Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationThu, 20 Dec 2012 10:58:33 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/20/t13560191706zf20qie5ifi7vx.htm/, Retrieved Fri, 01 Nov 2024 00:38:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=202817, Retrieved Fri, 01 Nov 2024 00:38:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact138
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Decomposition by ...] [2012-12-20 15:58:33] [e5cf4d544f75f57c12196ef0ffd71d75] [Current]
Feedback Forum

Post a new message
Dataseries X:
41
39
50
40
43
38
44
35
39
35
29
49
50
59
63
32
39
47
53
60
57
52
70
90
74
62
55
84
94
70
108
139
120
97
126
149
158
124
140
109
114
77
120
133
110
92
97
78
99
107
112
90
98
125
155
190
236
189
174
178
136
161
171
149
184
155
276
224
213
279
268
287
238
213
257
293
212
246
353
339
308
247
257
322
298
273
312
249
286
279
309
401
309
328
353
354
327
324
285
243
241
287
355
460
364
487
452
391
500
451
375
372
302
316
398
394
431
431




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202817&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202817&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202817&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11810119
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1181 & 0 & 119 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202817&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1181[/C][C]0[/C][C]119[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202817&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202817&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11810119
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
14122.05939462187966.7951816033597353.1454237747607-18.9406053781204
23933.3985039065677-6.5817415813659751.1832376747983-5.60149609343232
35059.2375930943927-8.4586446692286249.22105157483599.2375930943927
44059.4475762354992-27.009456565469147.561880329969919.4475762354992
54374.5575456952934-34.460254780397245.902709085103831.5575456952934
63865.4629503882897-34.257676368196444.794725979906727.4629503882897
74427.968329728303416.34492739698743.6867428747096-16.0316702716966
835-7.0395280212192434.246571895956542.7929561252627-42.0395280212192
93923.152617591561612.948213032622641.8991693758158-15.8473824084384
103513.046968772933215.571660465236441.3813707618304-21.9530312270668
11297.064213483304510.072214368850540.863572147845-21.9357865166955
124940.579187664185814.789012700396642.6317996354176-8.4208123358142
135048.804791273656.7951816033597344.4000271229903-1.19520872634999
145977.817697596787-6.5817415813659746.764043984578918.817697596787
156385.330583823061-8.4586446692286249.128060846167622.330583823061
163240.0551044243421-27.009456565469150.9543521411278.0551044243421
173959.6796113443108-34.460254780397252.780643436086420.6796113443108
184774.1256567175614-34.257676368196454.132019650634927.1256567175614
195334.171676737829516.34492739698755.4833958651835-18.8283232621705
206029.387314245002934.246571895956556.3661138590406-30.6126857549971
215743.802955114479812.948213032622657.2488318528976-13.1970448855202
225228.731411277304315.571660465236459.6969282574593-23.2685887226957
237067.782760969128510.072214368850562.1450246620209-2.21723903087145
249098.448404684386914.789012700396666.76258261521658.4484046843869
257469.82467782822826.7951816033597371.3801405684121-4.17532217177182
266253.6132626132285-6.5817415813659776.9684789681374-8.38673738677147
275535.9018273013658-8.4586446692286282.5568173678628-19.0981726986342
2884107.603930003384-27.009456565469187.405526562084823.6039300033843
2994130.20601902409-34.460254780397292.254235756306836.2060190240904
307077.0902257082942-34.257676368196497.16745065990227.09022570829421
3110897.574407039515516.344927396987102.080665563497-10.4255929604845
32139136.74316909125434.2465718959565107.010259012789-2.2568309087459
33120115.11193450529612.9482130326226111.939852462081-4.88806549470389
349762.760235505449615.5716604652364115.668104029314-34.2397644945504
35126122.53143003460310.0722143688505119.396355596547-3.46856996539741
36149161.78327590070114.7890127003966121.42771139890312.7832759007009
37158185.7457511953826.79518160335973123.45906720125827.745751195382
38124130.683879823375-6.58174158136597123.8978617579916.68387982337487
39140164.121988354505-8.45864466922862124.33665631472424.1219883545047
40109122.875355204528-27.0094565654691122.13410136094113.8753552045278
41114142.528708373239-34.4602547803972119.93154640715928.5287083732385
427772.757795633904-34.2576763681964115.499880734292-4.24220436609605
43120112.58685754158716.344927396987111.068215061426-7.41314245841315
44133124.64525160142634.2465718959565107.108176502618-8.35474839857415
45110103.90364902356812.9482130326226103.148137943809-6.09635097643171
469266.544317087076415.5716604652364101.884022447687-25.4556829129236
479783.307878679584110.0722143688505100.619906951565-13.6921213204159
487838.261017391315114.7890127003966102.949969908288-39.7389826086849
499985.92478553162896.79518160335973105.280032865011-13.0752144683711
50107108.967821911018-6.58174158136597111.6139196703481.96782191101769
51112114.510838193543-8.45864466922862117.9478064756852.51083819354339
529080.7456934959123-27.0094565654691126.263763069557-9.25430650408774
539895.8805351169688-34.4602547803972134.579719663428-2.11946488303124
54125142.679677729237-34.2576763681964141.5779986389617.6796777292367
55155145.07879498852216.344927396987148.576277614491-9.92120501147787
56190192.35958629983434.2465718959565153.3938418042092.35958629983415
57236300.8403809734512.9482130326226158.21140599392864.8403809734496
