862910605
600.8103090218388210.3793819563223570.189690978161179
610.764205869258780.4715882614824390.235794130741219
620.7225275489541890.5549449020916230.277472451045811
630.6713002272859060.6573995454281870.328699772714094

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 & 0.864840044984429 & 0.270319910031143 & 0.135159955015571 \tabularnewline
11 & 0.765942791397492 & 0.468114417205016 & 0.234057208602508 \tabularnewline
12 & 0.645069738432582 & 0.709860523134837 & 0.354930261567418 \tabularnewline
13 & 0.654276629749819 & 0.691446740500362 & 0.345723370250181 \tabularnewline
14 & 0.79793134332175 & 0.4041373133565 & 0.20206865667825 \tabularnewline
15 & 0.829620399271278 & 0.340759201457445 & 0.170379600728722 \tabularnewline
16 & 0.816385579287186 & 0.367228841425628 & 0.183614420712814 \tabularnewline
17 & 0.818232454878335 & 0.363535090243331 & 0.181767545121665 \tabularnewline
18 & 0.870583823243836 & 0.258832353512329 & 0.129416176756164 \tabularnewline
19 & 0.828918653175575 & 0.342162693648851 & 0.171081346824425 \tabularnewline
20 & 0.769568665060329 & 0.460862669879343 & 0.230431334939672 \tabularnewline
21 & 0.733864072093527 & 0.532271855812945 & 0.266135927906473 \tabularnewline
22 & 0.712059188578968 & 0.575881622842065 & 0.287940811421032 \tabularnewline
23 & 0.638035578517373 & 0.723928842965253 & 0.361964421482627 \tabularnewline
24 & 0.609407558536846 & 0.781184882926308 & 0.390592441463154 \tabularnewline
25 & 0.561430525000738 & 0.877138949998523 & 0.438569474999262 \tabularnewline
26 & 0.664974871239665 & 0.67005025752067 & 0.335025128760335 \tabularnewline
27 & 0.595974949143523 & 0.808050101712954 & 0.404025050856477 \tabularnewline
28 & 0.519781319307446 & 0.960437361385109 & 0.480218680692554 \tabularnewline
29 & 0.512594450558056 & 0.974811098883887 & 0.487405549441944 \tabularnewline
30 & 0.479146721614999 & 0.958293443229998 & 0.520853278385001 \tabularnewline
31 & 0.722708067918792 & 0.554583864162416 & 0.277291932081208 \tabularnewline
32 & 0.861310022634434 & 0.277379954731131 & 0.138689977365566 \tabularnewline
33 & 0.818435866121929 & 0.363128267756143 & 0.181564133878071 \tabularnewline
34 & 0.77933393790357 & 0.441332124192859 & 0.220666062096429 \tabularnewline
35 & 0.786925696326996 & 0.426148607346008 & 0.213074303673004 \tabularnewline
36 & 0.807607603948221 & 0.384784792103558 & 0.192392396051779 \tabularnewline
37 & 0.876226589912766 & 0.247546820174468 & 0.123773410087234 \tabularnewline
38 & 0.834370566341175 & 0.331258867317649 & 0.165629433658825 \tabularnewline
39 & 0.805681101603631 & 0.388637796792738 & 0.194318898396369 \tabularnewline
40 & 0.788708100569912 & 0.422583798860175 & 0.211291899430088 \tabularnewline
41 & 0.746130636568576 & 0.507738726862847 & 0.253869363431423 \tabularnewline
42 & 0.713094690865344 & 0.573810618269313 & 0.286905309134656 \tabularnewline
43 & 0.668823748602831 & 0.662352502794338 & 0.331176251397169 \tabularnewline
44 & 0.602691378438645 & 0.794617243122711 & 0.397308621561355 \tabularnewline
45 & 0.530161025051847 & 0.939677949896306 & 0.469838974948153 \tabularnewline
46 & 0.507422523020959 & 0.985154953958083 & 0.492577476979041 \tabularnewline
47 & 0.45433660282776 & 0.90867320565552 & 0.54566339717224 \tabularnewline
