Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 21 Dec 2012 03:35:48 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/21/t1356078962jjuh1dw6bkowexr.htm/, Retrieved Fri, 01 Nov 2024 00:12:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=203279, Retrieved Fri, 01 Nov 2024 00:12:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact206
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
F RMPD  [Univariate Explorative Data Analysis] [Colombia Coffee] [2008-01-07 14:21:11] [74be16979710d4c4e7c6647856088456]
- RMPD    [Univariate Explorative Data Analysis] [Workshop 6, Tutor...] [2010-11-07 12:24:29] [8ffb4cfa64b4677df0d2c448735a40bb]
- R P       [Univariate Explorative Data Analysis] [WS6 2. Technique 2] [2010-11-11 18:06:41] [afe9379cca749d06b3d6872e02cc47ed]
- RMPD        [Multiple Regression] [Apple Inc - Multi...] [2010-12-11 10:33:09] [afe9379cca749d06b3d6872e02cc47ed]
-    D          [Multiple Regression] [WS10 Multiple Reg...] [2010-12-13 13:48:19] [afe9379cca749d06b3d6872e02cc47ed]
- R PD            [Multiple Regression] [] [2012-12-20 16:07:49] [d1865ed705b6ad9ba3d459a02c528b22]
-    D              [Multiple Regression] [] [2012-12-20 16:20:46] [d1865ed705b6ad9ba3d459a02c528b22]
-   PD                [Multiple Regression] [] [2012-12-21 08:01:57] [74be16979710d4c4e7c6647856088456]
- R PD                  [Multiple Regression] [] [2012-12-21 08:23:32] [d1865ed705b6ad9ba3d459a02c528b22]
- R PD                      [Multiple Regression] [] [2012-12-21 08:35:48] [14d0a7ecb926325afa0eb6a607fbc7a0] [Current]
Feedback Forum

Post a new message
Dataseries X:
27.72	41837160	91.51	2747.48	0.016	62.7	0.16
26.90	35204750	91.09	2760.01	0.016	62.7	0.17
25.86	42367740	93.00	2778.11	0.016	62.7	0.17
26.81	61427940	93.08	2844.72	0.016	62.7	0.16
26.31	26132090	94.13	2831.02	0.016	62.7	0.16
27.10	3799718	96.26	2858.42	0.016	62.7	0.17
27.00	28202230	94.29	2809.73	0.016	62.7	0.17
27.40	15809640	94.46	2843.07	0.016	62.7	0.16
27.27	17110160	95.53	2818.61	0.016	62.7	0.17
28.29	16835510	98.29	2836.33	0.016	62.7	0.17
30.01	43517670	102.01	2872.80	0.016	62.7	0.18
31.41	42958450	105.16	2895.33	0.016	62.7	0.17
31.91	30826830	105.34	2929.76	0.016	62.7	0.17
31.60	15549740	105.27	2930.45	0.016	62.7	0.16
31.84	21843070	102.19	2859.09	0.016	62.7	0.17
33.05	73424890	106.85	2892.42	0.016	62.7	0.17
32.06	24330740	103.05	2836.16	0.016	62.7	0.17
33.10	24785970	106.42	2854.06	0.016	62.7	0.16
32.23	28553940	105.17	2875.32	0.016	62.7	0.15
31.36	17659080	102.74	2849.49	0.016	62.7	0.15
31.09	19508980	106.27	2935.05	0.016	62.7	0.09
30.77	14110230	107.63	2951.23	0.0141	65.4	0.18
31.20	8765498	108.54	2976.08	0.0141	65.4	0.17
31.47	10027250	108.24	2976.12	0.0141	65.4	0.17
31.73	10943350	108.86	2937.33	0.0141	65.4	0.17