58189199.8537092715515.5716604652364162.57463026321310.8537092715502
59174170.9899310986510.0722143688505166.937854532499-3.01006890134954
60178169.71254261333114.7890127003966171.498444686273-8.2874573866691
6113689.14578355659426.79518160335973176.059034840046-46.8542164434058
62161148.330738352235-6.58174158136597180.251003229131-12.6692616477653
63171166.015673051012-8.45864466922862184.442971618216-4.98432694898781
64149134.665732703634-27.0094565654691190.343723861835-14.3342672963661
65184206.215778674943-34.4602547803972196.24447610545422.2157786749434
66155140.023297484199-34.2576763681964204.234378883997-14.976702515801
67276323.43079094047216.344927396987212.22428166254147.430790940472
68224193.96543547774334.2465718959565219.787992626301-30.0345645222571
69213185.70008337731712.9482130326226227.35170359006-27.2999166226827
70279308.45738574445315.5716604652364233.9709537903129.4573857444535
71268285.33758164058910.0722143688505240.5902039905617.3375816405893
72287311.72988890831414.7890127003966247.4810983912924.7298889083135
73238214.8328256046216.79518160335973254.37199279202-23.1671743953793
74213171.875556313757-6.58174158136597260.706185267609-41.124443686243
75257255.41826692603-8.45864466922862267.040377743198-1.58173307396959
76293342.449570121257-27.0094565654691270.55988644421249.4495701212568
77212184.380859635171-34.4602547803972274.079395145226-27.619140364829
78246249.833922160369-34.2576763681964276.4237542078273.8339221603689
79353410.88695933258416.344927396987278.76811327042957.8869593325843
80339362.28153679466334.2465718959565281.4718913093823.2815367946635
81308318.87611761904612.9482130326226284.17566934833110.8761176190461
82247192.61417366594215.5716604652364285.814165868822-54.3858263340584
83257216.47512324183710.0722143688505287.452662389313-40.5248767581632
84322340.21149991746514.7890127003966288.99948738213818.2114999174651
85298298.6585060216766.79518160335973290.5463123749640.65850602167626
86273259.207340009135-6.58174158136597293.374401572231-13.7926599908648
87312336.256153899731-8.45864466922862296.20249076949824.2561538997311
88249224.131445453655-27.0094565654691300.878011111814-24.8685545463449
89286300.906723326267-34.4602547803972305.5535314541314.9067233262667
90279282.529061322852-34.2576763681964309.7286150453453.52906132285159
91309287.75137396645416.344927396987313.903698636559-21.248626033546
92401451.81014642298434.2465718959565315.9432816810650.8101464229835
93309287.06892224181612.9482130326226317.982864725561-21.9310777581835
94328322.95514246437715.5716604652364317.473197070387-5.04485753562301
95353378.96425621593710.0722143688505316.96352941521225.9642562159372
96354376.51516274043414.7890127003966316.6958245591722.5151627404338
97327330.7766986935136.79518160335973316.4281197031273.77669869351331
98324334.860489413248-6.58174158136597319.72125216811810.8604894132476
99285255.444260036119-8.45864466922862323.01438463311-29.555739963881
100243182.592164153447-27.0094565654691330.417292412022-60.4078358465526
101241178.640054589463-34.4602547803972337.820200190934-62.3599454105366
102287260.185755969371-34.2576763681964348.071920398826-26.8142440306293
103355335.33143199629516.344927396987358.323640606718-19.6685680037045
104460515.45391740811734.2465718959565370.29951069592755.4539174081169
105364332.77640618224212.9482130326226382.275380785136-31.2235938177582
106487566.97305503172815.5716604652364391.45528450303679.9730550317277
107452493.29259741021310.0722143688505400.63518822093641.2925974102132
108391363.674729251314.7890127003966403.536258048303-27.3252707486999
109500586.767490520976.79518160335973406.4373278756786.7674905209699
110451504.991633035245-6.58174158136597403.59010854612153.9916330352447
111375357.715755452656-8.45864466922862400.742889216572-17.2842445473437
112372372.508233194359-27.0094565654691398.501223371110.508233194358638
113302242.200697254749-34.4602547803972396.259557525648-59.7993027452513
114316272.974711171435-34.2576763681964393.282965196761-43.0252888285649
115398389.34869973513916.344927396987390.306372867874-8.65130026486105
116394366.75388882060734.2465718959565386.999539283437-27.2461111793933
117431465.35908126837812.9482130326226383.69270569899934.3590812683779
118431465.93335932326715.5716604652364380.49498021149734.933359323267

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 41 & 22.0593946218796 & 6.79518160335973 & 53.1454237747607 & -18.9406053781204 \tabularnewline
2 & 39 & 33.3985039065677 & -6.58174158136597 & 51.1832376747983 & -5.60149609343232 \tabularnewline
3 & 50 & 59.2375930943927 & -8.45864466922862 & 49.2210515748359 & 9.2375930943927 \tabularnewline
4 & 40 & 59.4475762354992 & -27.0094565654691 & 47.5618803299699 & 19.4475762354992 \tabularnewline
5 & 43 & 74.5575456952934 & -34.4602547803972 & 45.9027090851038 & 31.5575456952934 \tabularnewline
6 & 38 & 65.4629503882897 & -34.2576763681964 & 44.7947259799067 & 27.4629503882897 \tabularnewline
7 & 44 & 27.9683297283034 & 16.344927396987 & 43.6867428747096 & -16.0316702716966 \tabularnewline
8 & 35 & -7.03952802121924 & 34.2465718959565 & 42.7929561252627 & -42.0395280212192 \tabularnewline
9 & 39 & 23.1526175915616 & 12.9482130326226 & 41.8991693758158 & -15.8473824084384 \tabularnewline
10 & 35 & 13.0469687729332 & 15.5716604652364 & 41.3813707618304 & -21.9530312270668 \tabularnewline
11 & 29 & 7.0642134833045 & 10.0722143688505 & 40.863572147845 & -21.9357865166955 \tabularnewline
12 & 49 & 40.5791876641858 & 14.7890127003966 & 42.6317996354176 & -8.4208123358142 \tabularnewline
13 & 50 & 48.80479127365 & 6.79518160335973 & 44.4000271229903 & -1.19520872634999 \tabularnewline
