Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationSun, 09 Dec 2012 11:10:37 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/09/t1355069454hytdo76fmkdy3x0.htm/, Retrieved Thu, 31 Oct 2024 23:13:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=197958, Retrieved Thu, 31 Oct 2024 23:13:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Kendall tau Correlation Matrix] [] [2010-12-05 18:04:16] [b98453cac15ba1066b407e146608df68]
- RMPD    [Kendall tau Correlation Matrix] [Kendell Tau Corre...] [2012-12-09 16:10:37] [0099dd2d89a142e9b85435bc9194870f] [Current]
-           [Kendall tau Correlation Matrix] [] [2012-12-11 16:21:15] [c5e00e3d2459b4cd6380f7873395bbc5]
Feedback Forum

Post a new message
Dataseries X:
1	26	21	21	23	17	23	4
1	20	16	15	24	17	20	4
1	19	19	18	22	18	20	6
2	19	18	11	20	21	21	8
1	20	16	8	24	20	24	8
1	25	23	19	27	28	22	4
2	25	17	4	28	19	23	4
1	22	12	20	27	22	20	8
1	26	19	16	24	16	25	5
1	22	16	14	23	18	23	4
2	17	19	10	24	25	27	4
2	22	20	13	27	17	27	4
1	19	13	14	27	14	22	4
1	24	20	8	28	11	24	4
1	26	27	23	27	27	25	4
2	21	17	11	23	20	22	8
1	13	8	9	24	22	28	4
2	26	25	24	28	22	28	4
2	20	26	5	27	21	27	4
1	22	13	15	25	23	25	8
2	14	19	5	19	17	16	4
1	21	15	19	24	24	28	7
1	7	5	6	20	14	21	4
2	23	16	13	28	17	24	4
1	17	14	11	26	23	27	5
1	25	24	17	23	24	14	4
1	25	24	17	23	24	14	4
1	19	9	5	20	8	27	4
2	20	19	9	11	22	20	4
1	23	19	15	24	23	21	4
2	22	25	17	25	25	22	4
1	22	19	17	23	21	21	4
1	21	18	20	18	24	12	15
2	15	15	12	20	15	20	10
2	20	12	7	20	22	24	4
2	22	21	16	24	21	19	8
1	18	12	7	23	25	28	4
2	20	15	14	25	16	23	4
2	28	28	24	28	28	27	4
1	22	25	15	26	23	22	4
1	18	19	15	26	21	27	7
1	23	20	10	23	21	26	4
1	20	24	14	22	26	22	6
2	25	26	18	24	22	21	5
2	26	25	12	21	21	19	4
1	15	12	9	20	18	24	16
2	17	12	9	22	12	19	5
2	23	15	8	20	25	26	12
1	21	17	18	25	17	22	6
2	13	14	10	20	24	28	9
1	18	16	17	22	15	21	9
1	19	11	14	23	13	23	4
1	22	20	16	25	26	28	5
1	16	11	10	23	16	10	4
2	24	22	19	23	24	24	4
1	18	20	10	22	21	21	5
1	20	19	14	24	20	21	4
1	24	17	10	25	14	24	4
2	14	21	4	21	25	24	4
2	22	23	19	12	25	25	5
1	24	18	9	17	20	25	4
1	18	17	12	20	22	23	6
1	21	27	16	23	20	21	4
2	23	25	11	23	26	16	4
1	17	19	18	20	18	17	18
2	22	22	11	28	22	25	4
2	24	24	24	24	24	24	6
2	21	20	17	24	17	23	4
1	22	19	18	24	24	25	4
1	16	11	9	24	20	23	5
1	21	22	19	28	19	28	4
2	23	22	18	25	20	26	4
2	22	16	12	21	15	22	5
1	24	20	23	25	23	19	10
1	24	24	22	25	26	26	5
1	16	16	14	18	22	18	8
1	16	16	14	17	20	18	8
2	21	22	16	26	24	25	5