32.17	17755740	102.98	2931.77	0.0141	65.4	0.17
31.47	14238190	99.53	2902.33	0.0141	65.4	0.17
30.97	12997760	101.08	2887.98	0.0141	65.4	0.17
30.81	11299240	104.64	2866.19	0.0141	65.4	0.18
30.72	8102653	105.59	2908.47	0.0141	65.4	0.19
28.24	24549800	103.21	2896.94	0.0141	65.4	0.18
28.09	30410530	103.84	2910.04	0.0141	65.4	0.17
29.11	16807730	104.61	2942.60	0.0141	65.4	0.16
29.00	13671200	108.65	2965.90	0.0141	65.4	0.13
28.76	11854290	106.26	2925.30	0.0141	65.4	0.13
28.75	12383610	104.20	2890.15	0.0141	65.4	0.14
28.45	11512350	102.99	2862.99	0.0141	65.4	0.15
29.34	16749990	102.19	2854.24	0.0141	65.4	0.15
26.84	61009290	100.82	2893.25	0.0141	65.4	0.14
23.70	123011300	103.42	2958.09	0.0141	65.4	0.14
23.15	29253590	104.18	2945.84	0.0141	65.4	0.14
21.71	55998620	102.65	2939.52	0.0141	65.4	0.13
20.88	44488370	95.64	2920.21	0.0169	61.3	0.14
20.04	56264460	93.51	2909.77	0.0169	61.3	0.14
21.09	80626220	108.51	2967.90	0.0169	61.3	0.14
21.92	27733830	111.55	2989.91	0.0169	61.3	0.14
20.72	36699380	106.70	3015.86	0.0169	61.3	0.13
20.72	29514550	104.93	3011.25	0.0169	61.3	0.13
21.01	15605960	105.23	3018.64	0.0169	61.3	0.13
21.80	25714310	104.92	3020.86	0.0169	61.3	0.13
21.60	24904700	104.60	3022.52	0.0169	61.3	0.13
20.38	38971320	101.76	3016.98	0.0169	61.3	0.13
21.20	47682050	102.23	3030.93	0.0169	61.3	0.13
19.87	157188200	103.99	3062.39	0.0169	61.3	0.13
19.05	129057400	101.36	3076.59	0.0169	61.3	0.13
20.01	100818300	102.92	3076.21	0.0169	61.3	0.13
19.15	70483330	105.25	3067.26	0.0169	61.3	0.13
19.43	49779450	105.71	3073.67	0.0169	61.3	0.13
19.44	32747000	105.42	3053.40	0.0169	61.3	0.13
19.40	29588690	105.11	3069.79	0.0169	61.3	0.13
19.15	20663220	104.67	3073.19	0.0169	61.3	0.13
19.34	25402980	107.51	3077.14	0.0169	61.3	0.13
19.10	16071190	109.00	3081.19	0.0169	61.3	0.13
19.08	30571430	107.37	3048.71	0.0169	61.3	0.14
18.05	58612440	107.30	3066.96	0.0169	61.3	0.13
17.72	46177000	107.37	3075.06	0.0199	70.3	0.14
18.58	60657900	113.28	3069.27	0.0199	70.3	0.16
18.96	46028860	119.10	3135.81	0.0199	70.3	0.16
18.98	36325880	119.04	3136.42	0.0199	70.3	0.15
18.81	24752340	117.80	3104.02	0.0199	70.3	0.15
19.43	47343020	117.90	3104.53	0.0199	70.3	0.15
20.93	121399400	119.55	3114.31	0.0199	70.3	0.15
20.71	64896660	119.47	3155.83	0.0199	70.3	0.15
22.00	72707430	123.23	3183.95	0.0199	70.3	0.16
21.52	50593510	121.40	3178.67	0.0199	70.3	0.16
21.87	36696330	121.43	3177.80	0.0199	70.3	0.16
23.29	78525460	122.51	3182.62	0.0199	70.3	0.15
22.59	57115160	122.78	3175.96	0.0199	70.3	0.16
22.86	51163120	122.84	3179.96	0.0199	70.3	0.15
20.79	78968380	122.70	3160.78	0.0199	70.3	0.16
20.28	46169460	119.89	3117.73	0.0199	70.3	0.15
20.62	38212360	118.00	3093.70	0.0199	70.3	0.16