48 & 0.47929334394004 & 0.95858668788008 & 0.52070665605996 \tabularnewline
49 & 0.449522973050599 & 0.899045946101199 & 0.5504770269494 \tabularnewline
50 & 0.396585056870461 & 0.793170113740922 & 0.60341494312954 \tabularnewline
51 & 0.327489588379678 & 0.654979176759355 & 0.672510411620322 \tabularnewline
52 & 0.973920748067707 & 0.0521585038645856 & 0.0260792519322928 \tabularnewline
53 & 0.963496529489266 & 0.0730069410214686 & 0.0365034705107343 \tabularnewline
54 & 0.967334590020596 & 0.0653308199588088 & 0.0326654099794044 \tabularnewline
55 & 0.96709702632095 & 0.065805947358098 & 0.032902973679049 \tabularnewline
56 & 0.945318852284267 & 0.109362295431466 & 0.0546811477157332 \tabularnewline
57 & 0.918356932837844 & 0.163286134324312 & 0.0816430671621562 \tabularnewline
58 & 0.92152355695392 & 0.156952886092159 & 0.0784764430460793 \tabularnewline
59 & 0.870141137089395 & 0.259717725821209 & 0.129858862910605 \tabularnewline
60 & 0.810309021838821 & 0.379381956322357 & 0.189690978161179 \tabularnewline
61 & 0.76420586925878 & 0.471588261482439 & 0.235794130741219 \tabularnewline
62 & 0.722527548954189 & 0.554944902091623 & 0.277472451045811 \tabularnewline
63 & 0.671300227285906 & 0.657399545428187 & 0.328699772714094 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C]0.864840044984429[/C][C]0.270319910031143[/C][C]0.135159955015571[/C][/ROW]
[ROW][C]11[/C][C]0.765942791397492[/C][C]0.468114417205016[/C][C]0.234057208602508[/C][/ROW]
[ROW][C]12[/C][C]0.645069738432582[/C][C]0.709860523134837[/C][C]0.354930261567418[/C][/ROW]
[ROW][C]13[/C][C]0.654276629749819[/C][C]0.691446740500362[/C][C]0.345723370250181[/C][/ROW]
[ROW][C]14[/C][C]0.79793134332175[/C][C]0.4041373133565[/C][C]0.20206865667825[/C][/ROW]
[ROW][C]15[/C][C]0.829620399271278[/C][C]0.340759201457445[/C][C]0.170379600728722[/C][/ROW]
[ROW][C]16[/C][C]0.816385579287186[/C][C]0.367228841425628[/C][C]0.183614420712814[/C][/ROW]
[ROW][C]17[/C][C]0.818232454878335[/C][C]0.363535090243331[/C][C]0.181767545121665[/C][/ROW]
[ROW][C]18[/C][C]0.870583823243836[/C][C]0.258832353512329[/C][C]0.129416176756164[/C][/ROW]
[ROW][C]19[/C][C]0.828918653175575[/C][C]0.342162693648851[/C][C]0.171081346824425[/C][/ROW]
[ROW][C]20[/C][C]0.769568665060329[/C][C]0.460862669879343[/C][C]0.230431334939672[/C][/ROW]
[ROW][C]21[/C][C]0.733864072093527[/C][C]0.532271855812945[/C][C]0.266135927906473[/C][/ROW]
[ROW][C]22[/C][C]0.712059188578968[/C][C]0.575881622842065[/C][C]0.287940811421032[/C][/ROW]
[ROW][C]23[/C][C]0.638035578517373[/C][C]0.723928842965253[/C][C]0.361964421482627[/C][/ROW]
[ROW][C]24[/C][C]0.609407558536846[/C][C]0.781184882926308[/C][C]0.390592441463154[/C][/ROW]
[ROW][C]25[/C][C]0.561430525000738[/C][C]0.877138949998523[/C][C]0.438569474999262[/C][/ROW]
[ROW][C]26[/C][C]0.664974871239665[/C][C]0.67005025752067[/C][C]0.335025128760335[/C][/ROW]
[ROW][C]27[/C][C]0.595974949143523[/C][C]0.808050101712954[/C][C]0.404025050856477[/C][/ROW]
[ROW][C]28[/C][C]0.519781319307446[/C][C]0.960437361385109[/C][C]0.480218680692554[/C][/ROW]
[ROW][C]29[/C][C]0.512594450558056[/C][C]0.974811098883887[/C][C]0.487405549441944[/C][/ROW]
[ROW][C]30[/C][C]0.479146721614999[/C][C]0.958293443229998[/C][C]0.520853278385001[/C][/ROW]