2	26	24	23	28	26	27	4
2	15	16	7	21	21	12	4
2	25	27	10	27	25	15	4
1	18	11	12	22	13	21	5
0	23	21	12	21	20	23	4
1	20	20	12	25	22	22	4
2	17	20	17	22	23	21	8
2	25	27	21	23	28	24	4
1	24	20	16	26	22	27	5
1	17	12	11	19	20	22	14
1	19	8	14	25	6	28	8
1	20	21	13	21	21	26	8
1	15	18	9	13	20	10	4
2	27	24	19	24	18	19	4
1	22	16	13	25	23	22	6
1	23	18	19	26	20	21	4
1	16	20	13	25	24	24	7
1	19	20	13	25	22	25	7
2	25	19	13	22	21	21	4
1	19	17	14	21	18	20	6
2	19	16	12	23	21	21	4
2	26	26	22	25	23	24	7
1	21	15	11	24	23	23	4
2	20	22	5	21	15	18	4
1	24	17	18	21	21	24	8
1	22	23	19	25	24	24	4
2	20	21	14	22	23	19	4
1	18	19	15	20	21	20	10
2	18	14	12	20	21	18	8
1	24	17	19	23	20	20	6
1	24	12	15	28	11	27	4
1	22	24	17	23	22	23	4
1	23	18	8	28	27	26	4
1	22	20	10	24	25	23	5
1	20	16	12	18	18	17	4
1	18	20	12	20	20	21	6
1	25	22	20	28	24	25	4
2	18	12	12	21	10	23	5
1	16	16	12	21	27	27	7
1	20	17	14	25	21	24	8
2	19	22	6	19	21	20	5
1	15	12	10	18	18	27	8
1	19	14	18	21	15	21	10
1	19	23	18	22	24	24	8
1	16	15	7	24	22	21	5
1	17	17	18	15	14	15	12
1	28	28	9	28	28	25	4
2	23	20	17	26	18	25	5
1	25	23	22	23	26	22	4
1	20	13	11	26	17	24	6
2	17	18	15	20	19	21	4
2	23	23	17	22	22	22	4
1	16	19	15	20	18	23	7
2	23	23	22	23	24	22	7
2	11	12	9	22	15	20	10
2	18	16	13	24	18	23	4
2	24	23	20	23	26	25	5
1	23	13	14	22	11	23	8
1	21	22	14	26	26	22	11
2	16	18	12	23	21	25	7
2	24	23	20	27	23	26	4
1	23	20	20	23	23	22	8
1	18	10	8	21	15	24	6
1	20	17	17	26	22	24	7
1	9	18	9	23	26	25	5
2	24	15	18	21	16	20	4
1	25	23	22	27	20	26	8
1	20	17	10	19	18	21	4
2	21	17	13	23	22	26	8
2	25	22	15	25	16	21	6
2	22	20	18	23	19	22	4
2	21	20	18	22	20	16	9
1	21	19	12	22	19	26	5
1	22	18	12	25	23	28	6
1	27	22	20	25	24	18	4
2	24	20	12	28	25	25	4
2	24	22	16	28	21	23	4
2	21	18	16	20	21	21	5
1	18	16	18	25	23	20	6
1	16	16	16	19	27	25	16
1	22	16	13	25	23	22	6
1	20	16	17	22	18	21	6
2	18	17	13	18	16	16	4
1	20	18	17	20	16	18	4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197958&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197958&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197958&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ yule.wessa.net







Correlations for all pairs of data series (method=kendall)
GI1I2I3E1E2E3A
G10.1010.2-0.029-0.0160.031-0.055-0.153
I10.10110.4420.3850.3780.2050.116-0.264
I20.20.44210.3330.220.3810.022-0.22
I3-0.0290.3850.33310.1920.165-0.0090.071
E1-0.0160.3780.220.19210.1750.324-0.217
E20.0310.2050.3810.1650.17510.182-0.017