14 & 59 & 77.817697596787 & -6.58174158136597 & 46.7640439845789 & 18.817697596787 \tabularnewline
15 & 63 & 85.330583823061 & -8.45864466922862 & 49.1280608461676 & 22.330583823061 \tabularnewline
16 & 32 & 40.0551044243421 & -27.0094565654691 & 50.954352141127 & 8.0551044243421 \tabularnewline
17 & 39 & 59.6796113443108 & -34.4602547803972 & 52.7806434360864 & 20.6796113443108 \tabularnewline
18 & 47 & 74.1256567175614 & -34.2576763681964 & 54.1320196506349 & 27.1256567175614 \tabularnewline
19 & 53 & 34.1716767378295 & 16.344927396987 & 55.4833958651835 & -18.8283232621705 \tabularnewline
20 & 60 & 29.3873142450029 & 34.2465718959565 & 56.3661138590406 & -30.6126857549971 \tabularnewline
21 & 57 & 43.8029551144798 & 12.9482130326226 & 57.2488318528976 & -13.1970448855202 \tabularnewline
22 & 52 & 28.7314112773043 & 15.5716604652364 & 59.6969282574593 & -23.2685887226957 \tabularnewline
23 & 70 & 67.7827609691285 & 10.0722143688505 & 62.1450246620209 & -2.21723903087145 \tabularnewline
24 & 90 & 98.4484046843869 & 14.7890127003966 & 66.7625826152165 & 8.4484046843869 \tabularnewline
25 & 74 & 69.8246778282282 & 6.79518160335973 & 71.3801405684121 & -4.17532217177182 \tabularnewline
26 & 62 & 53.6132626132285 & -6.58174158136597 & 76.9684789681374 & -8.38673738677147 \tabularnewline
27 & 55 & 35.9018273013658 & -8.45864466922862 & 82.5568173678628 & -19.0981726986342 \tabularnewline
28 & 84 & 107.603930003384 & -27.0094565654691 & 87.4055265620848 & 23.6039300033843 \tabularnewline
29 & 94 & 130.20601902409 & -34.4602547803972 & 92.2542357563068 & 36.2060190240904 \tabularnewline
30 & 70 & 77.0902257082942 & -34.2576763681964 & 97.1674506599022 & 7.09022570829421 \tabularnewline
31 & 108 & 97.5744070395155 & 16.344927396987 & 102.080665563497 & -10.4255929604845 \tabularnewline
32 & 139 & 136.743169091254 & 34.2465718959565 & 107.010259012789 & -2.2568309087459 \tabularnewline
33 & 120 & 115.111934505296 & 12.9482130326226 & 111.939852462081 & -4.88806549470389 \tabularnewline
34 & 97 & 62.7602355054496 & 15.5716604652364 & 115.668104029314 & -34.2397644945504 \tabularnewline
35 & 126 & 122.531430034603 & 10.0722143688505 & 119.396355596547 & -3.46856996539741 \tabularnewline
36 & 149 & 161.783275900701 & 14.7890127003966 & 121.427711398903 & 12.7832759007009 \tabularnewline
37 & 158 & 185.745751195382 & 6.79518160335973 & 123.459067201258 & 27.745751195382 \tabularnewline
38 & 124 & 130.683879823375 & -6.58174158136597 & 123.897861757991 & 6.68387982337487 \tabularnewline
39 & 140 & 164.121988354505 & -8.45864466922862 & 124.336656314724 & 24.1219883545047 \tabularnewline
40 & 109 & 122.875355204528 & -27.0094565654691 & 122.134101360941 & 13.8753552045278 \tabularnewline
41 & 114 & 142.528708373239 & -34.4602547803972 & 119.931546407159 & 28.5287083732385 \tabularnewline
42 & 77 & 72.757795633904 & -34.2576763681964 & 115.499880734292 & -4.24220436609605 \tabularnewline
43 & 120 & 112.586857541587 & 16.344927396987 & 111.068215061426 & -7.41314245841315 \tabularnewline
44 & 133 & 124.645251601426 & 34.2465718959565 & 107.108176502618 & -8.35474839857415 \tabularnewline
45 & 110 & 103.903649023568 & 12.9482130326226 & 103.148137943809 & -6.09635097643171 \tabularnewline
46 & 92 & 66.5443170870764 & 15.5716604652364 & 101.884022447687 & -25.4556829129236 \tabularnewline
47 & 97 & 83.3078786795841 & 10.0722143688505 & 100.619906951565 & -13.6921213204159 \tabularnewline
48 & 78 & 38.2610173913151 & 14.7890127003966 & 102.949969908288 & -39.7389826086849 \tabularnewline
49 & 99 & 85.9247855316289 & 6.79518160335973 & 105.280032865011 & -13.0752144683711 \tabularnewline
50 & 107 & 108.967821911018 & -6.58174158136597 & 111.613919670348 & 1.96782191101769 \tabularnewline
51 & 112 & 114.510838193543 & -8.45864466922862 & 117.947806475685 & 2.51083819354339 \tabularnewline
52 & 90 & 80.7456934959123 & -27.0094565654691 & 126.263763069557 & -9.25430650408774 \tabularnewline
53 & 98 & 95.8805351169688 & -34.4602547803972 & 134.579719663428 & -2.11946488303124 \tabularnewline
54 & 125 & 142.679677729237 & -34.2576763681964 & 141.57799863896 & 17.6796777292367 \tabularnewline
55 & 155 & 145.078794988522 & 16.344927396987 & 148.576277614491 & -9.92120501147787 \tabularnewline
56 & 190 & 192.359586299834 & 34.2465718959565 & 153.393841804209 & 2.35958629983415 \tabularnewline
57 & 236 & 300.84038097345 & 12.9482130326226 & 158.211405993928 & 64.8403809734496 \tabularnewline
58 & 189 & 199.85370927155 & 15.5716604652364 & 162.574630263213 & 10.8537092715502 \tabularnewline
59 & 174 & 170.98993109865 & 10.0722143688505 & 166.937854532499 & -3.01006890134954 \tabularnewline
60 & 178 & 169.712542613331 & 14.7890127003966 & 171.498444686273 & -8.2874573866691 \tabularnewline
61 & 136 & 89.1457835565942 & 6.79518160335973 & 176.059034840046 & -46.8542164434058 \tabularnewline
62 & 161 & 148.330738352235 & -6.58174158136597 & 180.251003229131 & -12.6692616477653 \tabularnewline
63 & 171 & 166.015673051012 & -8.45864466922862 & 184.442971618216 & -4.98432694898781 \tabularnewline
64 & 149 & 134.665732703634 & -27.0094565654691 & 190.343723861835 & -14.3342672963661 \tabularnewline
65 & 184 & 206.215778674943 & -34.4602547803972 & 196.244476105454 & 22.2157786749434 \tabularnewline
66 & 155 & 140.023297484199 & -34.2576763681964 & 204.234378883997 & -14.976702515801 \tabularnewline
67 & 276 & 323.430790940472 & 16.344927396987 & 212.224281662541 & 47.430790940472 \tabularnewline
68 & 224 & 193.965435477743 & 34.2465718959565 & 219.787992626301 & -30.0345645222571 \tabularnewline
