Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Module--
Title produced by softwareChi-Square Test
Date of computationTue, 29 Nov 2011 09:37:49 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/29/t1322577482z6gyntgz09wxz6w.htm/, Retrieved Thu, 31 Oct 2024 22:58:16 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=148430, Retrieved Thu, 31 Oct 2024 22:58:16 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact101
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi Square Measure of Association- Free Statistics Software (Calculator)] [Bullying by Gender] [2009-11-23 19:30:44] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R P   [Chi Square Measure of Association- Free Statistics Software (Calculator)] [Bullying by Gende...] [2009-11-24 18:28:32] [b98453cac15ba1066b407e146608df68]
- R       [Chi Square Measure of Association- Free Statistics Software (Calculator)] [STARS Bullying Study] [2009-11-25 00:02:16] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD      [Chi-Square Test] [STARS Bullying Study] [2010-11-15 17:05:23] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R           [Chi-Square Test] [STARS Bullying Data] [2010-11-16 14:40:36] [98fd0e87c3eb04e0cc2efde01dbafab6]
-  MP           [Chi-Square Test] [chi2 Example - Ty...] [2011-11-14 11:58:51] [98fd0e87c3eb04e0cc2efde01dbafab6]
- R P             [Chi-Square Test] [same gender bully...] [2011-11-17 13:01:30] [74be16979710d4c4e7c6647856088456]
-  M                  [Chi-Square Test] [t2] [2011-11-29 14:37:49] [ba39d87c5b07fdeb99ead4bedf199d9b] [Current]
Feedback Forum

Post a new message
Dataseries X:
'g'	'Often'	'Both'	'Same'	'Boys'
'g'	'Not_bul'	'Physical'	'Same'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Rarely'	'Mental'	'Differnt'	'Boys'
'b'	'Not_bul'	'Physical'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Physical'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Same'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Both'	'Boys'
'g'	'Often'	'Mental'	'Same'	'Both'
'b'	'Often'	'Both'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Both'	'Both'	'Boys'
'b'	'Not_bul'	'Mental'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Not_bul'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Same'	'Boys'
'g'	'Often'	'Mental'	'Differnt'	'Girls'
'b'	'Often'	'Both'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Mental'	'Not_bul'	'Boys'
'b'	'Rarely'	'Both'	'Differnt'	'Boys'
'b'	'Often'	'Both'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Both'	'Same'	'Both'
'g'	'Often'	'Mental'	'Differnt'	'Both'
'b'	'Often'	'Both'	'Differnt'	'Both'
'g'	'Rarely'	'Physical'	'Differnt'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Differnt'	'Boys'
'g'	'Often'	'Mental'	'Differnt'	'Both'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Both'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Differnt'	'Girls'
'g'	'Often'	'Both'	'Differnt'	'Both'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Both'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Not_bul'	'Same'	'Boys'
'g'	'Often'	'Mental'	'Both'	'Girls'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Often'	'Both'	'Differnt'	'Boys'
'b'	'Rarely'	'Both'	'Differnt'	'Boys'
'g'	'Rarely'	'Not_bul'	'Not_bul'	'Girls'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Often'	'Mental'	'Same'	'Boys'
'b'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Often'	'Physical'	'Same'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Both'	'Both'	'Both'
'g'	'Rarely'	'Mental'	'Both'	'Both'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'b'	'Rarely'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Both'
'g'	'Not_bul'	'Mental'	'Same'	'Both'
'g'	'Often'	'Physical'	'Differnt'	'Both'
'b'	'Often'	'Not_bul'	'Same'	'Boys'
'b'	'Often'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Mental'	'Same'	'Not_bul'
'b'	'Often'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'g'	'Often'	'Mental'	'Same'	'Girls'
'g'	'Often'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Not_bul'	'Both'
'g'	'Often'	'Both'	'Both'	'Girls'
'g'	'Often'	'Mental'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Often'	'Mental'	'Both'	'Boys'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Physical'	'Differnt'	'Boys'
'g'	'Often'	'Both'	'Same'	'Girls'
'g'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Often'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Both'	'Both'	'Boys'
'b'	'Often'	'Not_bul'	'Both'	'Boys'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Not_bul'	'Both'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Both'	'Both'	'Boys'
'b'	'Rarely'	'Both'	'Both'	'Boys'
'b'	'Often'	'Physical'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'g'	'Often'	'Mental'	'Same'	'Girls'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'g'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Rarely'	'Both'	'Both'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Same'	'Girls'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'g'	'Often'	'Mental'	'Both'	'Both'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Both'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Mental'	'Both'	'Boys'
'g'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Often'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Same'	'Girls'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Both'	'Same'	'Boys'
'g'	'Often'	'Both'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Both'	'Same'	'Boys'
'b'	'Often'	'Mental'	'Both'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Same'	'Boys'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Often'	'Mental'	'Differnt'	'Boys'
'g'	'Often'	'Both'	'Both'	'Boys'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Often'	'Mental'	'Not_bul'	'Both'
'b'	'Rarely'	'Physical'	'Same'	'Boys'
'b'	'Often'	'Mental'	'Not_bul'	'Both'
'g'	'Rarely'	'Mental'	'Same'	'Boys'
'g'	'Often'	'Not_bul'	'Same'	'Both'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Rarely'	'Both'	'Both'	'Both'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Rarely'	'Mental'	'Differnt'	'Boys'
'b'	'Rarely'	'Mental'	'Differnt'	'Boys'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'b'	'Rarely'	'Physical'	'Differnt'	'Boys'
'g'	'Not_bul'	'Mental'	'Not_bul'	'Not_bul'
'g'	'Often'	'Both'	'Same'	'Both'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'g'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'
'b'	'Not_bul'	'Not_bul'	'Not_bul'	'Not_bul'