E3-0.0550.1160.022-0.0090.3240.1821-0.018
A-0.153-0.264-0.220.071-0.217-0.017-0.0181

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & G & I1 & I2 & I3 & E1 & E2 & E3 & A \tabularnewline
G & 1 & 0.101 & 0.2 & -0.029 & -0.016 & 0.031 & -0.055 & -0.153 \tabularnewline
I1 & 0.101 & 1 & 0.442 & 0.385 & 0.378 & 0.205 & 0.116 & -0.264 \tabularnewline
I2 & 0.2 & 0.442 & 1 & 0.333 & 0.22 & 0.381 & 0.022 & -0.22 \tabularnewline
I3 & -0.029 & 0.385 & 0.333 & 1 & 0.192 & 0.165 & -0.009 & 0.071 \tabularnewline
E1 & -0.016 & 0.378 & 0.22 & 0.192 & 1 & 0.175 & 0.324 & -0.217 \tabularnewline
E2 & 0.031 & 0.205 & 0.381 & 0.165 & 0.175 & 1 & 0.182 & -0.017 \tabularnewline
E3 & -0.055 & 0.116 & 0.022 & -0.009 & 0.324 & 0.182 & 1 & -0.018 \tabularnewline
A & -0.153 & -0.264 & -0.22 & 0.071 & -0.217 & -0.017 & -0.018 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197958&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]G[/C][C]I1[/C][C]I2[/C][C]I3[/C][C]E1[/C][C]E2[/C][C]E3[/C][C]A[/C][/ROW]
[ROW][C]G[/C][C]1[/C][C]0.101[/C][C]0.2[/C][C]-0.029[/C][C]-0.016[/C][C]0.031[/C][C]-0.055[/C][C]-0.153[/C][/ROW]
[ROW][C]I1[/C][C]0.101[/C][C]1[/C][C]0.442[/C][C]0.385[/C][C]0.378[/C][C]0.205[/C][C]0.116[/C][C]-0.264[/C][/ROW]
[ROW][C]I2[/C][C]0.2[/C][C]0.442[/C][C]1[/C][C]0.333[/C][C]0.22[/C][C]0.381[/C][C]0.022[/C][C]-0.22[/C][/ROW]
[ROW][C]I3[/C][C]-0.029[/C][C]0.385[/C][C]0.333[/C][C]1[/C][C]0.192[/C][C]0.165[/C][C]-0.009[/C][C]0.071[/C][/ROW]
[ROW][C]E1[/C][C]-0.016[/C][C]0.378[/C][C]0.22[/C][C]0.192[/C][C]1[/C][C]0.175[/C][C]0.324[/C][C]-0.217[/C][/ROW]
[ROW][C]E2[/C][C]0.031[/C][C]0.205[/C][C]0.381[/C][C]0.165[/C][C]0.175[/C][C]1[/C][C]0.182[/C][C]-0.017[/C][/ROW]
[ROW][C]E3[/C][C]-0.055[/C][C]0.116[/C][C]0.022[/C][C]-0.009[/C][C]0.324[/C][C]0.182[/C][C]1[/C][C]-0.018[/C][/ROW]
[ROW][C]A[/C][C]-0.153[/C][C]-0.264[/C][C]-0.22[/C][C]0.071[/C][C]-0.217[/C][C]-0.017[/C][C]-0.018[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197958&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197958&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
GI1I2I3E1E2E3A
G10.1010.2-0.029-0.0160.031-0.055-0.153
I10.10110.4420.3850.3780.2050.116-0.264
I20.20.44210.3330.220.3810.022-0.22
I3-0.0290.3850.33310.1920.165-0.0090.071
E1-0.0160.3780.220.19210.1750.324-0.217
E20.0310.2050.3810.1650.17510.182-0.017
E3-0.0550.1160.022-0.0090.3240.1821-0.018
A-0.153-0.264-0.220.071-0.217-0.017-0.0181







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