69 & 213 & 185.700083377317 & 12.9482130326226 & 227.35170359006 & -27.2999166226827 \tabularnewline
70 & 279 & 308.457385744453 & 15.5716604652364 & 233.97095379031 & 29.4573857444535 \tabularnewline
71 & 268 & 285.337581640589 & 10.0722143688505 & 240.59020399056 & 17.3375816405893 \tabularnewline
72 & 287 & 311.729888908314 & 14.7890127003966 & 247.48109839129 & 24.7298889083135 \tabularnewline
73 & 238 & 214.832825604621 & 6.79518160335973 & 254.37199279202 & -23.1671743953793 \tabularnewline
74 & 213 & 171.875556313757 & -6.58174158136597 & 260.706185267609 & -41.124443686243 \tabularnewline
75 & 257 & 255.41826692603 & -8.45864466922862 & 267.040377743198 & -1.58173307396959 \tabularnewline
76 & 293 & 342.449570121257 & -27.0094565654691 & 270.559886444212 & 49.4495701212568 \tabularnewline
77 & 212 & 184.380859635171 & -34.4602547803972 & 274.079395145226 & -27.619140364829 \tabularnewline
78 & 246 & 249.833922160369 & -34.2576763681964 & 276.423754207827 & 3.8339221603689 \tabularnewline
79 & 353 & 410.886959332584 & 16.344927396987 & 278.768113270429 & 57.8869593325843 \tabularnewline
80 & 339 & 362.281536794663 & 34.2465718959565 & 281.47189130938 & 23.2815367946635 \tabularnewline
81 & 308 & 318.876117619046 & 12.9482130326226 & 284.175669348331 & 10.8761176190461 \tabularnewline
82 & 247 & 192.614173665942 & 15.5716604652364 & 285.814165868822 & -54.3858263340584 \tabularnewline
83 & 257 & 216.475123241837 & 10.0722143688505 & 287.452662389313 & -40.5248767581632 \tabularnewline
84 & 322 & 340.211499917465 & 14.7890127003966 & 288.999487382138 & 18.2114999174651 \tabularnewline
85 & 298 & 298.658506021676 & 6.79518160335973 & 290.546312374964 & 0.65850602167626 \tabularnewline
86 & 273 & 259.207340009135 & -6.58174158136597 & 293.374401572231 & -13.7926599908648 \tabularnewline
87 & 312 & 336.256153899731 & -8.45864466922862 & 296.202490769498 & 24.2561538997311 \tabularnewline
88 & 249 & 224.131445453655 & -27.0094565654691 & 300.878011111814 & -24.8685545463449 \tabularnewline
89 & 286 & 300.906723326267 & -34.4602547803972 & 305.55353145413 & 14.9067233262667 \tabularnewline
90 & 279 & 282.529061322852 & -34.2576763681964 & 309.728615045345 & 3.52906132285159 \tabularnewline
91 & 309 & 287.751373966454 & 16.344927396987 & 313.903698636559 & -21.248626033546 \tabularnewline
92 & 401 & 451.810146422984 & 34.2465718959565 & 315.94328168106 & 50.8101464229835 \tabularnewline
93 & 309 & 287.068922241816 & 12.9482130326226 & 317.982864725561 & -21.9310777581835 \tabularnewline
94 & 328 & 322.955142464377 & 15.5716604652364 & 317.473197070387 & -5.04485753562301 \tabularnewline
95 & 353 & 378.964256215937 & 10.0722143688505 & 316.963529415212 & 25.9642562159372 \tabularnewline
96 & 354 & 376.515162740434 & 14.7890127003966 & 316.69582455917 & 22.5151627404338 \tabularnewline
97 & 327 & 330.776698693513 & 6.79518160335973 & 316.428119703127 & 3.77669869351331 \tabularnewline
98 & 324 & 334.860489413248 & -6.58174158136597 & 319.721252168118 & 10.8604894132476 \tabularnewline
99 & 285 & 255.444260036119 & -8.45864466922862 & 323.01438463311 & -29.555739963881 \tabularnewline
100 & 243 & 182.592164153447 & -27.0094565654691 & 330.417292412022 & -60.4078358465526 \tabularnewline
101 & 241 & 178.640054589463 & -34.4602547803972 & 337.820200190934 & -62.3599454105366 \tabularnewline
102 & 287 & 260.185755969371 & -34.2576763681964 & 348.071920398826 & -26.8142440306293 \tabularnewline
103 & 355 & 335.331431996295 & 16.344927396987 & 358.323640606718 & -19.6685680037045 \tabularnewline
104 & 460 & 515.453917408117 & 34.2465718959565 & 370.299510695927 & 55.4539174081169 \tabularnewline
105 & 364 & 332.776406182242 & 12.9482130326226 & 382.275380785136 & -31.2235938177582 \tabularnewline
106 & 487 & 566.973055031728 & 15.5716604652364 & 391.455284503036 & 79.9730550317277 \tabularnewline
107 & 452 & 493.292597410213 & 10.0722143688505 & 400.635188220936 & 41.2925974102132 \tabularnewline
108 & 391 & 363.6747292513 & 14.7890127003966 & 403.536258048303 & -27.3252707486999 \tabularnewline
109 & 500 & 586.76749052097 & 6.79518160335973 & 406.43732787567 & 86.7674905209699 \tabularnewline
110 & 451 & 504.991633035245 & -6.58174158136597 & 403.590108546121 & 53.9916330352447 \tabularnewline
111 & 375 & 357.715755452656 & -8.45864466922862 & 400.742889216572 & -17.2842445473437 \tabularnewline
112 & 372 & 372.508233194359 & -27.0094565654691 & 398.50122337111 & 0.508233194358638 \tabularnewline
113 & 302 & 242.200697254749 & -34.4602547803972 & 396.259557525648 & -59.7993027452513 \tabularnewline
114 & 316 & 272.974711171435 & -34.2576763681964 & 393.282965196761 & -43.0252888285649 \tabularnewline
115 & 398 & 389.348699735139 & 16.344927396987 & 390.306372867874 & -8.65130026486105 \tabularnewline
116 & 394 & 366.753888820607 & 34.2465718959565 & 386.999539283437 & -27.2461111793933 \tabularnewline
117 & 431 & 465.359081268378 & 12.9482130326226 & 383.692705698999 & 34.3590812683779 \tabularnewline
118 & 431 & 465.933359323267 & 15.5716604652364 & 380.494980211497 & 34.933359323267 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202817&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]41[/C][C]22.0593946218796[/C][C]6.79518160335973[/C][C]53.1454237747607[/C][C]-18.9406053781204[/C][/ROW]
[ROW][C]2[/C][C]39[/C][C]33.3985039065677[/C][C]-6.58174158136597[/C][C]51.1832376747983[/C][C]-5.60149609343232[/C][/ROW]
[ROW][C]3[/C][C]50[/C][C]59.2375930943927[/C][C]-8.45864466922862[/C][C]49.2210515748359[/C][C]9.2375930943927[/C][/ROW]
[ROW][C]4[/C][C]40[/C][C]59.4475762354992[/C][C]-27.0094565654691[/C][C]47.5618803299699[/C][C]19.4475762354992[/C][/ROW]