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=148430&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=148430&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=148430&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Tabulation of Results
gender x gender_of_bully
BothBoysGirlsNot_bul
b351034
g15192150

\begin{tabular}{lllllllll}
\hline
Tabulation of Results \tabularnewline
gender  x  gender_of_bully \tabularnewline
  & Both & Boys & Girls & Not_bul \tabularnewline
b & 3 & 51 & 0 & 34 \tabularnewline
g & 15 & 19 & 21 & 50 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=148430&T=1

[TABLE]
[ROW][C]Tabulation of Results[/C][/ROW]
[ROW][C]gender  x  gender_of_bully[/C][/ROW]
[ROW][C] [/C][C]Both[/C][C]Boys[/C][C]Girls[/C][C]Not_bul[/C][/ROW]
[C]b[/C][C]3[/C][C]51[/C][C]0[/C][C]34[/C][/ROW]
[C]g[/C][C]15[/C][C]19[/C][C]21[/C][C]50[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=148430&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=148430&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tabulation of Results
gender x gender_of_bully
BothBoysGirlsNot_bul
b351034
g15192150







Tabulation of Expected Results
gender x gender_of_bully
BothBoysGirlsNot_bul
b8.2131.929.5838.3
g9.7938.0811.4245.7

\begin{tabular}{lllllllll}
\hline
Tabulation of Expected Results \tabularnewline
gender  x  gender_of_bully \tabularnewline
  & Both & Boys & Girls & Not_bul \tabularnewline
b & 8.21 & 31.92 & 9.58 & 38.3 \tabularnewline
g & 9.79 & 38.08 & 11.42 & 45.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=148430&T=2

[TABLE]
[ROW][C]Tabulation of Expected Results[/C][/ROW]
[ROW][C]gender  x  gender_of_bully[/C][/ROW]
[ROW][C] [/C][C]Both[/C][C]Boys[/C][C]Girls[/C][C]Not_bul[/C][/ROW]
[C]b[/C][C]8.21[/C][C]31.92[/C][C]9.58[/C][C]38.3[/C][/ROW]
[C]g[/C][C]9.79[/C][C]38.08[/C][C]11.42[/C][C]45.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=148430&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=148430&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tabulation of Expected Results
gender x gender_of_bully
BothBoysGirlsNot_bul
b8.2131.929.5838.3
g9.7938.0811.4245.7







Statistical Results
Pearson's Chi-squared test
Chi Square Statistic45.53
Degrees of Freedom3
P value0

\begin{tabular}{lllllllll}
\hline
Statistical Results \tabularnewline
Pearson's Chi-squared test \tabularnewline
Chi Square Statistic & 45.53 \tabularnewline
Degrees of Freedom & 3 \tabularnewline
P value & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=148430&T=3

[TABLE]
[ROW][C]Statistical Results[/C][/ROW]
[ROW][C]Pearson's Chi-squared test[/C][/ROW]
[ROW][C]Chi Square Statistic[/C][C]45.53[/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]3[/C][/ROW]
[ROW][C]P value[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=148430&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=148430&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Statistical Results
Pearson's Chi-squared test
Chi Square Statistic45.53
Degrees of Freedom3
P value0



Parameters (Session):
par1 = 1 ; par2 = 5 ; par3 = Pearson Chi-Square ;
Parameters (R input):
par1 = 1 ; par2 = 5 ; par3 = Pearson Chi-Square ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
simulate.p.value=FALSE
if (par3 == 'Exact Pearson Chi Square by simulation') simulate.p.value=TRUE
x <- t(x)
(z <- array(unlist(x),dim=c(length(x[,1]),length(x[1,]))))
(table1 <- table(z[,cat1],z[,cat2]))
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tabulation of Results',ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste(V1,' x ', V2),ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1,TRUE)
for(nc in 1:ncol(table1)){
a<-table.element(a, colnames(table1)[nc], 1, TRUE)
}
a<-table.row.end(a)
for(nr in 1:nrow(table1) ){
a<-table.element(a, rownames(table1)[nr], 1, TRUE)
for(nc in 1:ncol(table1) ){
a<-table.element(a, table1[nr, nc], 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
(cst<-chisq.test(table1, simulate.p.value=simulate.p.value) )
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tabulation of Expected Results',ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste(V1,' x ', V2),ncol(table1)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1,TRUE)
for(nc in 1:ncol(table1)){
a<-table.element(a, colnames(table1)[nc], 1, TRUE)
}
a<-table.row.end(a)
for(nr in 1:nrow(table1) ){
a<-table.element(a, rownames(table1)[nr], 1, TRUE)
for(nc in 1:ncol(table1) ){
a<-table.element(a, round(cst$expected[nr, nc], digits=2), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Statistical Results',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, cst$method, 2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Chi Square Statistic', 1, TRUE)
a<-table.element(a, round(cst$statistic, digits=2), 1,FALSE)
a<-table.row.end(a)
if(!simulate.p.value){
a<-table.row.start(a)
a<-table.element(a, 'Degrees of Freedom', 1, TRUE)
a<-table.element(a, cst$parameter, 1,FALSE)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, 'P value', 1, TRUE)
a<-table.element(a, round(cst$p.value, digits=2), 1,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')