G;I10.10250.12020.1013
p-value(0.1941)(0.1277)(0.1288)
G;I20.24540.23880.2002
p-value(0.0016)(0.0022)(0.0025)
G;I3-0.0331-0.0348-0.0289
p-value(0.6762)(0.6603)(0.6621)
G;E1-0.009-0.0188-0.016
p-value(0.9096)(0.8123)(0.8124)
G;E20.0510.03770.0315
p-value(0.5194)(0.6338)(0.6359)
G;E3-0.046-0.0644-0.0547
p-value(0.5607)(0.4155)(0.4136)
G;A-0.1625-0.1696-0.1531
p-value(0.0388)(0.0309)(0.0312)
I1;I20.59920.58520.4418
p-value(0)(0)(0)
I1;I30.52070.50180.3854
p-value(0)(0)(0)
I1;E10.45710.50760.3779
p-value(0)(0)(0)
I1;E20.23850.26880.2047
p-value(0.0022)(5e-04)(3e-04)
I1;E30.13620.14780.1162
p-value(0.0839)(0.0606)(0.0415)
I1;A-0.298-0.3371-0.2642
p-value(1e-04)(0)(0)
I2;I30.44520.440.3331
p-value(0)(0)(0)
I2;E10.26050.30570.2201
p-value(8e-04)(1e-04)(1e-04)
I2;E20.56160.50050.3812
p-value(0)(0)(0)
I2;E3-0.00940.02910.0222
p-value(0.9058)(0.7132)(0.6956)
I2;A-0.2399-0.2839-0.22
p-value(0.0021)(3e-04)(3e-04)
I3;E10.24110.25780.1921
p-value(0.002)(9e-04)(7e-04)
I3;E20.25040.22410.1653
p-value(0.0013)(0.0041)(0.0033)
I3;E30.0402-0.0096-0.0092
p-value(0.6116)(0.9035)(0.8702)
I3;A0.08770.090.0713
p-value(0.2673)(0.2545)(0.235)
E1;E20.16780.24230.1748
p-value(0.0329)(0.0019)(0.0022)
E1;E30.4160.42240.3239
p-value(0)(0)(0)
E1;A-0.2927-0.2716-0.2172
p-value(2e-04)(5e-04)(4e-04)
E2;E30.14440.2540.1824
p-value(0.0667)(0.0011)(0.0013)
E2;A-0.0155-0.0199-0.0174
p-value(0.8445)(0.8015)(0.7734)
E3;A-0.0871-0.0209-0.0175
p-value(0.2707)(0.7918)(0.7731)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
G;I1 & 0.1025 & 0.1202 & 0.1013 \tabularnewline
p-value & (0.1941) & (0.1277) & (0.1288) \tabularnewline
G;I2 & 0.2454 & 0.2388 & 0.2002 \tabularnewline
p-value & (0.0016) & (0.0022) & (0.0025) \tabularnewline
G;I3 & -0.0331 & -0.0348 & -0.0289 \tabularnewline
p-value & (0.6762) & (0.6603) & (0.6621) \tabularnewline
G;E1 & -0.009 & -0.0188 & -0.016 \tabularnewline
p-value & (0.9096) & (0.8123) & (0.8124) \tabularnewline
G;E2 & 0.051 & 0.0377 & 0.0315 \tabularnewline
p-value & (0.5194) & (0.6338) & (0.6359) \tabularnewline
G;E3 & -0.046 & -0.0644 & -0.0547 \tabularnewline
p-value & (0.5607) & (0.4155) & (0.4136) \tabularnewline
G;A & -0.1625 & -0.1696 & -0.1531 \tabularnewline
p-value & (0.0388) & (0.0309) & (0.0312) \tabularnewline
I1;I2 & 0.5992 & 0.5852 & 0.4418 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
I1;I3 & 0.5207 & 0.5018 & 0.3854 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