[ROW][C]5[/C][C]43[/C][C]74.5575456952934[/C][C]-34.4602547803972[/C][C]45.9027090851038[/C][C]31.5575456952934[/C][/ROW]
[ROW][C]6[/C][C]38[/C][C]65.4629503882897[/C][C]-34.2576763681964[/C][C]44.7947259799067[/C][C]27.4629503882897[/C][/ROW]
[ROW][C]7[/C][C]44[/C][C]27.9683297283034[/C][C]16.344927396987[/C][C]43.6867428747096[/C][C]-16.0316702716966[/C][/ROW]
[ROW][C]8[/C][C]35[/C][C]-7.03952802121924[/C][C]34.2465718959565[/C][C]42.7929561252627[/C][C]-42.0395280212192[/C][/ROW]
[ROW][C]9[/C][C]39[/C][C]23.1526175915616[/C][C]12.9482130326226[/C][C]41.8991693758158[/C][C]-15.8473824084384[/C][/ROW]
[ROW][C]10[/C][C]35[/C][C]13.0469687729332[/C][C]15.5716604652364[/C][C]41.3813707618304[/C][C]-21.9530312270668[/C][/ROW]
[ROW][C]11[/C][C]29[/C][C]7.0642134833045[/C][C]10.0722143688505[/C][C]40.863572147845[/C][C]-21.9357865166955[/C][/ROW]
[ROW][C]12[/C][C]49[/C][C]40.5791876641858[/C][C]14.7890127003966[/C][C]42.6317996354176[/C][C]-8.4208123358142[/C][/ROW]
[ROW][C]13[/C][C]50[/C][C]48.80479127365[/C][C]6.79518160335973[/C][C]44.4000271229903[/C][C]-1.19520872634999[/C][/ROW]
[ROW][C]14[/C][C]59[/C][C]77.817697596787[/C][C]-6.58174158136597[/C][C]46.7640439845789[/C][C]18.817697596787[/C][/ROW]
[ROW][C]15[/C][C]63[/C][C]85.330583823061[/C][C]-8.45864466922862[/C][C]49.1280608461676[/C][C]22.330583823061[/C][/ROW]
[ROW][C]16[/C][C]32[/C][C]40.0551044243421[/C][C]-27.0094565654691[/C][C]50.954352141127[/C][C]8.0551044243421[/C][/ROW]
[ROW][C]17[/C][C]39[/C][C]59.6796113443108[/C][C]-34.4602547803972[/C][C]52.7806434360864[/C][C]20.6796113443108[/C][/ROW]
[ROW][C]18[/C][C]47[/C][C]74.1256567175614[/C][C]-34.2576763681964[/C][C]54.1320196506349[/C][C]27.1256567175614[/C][/ROW]
[ROW][C]19[/C][C]53[/C][C]34.1716767378295[/C][C]16.344927396987[/C][C]55.4833958651835[/C][C]-18.8283232621705[/C][/ROW]
[ROW][C]20[/C][C]60[/C][C]29.3873142450029[/C][C]34.2465718959565[/C][C]56.3661138590406[/C][C]-30.6126857549971[/C][/ROW]
[ROW][C]21[/C][C]57[/C][C]43.8029551144798[/C][C]12.9482130326226[/C][C]57.2488318528976[/C][C]-13.1970448855202[/C][/ROW]
[ROW][C]22[/C][C]52[/C][C]28.7314112773043[/C][C]15.5716604652364[/C][C]59.6969282574593[/C][C]-23.2685887226957[/C][/ROW]
[ROW][C]23[/C][C]70[/C][C]67.7827609691285[/C][C]10.0722143688505[/C][C]62.1450246620209[/C][C]-2.21723903087145[/C][/ROW]
[ROW][C]24[/C][C]90[/C][C]98.4484046843869[/C][C]14.7890127003966[/C][C]66.7625826152165[/C][C]8.4484046843869[/C][/ROW]
[ROW][C]25[/C][C]74[/C][C]69.8246778282282[/C][C]6.79518160335973[/C][C]71.3801405684121[/C][C]-4.17532217177182[/C][/ROW]
[ROW][C]26[/C][C]62[/C][C]53.6132626132285[/C][C]-6.58174158136597[/C][C]76.9684789681374[/C][C]-8.38673738677147[/C][/ROW]
[ROW][C]27[/C][C]55[/C][C]35.9018273013658[/C][C]-8.45864466922862[/C][C]82.5568173678628[/C][C]-19.0981726986342[/C][/ROW]
[ROW][C]28[/C][C]84[/C][C]107.603930003384[/C][C]-27.0094565654691[/C][C]87.4055265620848[/C][C]23.6039300033843[/C][/ROW]
[ROW][C]29[/C][C]94[/C][C]130.20601902409[/C][C]-34.4602547803972[/C][C]92.2542357563068[/C][C]36.2060190240904[/C][/ROW]
[ROW][C]30[/C][C]70[/C][C]77.0902257082942[/C][C]-34.2576763681964[/C][C]97.1674506599022[/C][C]7.09022570829421[/C][/ROW]
[ROW][C]31[/C][C]108[/C][C]97.5744070395155[/C][C]16.344927396987[/C][C]102.080665563497[/C][C]-10.4255929604845[/C][/ROW]
[ROW][C]32[/C][C]139[/C][C]136.743169091254[/C][C]34.2465718959565[/C][C]107.010259012789[/C][C]-2.2568309087459[/C][/ROW]
[ROW][C]33[/C][C]120[/C][C]115.111934505296[/C][C]12.9482130326226[/C][C]111.939852462081[/C][C]-4.88806549470389[/C][/ROW]
[ROW][C]34[/C][C]97[/C][C]62.7602355054496[/C][C]15.5716604652364[/C][C]115.668104029314[/C][C]-34.2397644945504[/C][/ROW]
[ROW][C]35[/C][C]126[/C][C]122.531430034603[/C][C]10.0722143688505[/C][C]119.396355596547[/C][C]-3.46856996539741[/C][/ROW]
[ROW][C]36[/C][C]149[/C][C]161.783275900701[/C][C]14.7890127003966[/C][C]121.427711398903[/C][C]12.7832759007009[/C][/ROW]
[ROW][C]37[/C][C]158[/C][C]185.745751195382[/C][C]6.79518160335973[/C][C]123.459067201258[/C][C]27.745751195382[/C][/ROW]
[ROW][C]38[/C][C]124[/C][C]130.683879823375[/C][C]-6.58174158136597[/C][C]123.897861757991[/C][C]6.68387982337487[/C][/ROW]
[ROW][C]39[/C][C]140[/C][C]164.121988354505[/C][C]-8.45864466922862[/C][C]124.336656314724[/C][C]24.1219883545047[/C][/ROW]
[ROW][C]40[/C][C]109[/C][C]122.875355204528[/C][C]-27.0094565654691[/C][C]122.134101360941[/C][C]13.8753552045278[/C][/ROW]
[ROW][C]41[/C][C]114[/C][C]142.528708373239[/C][C]-34.4602547803972[/C][C]119.931546407159[/C][C]28.5287083732385[/C][/ROW]
[ROW][C]42[/C][C]77[/C][C]72.757795633904[/C][C]-34.2576763681964[/C][C]115.499880734292[/C][C]-4.24220436609605[/C][/ROW]
[ROW][C]43[/C][C]120[/C][C]112.586857541587[/C][C]16.344927396987[/C][C]111.068215061426[/C][C]-7.41314245841315[/C][/ROW]
[ROW][C]44[/C][C]133[/C][C]124.645251601426[/C][C]34.2465718959565[/C][C]107.108176502618[/C][C]-8.35474839857415[/C][/ROW]
[ROW][C]45[/C][C]110[/C][C]103.903649023568[/C][C]12.9482130326226[/C][C]103.148137943809[/C][C]-6.09635097643171[/C][/ROW]
[ROW][C]46[/C][C]92[/C][C]66.5443170870764[/C][C]15.5716604652364[/C][C]101.884022447687[/C][C]-25.4556829129236[/C][/ROW]
[ROW][C]47[/C][C]97[/C][C]83.3078786795841[/C][C]10.0722143688505[/C][C]100.619906951565[/C][C]-13.6921213204159[/C][/ROW]
[ROW][C]48[/C][C]78[/C][C]38.2610173913151[/C][C]14.7890127003966[/C][C]102.949969908288[/C][C]-39.7389826086849[/C][/ROW]
[ROW][C]49[/C][C]99[/C][C]85.9247855316289[/C][C]6.79518160335973[/C][C]105.280032865011[/C][C]-13.0752144683711[/C][/ROW]
[ROW][C]50[/C][C]107[/C][C]108.967821911018[/C][C]-6.58174158136597[/C][C]111.613919670348[/C][C]1.96782191101769[/C][/ROW]