[ROW][C]31[/C][C]0.722708067918792[/C][C]0.554583864162416[/C][C]0.277291932081208[/C][/ROW]
[ROW][C]32[/C][C]0.861310022634434[/C][C]0.277379954731131[/C][C]0.138689977365566[/C][/ROW]
[ROW][C]33[/C][C]0.818435866121929[/C][C]0.363128267756143[/C][C]0.181564133878071[/C][/ROW]
[ROW][C]34[/C][C]0.77933393790357[/C][C]0.441332124192859[/C][C]0.220666062096429[/C][/ROW]
[ROW][C]35[/C][C]0.786925696326996[/C][C]0.426148607346008[/C][C]0.213074303673004[/C][/ROW]
[ROW][C]36[/C][C]0.807607603948221[/C][C]0.384784792103558[/C][C]0.192392396051779[/C][/ROW]
[ROW][C]37[/C][C]0.876226589912766[/C][C]0.247546820174468[/C][C]0.123773410087234[/C][/ROW]
[ROW][C]38[/C][C]0.834370566341175[/C][C]0.331258867317649[/C][C]0.165629433658825[/C][/ROW]
[ROW][C]39[/C][C]0.805681101603631[/C][C]0.388637796792738[/C][C]0.194318898396369[/C][/ROW]
[ROW][C]40[/C][C]0.788708100569912[/C][C]0.422583798860175[/C][C]0.211291899430088[/C][/ROW]
[ROW][C]41[/C][C]0.746130636568576[/C][C]0.507738726862847[/C][C]0.253869363431423[/C][/ROW]
[ROW][C]42[/C][C]0.713094690865344[/C][C]0.573810618269313[/C][C]0.286905309134656[/C][/ROW]
[ROW][C]43[/C][C]0.668823748602831[/C][C]0.662352502794338[/C][C]0.331176251397169[/C][/ROW]
[ROW][C]44[/C][C]0.602691378438645[/C][C]0.794617243122711[/C][C]0.397308621561355[/C][/ROW]
[ROW][C]45[/C][C]0.530161025051847[/C][C]0.939677949896306[/C][C]0.469838974948153[/C][/ROW]
[ROW][C]46[/C][C]0.507422523020959[/C][C]0.985154953958083[/C][C]0.492577476979041[/C][/ROW]
[ROW][C]47[/C][C]0.45433660282776[/C][C]0.90867320565552[/C][C]0.54566339717224[/C][/ROW]
[ROW][C]48[/C][C]0.47929334394004[/C][C]0.95858668788008[/C][C]0.52070665605996[/C][/ROW]
[ROW][C]49[/C][C]0.449522973050599[/C][C]0.899045946101199[/C][C]0.5504770269494[/C][/ROW]
[ROW][C]50[/C][C]0.396585056870461[/C][C]0.793170113740922[/C][C]0.60341494312954[/C][/ROW]
[ROW][C]51[/C][C]0.327489588379678[/C][C]0.654979176759355[/C][C]0.672510411620322[/C][/ROW]
[ROW][C]52[/C][C]0.973920748067707[/C][C]0.0521585038645856[/C][C]0.0260792519322928[/C][/ROW]
[ROW][C]53[/C][C]0.963496529489266[/C][C]0.0730069410214686[/C][C]0.0365034705107343[/C][/ROW]
[ROW][C]54[/C][C]0.967334590020596[/C][C]0.0653308199588088[/C][C]0.0326654099794044[/C][/ROW]
[ROW][C]55[/C][C]0.96709702632095[/C][C]0.065805947358098[/C][C]0.032902973679049[/C][/ROW]
[ROW][C]56[/C][C]0.945318852284267[/C][C]0.109362295431466[/C][C]0.0546811477157332[/C][/ROW]
[ROW][C]57[/C][C]0.918356932837844[/C][C]0.163286134324312[/C][C]0.0816430671621562[/C][/ROW]
[ROW][C]58[/C][C]0.92152355695392[/C][C]0.156952886092159[/C][C]0.0784764430460793[/C][/ROW]
[ROW][C]59[/C][C]0.870141137089395[/C][C]0.259717725821209[/C][C]0.129858862910605[/C][/ROW]
[ROW][C]60[/C][C]0.810309021838821[/C][C]0.379381956322357[/C][C]0.189690978161179[/C][/ROW]
[ROW][C]61[/C][C]0.76420586925878[/C][C]0.471588261482439[/C][C]0.235794130741219[/C][/ROW]
[ROW][C]62[/C][C]0.722527548954189[/C][C]0.554944902091623[/C][C]0.277472451045811[/C][/ROW]
[ROW][C]63[/C][C]0.671300227285906[/C][C]0.657399545428187[/C][C]0.328699772714094[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
100.8648400449844290.2703199100311430.135159955015571
110.7659427913974920.4681144172050160.234057208602508
120.6450697384325820.7098605231348370.354930261567418
130.6542766297498190.6914467405003620.345723370250181