I1;E1 & 0.4571 & 0.5076 & 0.3779 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
I1;E2 & 0.2385 & 0.2688 & 0.2047 \tabularnewline
p-value & (0.0022) & (5e-04) & (3e-04) \tabularnewline
I1;E3 & 0.1362 & 0.1478 & 0.1162 \tabularnewline
p-value & (0.0839) & (0.0606) & (0.0415) \tabularnewline
I1;A & -0.298 & -0.3371 & -0.2642 \tabularnewline
p-value & (1e-04) & (0) & (0) \tabularnewline
I2;I3 & 0.4452 & 0.44 & 0.3331 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
I2;E1 & 0.2605 & 0.3057 & 0.2201 \tabularnewline
p-value & (8e-04) & (1e-04) & (1e-04) \tabularnewline
I2;E2 & 0.5616 & 0.5005 & 0.3812 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
I2;E3 & -0.0094 & 0.0291 & 0.0222 \tabularnewline
p-value & (0.9058) & (0.7132) & (0.6956) \tabularnewline
I2;A & -0.2399 & -0.2839 & -0.22 \tabularnewline
p-value & (0.0021) & (3e-04) & (3e-04) \tabularnewline
I3;E1 & 0.2411 & 0.2578 & 0.1921 \tabularnewline
p-value & (0.002) & (9e-04) & (7e-04) \tabularnewline
I3;E2 & 0.2504 & 0.2241 & 0.1653 \tabularnewline
p-value & (0.0013) & (0.0041) & (0.0033) \tabularnewline
I3;E3 & 0.0402 & -0.0096 & -0.0092 \tabularnewline
p-value & (0.6116) & (0.9035) & (0.8702) \tabularnewline
I3;A & 0.0877 & 0.09 & 0.0713 \tabularnewline
p-value & (0.2673) & (0.2545) & (0.235) \tabularnewline
E1;E2 & 0.1678 & 0.2423 & 0.1748 \tabularnewline
p-value & (0.0329) & (0.0019) & (0.0022) \tabularnewline
E1;E3 & 0.416 & 0.4224 & 0.3239 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
E1;A & -0.2927 & -0.2716 & -0.2172 \tabularnewline
p-value & (2e-04) & (5e-04) & (4e-04) \tabularnewline
E2;E3 & 0.1444 & 0.254 & 0.1824 \tabularnewline
p-value & (0.0667) & (0.0011) & (0.0013) \tabularnewline
E2;A & -0.0155 & -0.0199 & -0.0174 \tabularnewline
p-value & (0.8445) & (0.8015) & (0.7734) \tabularnewline
E3;A & -0.0871 & -0.0209 & -0.0175 \tabularnewline
p-value & (0.2707) & (0.7918) & (0.7731) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=197958&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]G;I1[/C][C]0.1025[/C][C]0.1202[/C][C]0.1013[/C][/ROW]
[ROW][C]p-value[/C][C](0.1941)[/C][C](0.1277)[/C][C](0.1288)[/C][/ROW]
[ROW][C]G;I2[/C][C]0.2454[/C][C]0.2388[/C][C]0.2002[/C][/ROW]
[ROW][C]p-value[/C][C](0.0016)[/C][C](0.0022)[/C][C](0.0025)[/C][/ROW]
[ROW][C]G;I3[/C][C]-0.0331[/C][C]-0.0348[/C][C]-0.0289[/C][/ROW]
[ROW][C]p-value[/C][C](0.6762)[/C][C](0.6603)[/C][C](0.6621)[/C][/ROW]