[ROW][C]51[/C][C]112[/C][C]114.510838193543[/C][C]-8.45864466922862[/C][C]117.947806475685[/C][C]2.51083819354339[/C][/ROW]
[ROW][C]52[/C][C]90[/C][C]80.7456934959123[/C][C]-27.0094565654691[/C][C]126.263763069557[/C][C]-9.25430650408774[/C][/ROW]
[ROW][C]53[/C][C]98[/C][C]95.8805351169688[/C][C]-34.4602547803972[/C][C]134.579719663428[/C][C]-2.11946488303124[/C][/ROW]
[ROW][C]54[/C][C]125[/C][C]142.679677729237[/C][C]-34.2576763681964[/C][C]141.57799863896[/C][C]17.6796777292367[/C][/ROW]
[ROW][C]55[/C][C]155[/C][C]145.078794988522[/C][C]16.344927396987[/C][C]148.576277614491[/C][C]-9.92120501147787[/C][/ROW]
[ROW][C]56[/C][C]190[/C][C]192.359586299834[/C][C]34.2465718959565[/C][C]153.393841804209[/C][C]2.35958629983415[/C][/ROW]
[ROW][C]57[/C][C]236[/C][C]300.84038097345[/C][C]12.9482130326226[/C][C]158.211405993928[/C][C]64.8403809734496[/C][/ROW]
[ROW][C]58[/C][C]189[/C][C]199.85370927155[/C][C]15.5716604652364[/C][C]162.574630263213[/C][C]10.8537092715502[/C][/ROW]
[ROW][C]59[/C][C]174[/C][C]170.98993109865[/C][C]10.0722143688505[/C][C]166.937854532499[/C][C]-3.01006890134954[/C][/ROW]
[ROW][C]60[/C][C]178[/C][C]169.712542613331[/C][C]14.7890127003966[/C][C]171.498444686273[/C][C]-8.2874573866691[/C][/ROW]
[ROW][C]61[/C][C]136[/C][C]89.1457835565942[/C][C]6.79518160335973[/C][C]176.059034840046[/C][C]-46.8542164434058[/C][/ROW]
[ROW][C]62[/C][C]161[/C][C]148.330738352235[/C][C]-6.58174158136597[/C][C]180.251003229131[/C][C]-12.6692616477653[/C][/ROW]
[ROW][C]63[/C][C]171[/C][C]166.015673051012[/C][C]-8.45864466922862[/C][C]184.442971618216[/C][C]-4.98432694898781[/C][/ROW]
[ROW][C]64[/C][C]149[/C][C]134.665732703634[/C][C]-27.0094565654691[/C][C]190.343723861835[/C][C]-14.3342672963661[/C][/ROW]
[ROW][C]65[/C][C]184[/C][C]206.215778674943[/C][C]-34.4602547803972[/C][C]196.244476105454[/C][C]22.2157786749434[/C][/ROW]
[ROW][C]66[/C][C]155[/C][C]140.023297484199[/C][C]-34.2576763681964[/C][C]204.234378883997[/C][C]-14.976702515801[/C][/ROW]
[ROW][C]67[/C][C]276[/C][C]323.430790940472[/C][C]16.344927396987[/C][C]212.224281662541[/C][C]47.430790940472[/C][/ROW]
[ROW][C]68[/C][C]224[/C][C]193.965435477743[/C][C]34.2465718959565[/C][C]219.787992626301[/C][C]-30.0345645222571[/C][/ROW]
[ROW][C]69[/C][C]213[/C][C]185.700083377317[/C][C]12.9482130326226[/C][C]227.35170359006[/C][C]-27.2999166226827[/C][/ROW]
[ROW][C]70[/C][C]279[/C][C]308.457385744453[/C][C]15.5716604652364[/C][C]233.97095379031[/C][C]29.4573857444535[/C][/ROW]
[ROW][C]71[/C][C]268[/C][C]285.337581640589[/C][C]10.0722143688505[/C][C]240.59020399056[/C][C]17.3375816405893[/C][/ROW]
[ROW][C]72[/C][C]287[/C][C]311.729888908314[/C][C]14.7890127003966[/C][C]247.48109839129[/C][C]24.7298889083135[/C][/ROW]
[ROW][C]73[/C][C]238[/C][C]214.832825604621[/C][C]6.79518160335973[/C][C]254.37199279202[/C][C]-23.1671743953793[/C][/ROW]
[ROW][C]74[/C][C]213[/C][C]171.875556313757[/C][C]-6.58174158136597[/C][C]260.706185267609[/C][C]-41.124443686243[/C][/ROW]
[ROW][C]75[/C][C]257[/C][C]255.41826692603[/C][C]-8.45864466922862[/C][C]267.040377743198[/C][C]-1.58173307396959[/C][/ROW]
[ROW][C]76[/C][C]293[/C][C]342.449570121257[/C][C]-27.0094565654691[/C][C]270.559886444212[/C][C]49.4495701212568[/C][/ROW]
[ROW][C]77[/C][C]212[/C][C]184.380859635171[/C][C]-34.4602547803972[/C][C]274.079395145226[/C][C]-27.619140364829[/C][/ROW]
[ROW][C]78[/C][C]246[/C][C]249.833922160369[/C][C]-34.2576763681964[/C][C]276.423754207827[/C][C]3.8339221603689[/C][/ROW]
[ROW][C]79[/C][C]353[/C][C]410.886959332584[/C][C]16.344927396987[/C][C]278.768113270429[/C][C]57.8869593325843[/C][/ROW]
[ROW][C]80[/C][C]339[/C][C]362.281536794663[/C][C]34.2465718959565[/C][C]281.47189130938[/C][C]23.2815367946635[/C][/ROW]
[ROW][C]81[/C][C]308[/C][C]318.876117619046[/C][C]12.9482130326226[/C][C]284.175669348331[/C][C]10.8761176190461[/C][/ROW]
[ROW][C]82[/C][C]247[/C][C]192.614173665942[/C][C]15.5716604652364[/C][C]285.814165868822[/C][C]-54.3858263340584[/C][/ROW]
[ROW][C]83[/C][C]257[/C][C]216.475123241837[/C][C]10.0722143688505[/C][C]287.452662389313[/C][C]-40.5248767581632[/C][/ROW]
[ROW][C]84[/C][C]322[/C][C]340.211499917465[/C][C]14.7890127003966[/C][C]288.999487382138[/C][C]18.2114999174651[/C][/ROW]
[ROW][C]85[/C][C]298[/C][C]298.658506021676[/C][C]6.79518160335973[/C][C]290.546312374964[/C][C]0.65850602167626[/C][/ROW]
[ROW][C]86[/C][C]273[/C][C]259.207340009135[/C][C]-6.58174158136597[/C][C]293.374401572231[/C][C]-13.7926599908648[/C][/ROW]
[ROW][C]87[/C][C]312[/C][C]336.256153899731[/C][C]-8.45864466922862[/C][C]296.202490769498[/C][C]24.2561538997311[/C][/ROW]
[ROW][C]88[/C][C]249[/C][C]224.131445453655[/C][C]-27.0094565654691[/C][C]300.878011111814[/C][C]-24.8685545463449[/C][/ROW]
[ROW][C]89[/C][C]286[/C][C]300.906723326267[/C][C]-34.4602547803972[/C][C]305.55353145413[/C][C]14.9067233262667[/C][/ROW]
[ROW][C]90[/C][C]279[/C][C]282.529061322852[/C][C]-34.2576763681964[/C][C]309.728615045345[/C][C]3.52906132285159[/C][/ROW]
[ROW][C]91[/C][C]309[/C][C]287.751373966454[/C][C]16.344927396987[/C][C]313.903698636559[/C][C]-21.248626033546[/C][/ROW]
[ROW][C]92[/C][C]401[/C][C]451.810146422984[/C][C]34.2465718959565[/C][C]315.94328168106[/C][C]50.8101464229835[/C][/ROW]
[ROW][C]93[/C][C]309[/C][C]287.068922241816[/C][C]12.9482130326226[/C][C]317.982864725561[/C][C]-21.9310777581835[/C][/ROW]
[ROW][C]94[/C][C]328[/C][C]322.955142464377[/C][C]15.5716604652364[/C][C]317.473197070387[/C][C]-5.04485753562301[/C][/ROW]
[ROW][C]95[/C][C]353[/C][C]378.964256215937[/C][C]10.0722143688505[/C][C]316.963529415212[/C][C]25.9642562159372[/C][/ROW]
[ROW][C]96[/C][C]354[/C][C]376.515162740434[/C][C]14.7890127003966[/C][C]316.69582455917[/C][C]22.5151627404338[/C][/ROW]