140.797931343321750.40413731335650.20206865667825
150.8296203992712780.3407592014574450.170379600728722
160.8163855792871860.3672288414256280.183614420712814
170.8182324548783350.3635350902433310.181767545121665
180.8705838232438360.2588323535123290.129416176756164
190.8289186531755750.3421626936488510.171081346824425
200.7695686650603290.4608626698793430.230431334939672
210.7338640720935270.5322718558129450.266135927906473
220.7120591885789680.5758816228420650.287940811421032
230.6380355785173730.7239288429652530.361964421482627
240.6094075585368460.7811848829263080.390592441463154
250.5614305250007380.8771389499985230.438569474999262
260.6649748712396650.670050257520670.335025128760335
270.5959749491435230.8080501017129540.404025050856477
280.5197813193074460.9604373613851090.480218680692554
290.5125944505580560.9748110988838870.487405549441944
300.4791467216149990.9582934432299980.520853278385001
310.7227080679187920.5545838641624160.277291932081208
320.8613100226344340.2773799547311310.138689977365566
330.8184358661219290.3631282677561430.181564133878071
340.779333937903570.4413321241928590.220666062096429
350.7869256963269960.4261486073460080.213074303673004
360.8076076039482210.3847847921035580.192392396051779
370.8762265899127660.2475468201744680.123773410087234
380.8343705663411750.3312588673176490.165629433658825
390.8056811016036310.3886377967927380.194318898396369
400.7887081005699120.4225837988601750.211291899430088
410.7461306365685760.5077387268628470.253869363431423
420.7130946908653440.5738106182693130.286905309134656
430.6688237486028310.6623525027943380.331176251397169
440.6026913784386450.7946172431227110.397308621561355
450.5301610250518470.9396779498963060.469838974948153
460.5074225230209590.9851549539580830.492577476979041
470.454336602827760.908673205655520.54566339717224
480.479293343940040.958586687880080.52070665605996
490.4495229730505990.8990459461011990.5504770269494
500.3965850568704610.7931701137409220.60341494312954
510.3274895883796780.6549791767593550.672510411620322
520.9739207480677070.05215850386458560.0260792519322928
530.9634965294892660.07300694102146860.0365034705107343
540.9673345900205960.06533081995880880.0326654099794044
550.967097026320950.0658059473580980.032902973679049
560.9453188522842670.1093622954314660.0546811477157332
570.9183569328378440.1632861343243120.0816430671621562
580.921523556953920.1569528860921590.0784764430460793
590.8701411370893950.2597177258212090.129858862910605
600.8103090218388210.3793819563223570.189690978161179
610.764205869258780.4715882614824390.235794130741219
620.7225275489541890.5549449020916230.277472451045811
630.6713002272859060.6573995454281870.328699772714094







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level40.0740740740740741OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 4 & 0.0740740740740741 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147170&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]4[/C][C]0.0740740740740741[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147170&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147170&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level40.0740740740740741OK



Parameters (Session):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}