[ROW][C]G;E1[/C][C]-0.009[/C][C]-0.0188[/C][C]-0.016[/C][/ROW]
[ROW][C]p-value[/C][C](0.9096)[/C][C](0.8123)[/C][C](0.8124)[/C][/ROW]
[ROW][C]G;E2[/C][C]0.051[/C][C]0.0377[/C][C]0.0315[/C][/ROW]
[ROW][C]p-value[/C][C](0.5194)[/C][C](0.6338)[/C][C](0.6359)[/C][/ROW]
[ROW][C]G;E3[/C][C]-0.046[/C][C]-0.0644[/C][C]-0.0547[/C][/ROW]
[ROW][C]p-value[/C][C](0.5607)[/C][C](0.4155)[/C][C](0.4136)[/C][/ROW]
[ROW][C]G;A[/C][C]-0.1625[/C][C]-0.1696[/C][C]-0.1531[/C][/ROW]
[ROW][C]p-value[/C][C](0.0388)[/C][C](0.0309)[/C][C](0.0312)[/C][/ROW]
[ROW][C]I1;I2[/C][C]0.5992[/C][C]0.5852[/C][C]0.4418[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]I1;I3[/C][C]0.5207[/C][C]0.5018[/C][C]0.3854[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]I1;E1[/C][C]0.4571[/C][C]0.5076[/C][C]0.3779[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]I1;E2[/C][C]0.2385[/C][C]0.2688[/C][C]0.2047[/C][/ROW]
[ROW][C]p-value[/C][C](0.0022)[/C][C](5e-04)[/C][C](3e-04)[/C][/ROW]
[ROW][C]I1;E3[/C][C]0.1362[/C][C]0.1478[/C][C]0.1162[/C][/ROW]
[ROW][C]p-value[/C][C](0.0839)[/C][C](0.0606)[/C][C](0.0415)[/C][/ROW]
[ROW][C]I1;A[/C][C]-0.298[/C][C]-0.3371[/C][C]-0.2642[/C][/ROW]
[ROW][C]p-value[/C][C](1e-04)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]I2;I3[/C][C]0.4452[/C][C]0.44[/C][C]0.3331[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]I2;E1[/C][C]0.2605[/C][C]0.3057[/C][C]0.2201[/C][/ROW]
[ROW][C]p-value[/C][C](8e-04)[/C][C](1e-04)[/C][C](1e-04)[/C][/ROW]
[ROW][C]I2;E2[/C][C]0.5616[/C][C]0.5005[/C][C]0.3812[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]I2;E3[/C][C]-0.0094[/C][C]0.0291[/C][C]0.0222[/C][/ROW]
[ROW][C]p-value[/C][C](0.9058)[/C][C](0.7132)[/C][C](0.6956)[/C][/ROW]
[ROW][C]I2;A[/C][C]-0.2399[/C][C]-0.2839[/C][C]-0.22[/C][/ROW]
[ROW][C]p-value[/C][C](0.0021)[/C][C](3e-04)[/C][C](3e-04)[/C][/ROW]
[ROW][C]I3;E1[/C][C]0.2411[/C][C]0.2578[/C][C]0.1921[/C][/ROW]
[ROW][C]p-value[/C][C](0.002)[/C][C](9e-04)[/C][C](7e-04)[/C][/ROW]
[ROW][C]I3;E2[/C][C]0.2504[/C][C]0.2241[/C][C]0.1653[/C][/ROW]
[ROW][C]p-value[/C][C](0.0013)[/C][C](0.0041)[/C][C](0.0033)[/C][/ROW]
[ROW][C]I3;E3[/C][C]0.0402[/C][C]-0.0096[/C][C]-0.0092[/C][/ROW]
[ROW][C]p-value[/C][C](0.6116)[/C][C](0.9035)[/C][C](0.8702)[/C][/ROW]
[ROW][C]I3;A[/C][C]0.0877[/C][C]0.09[/C][C]0.0713[/C][/ROW]
[ROW][C]p-value[/C][C](0.2673)[/C][C](0.2545)[/C][C](0.235)[/C][/ROW]
[ROW][C]E1;E2[/C][C]0.1678[/C][C]0.2423[/C][C]0.1748[/C][/ROW]