[ROW][C]97[/C][C]327[/C][C]330.776698693513[/C][C]6.79518160335973[/C][C]316.428119703127[/C][C]3.77669869351331[/C][/ROW]
[ROW][C]98[/C][C]324[/C][C]334.860489413248[/C][C]-6.58174158136597[/C][C]319.721252168118[/C][C]10.8604894132476[/C][/ROW]
[ROW][C]99[/C][C]285[/C][C]255.444260036119[/C][C]-8.45864466922862[/C][C]323.01438463311[/C][C]-29.555739963881[/C][/ROW]
[ROW][C]100[/C][C]243[/C][C]182.592164153447[/C][C]-27.0094565654691[/C][C]330.417292412022[/C][C]-60.4078358465526[/C][/ROW]
[ROW][C]101[/C][C]241[/C][C]178.640054589463[/C][C]-34.4602547803972[/C][C]337.820200190934[/C][C]-62.3599454105366[/C][/ROW]
[ROW][C]102[/C][C]287[/C][C]260.185755969371[/C][C]-34.2576763681964[/C][C]348.071920398826[/C][C]-26.8142440306293[/C][/ROW]
[ROW][C]103[/C][C]355[/C][C]335.331431996295[/C][C]16.344927396987[/C][C]358.323640606718[/C][C]-19.6685680037045[/C][/ROW]
[ROW][C]104[/C][C]460[/C][C]515.453917408117[/C][C]34.2465718959565[/C][C]370.299510695927[/C][C]55.4539174081169[/C][/ROW]
[ROW][C]105[/C][C]364[/C][C]332.776406182242[/C][C]12.9482130326226[/C][C]382.275380785136[/C][C]-31.2235938177582[/C][/ROW]
[ROW][C]106[/C][C]487[/C][C]566.973055031728[/C][C]15.5716604652364[/C][C]391.455284503036[/C][C]79.9730550317277[/C][/ROW]
[ROW][C]107[/C][C]452[/C][C]493.292597410213[/C][C]10.0722143688505[/C][C]400.635188220936[/C][C]41.2925974102132[/C][/ROW]
[ROW][C]108[/C][C]391[/C][C]363.6747292513[/C][C]14.7890127003966[/C][C]403.536258048303[/C][C]-27.3252707486999[/C][/ROW]
[ROW][C]109[/C][C]500[/C][C]586.76749052097[/C][C]6.79518160335973[/C][C]406.43732787567[/C][C]86.7674905209699[/C][/ROW]
[ROW][C]110[/C][C]451[/C][C]504.991633035245[/C][C]-6.58174158136597[/C][C]403.590108546121[/C][C]53.9916330352447[/C][/ROW]
[ROW][C]111[/C][C]375[/C][C]357.715755452656[/C][C]-8.45864466922862[/C][C]400.742889216572[/C][C]-17.2842445473437[/C][/ROW]
[ROW][C]112[/C][C]372[/C][C]372.508233194359[/C][C]-27.0094565654691[/C][C]398.50122337111[/C][C]0.508233194358638[/C][/ROW]
[ROW][C]113[/C][C]302[/C][C]242.200697254749[/C][C]-34.4602547803972[/C][C]396.259557525648[/C][C]-59.7993027452513[/C][/ROW]
[ROW][C]114[/C][C]316[/C][C]272.974711171435[/C][C]-34.2576763681964[/C][C]393.282965196761[/C][C]-43.0252888285649[/C][/ROW]
[ROW][C]115[/C][C]398[/C][C]389.348699735139[/C][C]16.344927396987[/C][C]390.306372867874[/C][C]-8.65130026486105[/C][/ROW]
[ROW][C]116[/C][C]394[/C][C]366.753888820607[/C][C]34.2465718959565[/C][C]386.999539283437[/C][C]-27.2461111793933[/C][/ROW]
[ROW][C]117[/C][C]431[/C][C]465.359081268378[/C][C]12.9482130326226[/C][C]383.692705698999[/C][C]34.3590812683779[/C][/ROW]
[ROW][C]118[/C][C]431[/C][C]465.933359323267[/C][C]15.5716604652364[/C][C]380.494980211497[/C][C]34.933359323267[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202817&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202817&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
14122.05939462187966.7951816033597353.1454237747607-18.9406053781204
23933.3985039065677-6.5817415813659751.1832376747983-5.60149609343232
35059.2375930943927-8.4586446692286249.22105157483599.2375930943927
44059.4475762354992-27.009456565469147.561880329969919.4475762354992
54374.5575456952934-34.460254780397245.902709085103831.5575456952934
63865.4629503882897-34.257676368196444.794725979906727.4629503882897
74427.968329728303416.34492739698743.6867428747096-16.0316702716966
835-7.0395280212192434.246571895956542.7929561252627-42.0395280212192
93923.152617591561612.948213032622641.8991693758158-15.8473824084384
103513.046968772933215.571660465236441.3813707618304-21.9530312270668
11297.064213483304510.072214368850540.863572147845-21.9357865166955
124940.579187664185814.789012700396642.6317996354176-8.4208123358142
135048.804791273656.7951816033597344.4000271229903-1.19520872634999
145977.817697596787-6.5817415813659746.764043984578918.817697596787
156385.330583823061-8.4586446692286249.128060846167622.330583823061
163240.0551044243421-27.009456565469150.9543521411278.0551044243421
173959.6796113443108-34.460254780397252.780643436086420.6796113443108
184774.1256567175614-34.257676368196454.132019650634927.1256567175614
195334.171676737829516.34492739698755.4833958651835-18.8283232621705
206029.387314245002934.246571895956556.3661138590406-30.6126857549971
215743.802955114479812.948213032622657.2488318528976-13.1970448855202
225228.731411277304315.571660465236459.6969282574593-23.2685887226957
237067.782760969128510.072214368850562.1450246620209-2.21723903087145
249098.448404684386914.789012700396666.76258261521658.4484046843869
257469.82467782822826.7951816033597371.3801405684121-4.17532217177182
266253.6132626132285-6.5817415813659776.9684789681374-8.38673738677147
275535.9018273013658-8.4586446692286282.5568173678628-19.0981726986342
2884107.603930003384-27.009456565469187.405526562084823.6039300033843
2994130.20601902409-34.460254780397292.254235756306836.2060190240904
307077.0902257082942-34.257676368196497.16745065990227.09022570829421
3110897.574407039515516.344927396987102.080665563497-10.4255929604845
32139136.74316909125434.2465718959565107.010259012789-2.2568309087459
33120115.11193450529612.9482130326226111.939852462081-4.88806549470389
349762.760235505449615.5716604652364115.668104029314-34.2397644945504
35126122.53143003460310.0722143688505119.396355596547-3.46856996539741
36149161.78327590070114.7890127003966121.42771139890312.7832759007009
37158185.7457511953826.79518160335973123.45906720125827.745751195382
38124130.683879823375-6.58174158136597123.8978617579916.68387982337487
39140164.121988354505-8.45864466922862124.33665631472424.1219883545047