[ROW][C]p-value[/C][C](0.0329)[/C][C](0.0019)[/C][C](0.0022)[/C][/ROW]
[ROW][C]E1;E3[/C][C]0.416[/C][C]0.4224[/C][C]0.3239[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]E1;A[/C][C]-0.2927[/C][C]-0.2716[/C][C]-0.2172[/C][/ROW]
[ROW][C]p-value[/C][C](2e-04)[/C][C](5e-04)[/C][C](4e-04)[/C][/ROW]
[ROW][C]E2;E3[/C][C]0.1444[/C][C]0.254[/C][C]0.1824[/C][/ROW]
[ROW][C]p-value[/C][C](0.0667)[/C][C](0.0011)[/C][C](0.0013)[/C][/ROW]
[ROW][C]E2;A[/C][C]-0.0155[/C][C]-0.0199[/C][C]-0.0174[/C][/ROW]
[ROW][C]p-value[/C][C](0.8445)[/C][C](0.8015)[/C][C](0.7734)[/C][/ROW]
[ROW][C]E3;A[/C][C]-0.0871[/C][C]-0.0209[/C][C]-0.0175[/C][/ROW]
[ROW][C]p-value[/C][C](0.2707)[/C][C](0.7918)[/C][C](0.7731)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=197958&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=197958&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
G;I10.10250.12020.1013
p-value(0.1941)(0.1277)(0.1288)
G;I20.24540.23880.2002
p-value(0.0016)(0.0022)(0.0025)
G;I3-0.0331-0.0348-0.0289
p-value(0.6762)(0.6603)(0.6621)
G;E1-0.009-0.0188-0.016
p-value(0.9096)(0.8123)(0.8124)
G;E20.0510.03770.0315
p-value(0.5194)(0.6338)(0.6359)
G;E3-0.046-0.0644-0.0547
p-value(0.5607)(0.4155)(0.4136)
G;A-0.1625-0.1696-0.1531
p-value(0.0388)(0.0309)(0.0312)
I1;I20.59920.58520.4418
p-value(0)(0)(0)
I1;I30.52070.50180.3854
p-value(0)(0)(0)
I1;E10.45710.50760.3779
p-value(0)(0)(0)
I1;E20.23850.26880.2047
p-value(0.0022)(5e-04)(3e-04)
I1;E30.13620.14780.1162
p-value(0.0839)(0.0606)(0.0415)
I1;A-0.298-0.3371-0.2642
p-value(1e-04)(0)(0)
I2;I30.44520.440.3331
p-value(0)(0)(0)
I2;E10.26050.30570.2201
p-value(8e-04)(1e-04)(1e-04)
I2;E20.56160.50050.3812
p-value(0)(0)(0)
I2;E3-0.00940.02910.0222
p-value(0.9058)(0.7132)(0.6956)
I2;A-0.2399-0.2839-0.22
p-value(0.0021)(3e-04)(3e-04)
I3;E10.24110.25780.1921
p-value(0.002)(9e-04)(7e-04)
I3;E20.25040.22410.1653
p-value(0.0013)(0.0041)(0.0033)
I3;E30.0402-0.0096-0.0092
p-value(0.6116)(0.9035)(0.8702)
I3;A0.08770.090.0713
p-value(0.2673)(0.2545)(0.235)
E1;E20.16780.24230.1748
p-value(0.0329)(0.0019)(0.0022)
E1;E30.4160.42240.3239
p-value(0)(0)(0)
E1;A-0.2927-0.2716-0.2172
p-value(2e-04)(5e-04)(4e-04)
E2;E30.14440.2540.1824
p-value(0.0667)(0.0011)(0.0013)
E2;A-0.0155-0.0199-0.0174
p-value(0.8445)(0.8015)(0.7734)
E3;A-0.0871-0.0209-0.0175
p-value(0.2707)(0.7918)(0.7731)



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
n
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')