40109122.875355204528-27.0094565654691122.13410136094113.8753552045278
41114142.528708373239-34.4602547803972119.93154640715928.5287083732385
427772.757795633904-34.2576763681964115.499880734292-4.24220436609605
43120112.58685754158716.344927396987111.068215061426-7.41314245841315
44133124.64525160142634.2465718959565107.108176502618-8.35474839857415
45110103.90364902356812.9482130326226103.148137943809-6.09635097643171
469266.544317087076415.5716604652364101.884022447687-25.4556829129236
479783.307878679584110.0722143688505100.619906951565-13.6921213204159
487838.261017391315114.7890127003966102.949969908288-39.7389826086849
499985.92478553162896.79518160335973105.280032865011-13.0752144683711
50107108.967821911018-6.58174158136597111.6139196703481.96782191101769
51112114.510838193543-8.45864466922862117.9478064756852.51083819354339
529080.7456934959123-27.0094565654691126.263763069557-9.25430650408774
539895.8805351169688-34.4602547803972134.579719663428-2.11946488303124
54125142.679677729237-34.2576763681964141.5779986389617.6796777292367
55155145.07879498852216.344927396987148.576277614491-9.92120501147787
56190192.35958629983434.2465718959565153.3938418042092.35958629983415
57236300.8403809734512.9482130326226158.21140599392864.8403809734496
58189199.8537092715515.5716604652364162.57463026321310.8537092715502
59174170.9899310986510.0722143688505166.937854532499-3.01006890134954
60178169.71254261333114.7890127003966171.498444686273-8.2874573866691
6113689.14578355659426.79518160335973176.059034840046-46.8542164434058
62161148.330738352235-6.58174158136597180.251003229131-12.6692616477653
63171166.015673051012-8.45864466922862184.442971618216-4.98432694898781
64149134.665732703634-27.0094565654691190.343723861835-14.3342672963661
65184206.215778674943-34.4602547803972196.24447610545422.2157786749434
66155140.023297484199-34.2576763681964204.234378883997-14.976702515801
67276323.43079094047216.344927396987212.22428166254147.430790940472
68224193.96543547774334.2465718959565219.787992626301-30.0345645222571
69213185.70008337731712.9482130326226227.35170359006-27.2999166226827
70279308.45738574445315.5716604652364233.9709537903129.4573857444535
71268285.33758164058910.0722143688505240.5902039905617.3375816405893
72287311.72988890831414.7890127003966247.4810983912924.7298889083135
73238214.8328256046216.79518160335973254.37199279202-23.1671743953793
74213171.875556313757-6.58174158136597260.706185267609-41.124443686243
75257255.41826692603-8.45864466922862267.040377743198-1.58173307396959
76293342.449570121257-27.0094565654691270.55988644421249.4495701212568
77212184.380859635171-34.4602547803972274.079395145226-27.619140364829
78246249.833922160369-34.2576763681964276.4237542078273.8339221603689
79353410.88695933258416.344927396987278.76811327042957.8869593325843
80339362.28153679466334.2465718959565281.4718913093823.2815367946635
81308318.87611761904612.9482130326226284.17566934833110.8761176190461
82247192.61417366594215.5716604652364285.814165868822-54.3858263340584
83257216.47512324183710.0722143688505287.452662389313-40.5248767581632
84322340.21149991746514.7890127003966288.99948738213818.2114999174651
85298298.6585060216766.79518160335973290.5463123749640.65850602167626
86273259.207340009135-6.58174158136597293.374401572231-13.7926599908648
87312336.256153899731-8.45864466922862296.20249076949824.2561538997311
88249224.131445453655-27.0094565654691300.878011111814-24.8685545463449
89286300.906723326267-34.4602547803972305.5535314541314.9067233262667
90279282.529061322852-34.2576763681964309.7286150453453.52906132285159
91309287.75137396645416.344927396987313.903698636559-21.248626033546
92401451.81014642298434.2465718959565315.9432816810650.8101464229835
93309287.06892224181612.9482130326226317.982864725561-21.9310777581835
94328322.95514246437715.5716604652364317.473197070387-5.04485753562301
95353378.96425621593710.0722143688505316.96352941521225.9642562159372
96354376.51516274043414.7890127003966316.6958245591722.5151627404338
97327330.7766986935136.79518160335973316.4281197031273.77669869351331
98324334.860489413248-6.58174158136597319.72125216811810.8604894132476
99285255.444260036119-8.45864466922862323.01438463311-29.555739963881
100243182.592164153447-27.0094565654691330.417292412022-60.4078358465526
101241178.640054589463-34.4602547803972337.820200190934-62.3599454105366
102287260.185755969371-34.2576763681964348.071920398826-26.8142440306293
103355335.33143199629516.344927396987358.323640606718-19.6685680037045
104460515.45391740811734.2465718959565370.29951069592755.4539174081169
105364332.77640618224212.9482130326226382.275380785136-31.2235938177582
106487566.97305503172815.5716604652364391.45528450303679.9730550317277
107452493.29259741021310.0722143688505400.63518822093641.2925974102132
108391363.674729251314.7890127003966403.536258048303-27.3252707486999
109500586.767490520976.79518160335973406.4373278756786.7674905209699
110451504.991633035245-6.58174158136597403.59010854612153.9916330352447
111375357.715755452656-8.45864466922862400.742889216572-17.2842445473437
112372372.508233194359-27.0094565654691398.501223371110.508233194358638
113302242.200697254749-34.4602547803972396.259557525648-59.7993027452513
114316272.974711171435-34.2576763681964393.282965196761-43.0252888285649
115398389.34869973513916.344927396987390.306372867874-8.65130026486105
116394366.75388882060734.2465718959565386.999539283437-27.2461111793933
117431465.35908126837812.9482130326226383.69270569899934.3590812683779
118431465.93335932326715.5716604652364380.49498021149734.933359323267



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')