20.32	30061050	119.61	3136.60	0.0199	70.3	0.14
21.66	65415370	120.40	3116.23	0.0199	70.3	0.09
21.99	51198150	117.94	3113.53	0.0216	73.1	0.15
22.27	29276680	118.77	3120.04	0.0216	73.1	0.16
21.83	31940720	121.68	3135.23	0.0216	73.1	0.16
21.94	46549400	121.98	3149.46	0.0216	73.1	0.15
20.91	40483780	118.83	3136.19	0.0216	73.1	0.15
20.40	32190200	117.97	3112.35	0.0216	73.1	0.15
20.22	27125670	113.07	3065.02	0.0216	73.1	0.16
19.64	39282420	111.98	3051.78	0.0216	73.1	0.16
19.75	21803710	113.77	3049.41	0.0216	73.1	0.16
19.51	18743920	110.41	3044.11	0.0216	73.1	0.16
19.52	20154860	110.85	3064.18	0.0216	73.1	0.16
19.48	21816100	111.18	3101.17	0.0216	73.1	0.16
19.88	44020450	109.42	3104.12	0.0216	73.1	0.15
18.97	52059860	108.87	3072.87	0.0216	73.1	0.15
19.00	34769600	106.72	3005.62	0.0216	73.1	0.16
19.32	32269470	107.28	3016.96	0.0216	73.1	0.15
19.50	72281000	104.13	2990.46	0.0216	73.1	0.15
23.22	228364700	107.55	2981.70	0.0216	73.1	0.17
22.56	76050080	105.72	2986.12	0.0216	73.1	0.16
21.94	9999999	104.55	2987.95	0.0216	73.1	0.16
21.11	99311480	106.93	2977.23	0.0216	73.1	0.18
21.21	37631000	106.85	3020.06	0.0176	73.1	0.17
21.18	38308550	106.78	2982.13	0.0176	73.1	0.16
21.25	31752420	107.29	2999.66	0.0176	73.1	0.17
21.17	29030780	104.14	3011.93	0.0176	73.1	0.16
20.47	33352920	101.21	2937.29	0.0176	73.1	0.16
19.99	34106840	96.35	2895.58	0.0176	73.1	0.16
19.21	42257790	95.62	2904.87	0.0176	73.1	0.16
20.07	67220540	99.00	2904.26	0.0176	73.1	0.16
19.86	71524510	99.26	2883.89	0.0176	73.1	0.16
22.36	229081600	98.77	2846.81	0.0176	73.1	0.16
22.17	78808770	100.65	2836.94	0.0176	73.1	0.16
23.56	107091400	103.13	2853.13	0.0176	73.1	0.16
22.92	84944370	105.53	2916.07	0.0176	73.1	0.16
23.10	46515660	106.76	2916.68	0.0176	73.1	0.16
24.32	89720920	107.59	2926.55	0.0176	73.1	0.16
23.99	29520310	107.62	2966.85	0.0176	73.1	0.16
25.94	123513900	108.82	2976.78	0.0176	73.1	0.16
26.15	85687430	107.59	2967.79	0.0176	73.1	0.16
26.36	49113040	107.85	2991.78	0.0176	73.1	0.16
27.32	88572990	107.11	3012.03	0.0176	73.1	0.16
28.00	126867400	108.14	3010.24	0.0176	73.1	0.16




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
FACEBOOK[t] = + 75.4666021046557 + 2.90780217131153e-09VOLUME[t] + 0.396048966922346LINKEDIN[t] -0.0318437408507976NASDAQ[t] -793.799909436424INF.CONS.CONF[t] + 0.179021825210181FED[t] + 39.4392171796887FUNDS.RATE[t] -0.050684554170759t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
FACEBOOK[t] =  +  75.4666021046557 +  2.90780217131153e-09VOLUME[t] +  0.396048966922346LINKEDIN[t] -0.0318437408507976NASDAQ[t] -793.799909436424INF.CONS.CONF[t] +  0.179021825210181FED[t] +  39.4392171796887FUNDS.RATE[t] -0.050684554170759t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]FACEBOOK[t] =  +  75.4666021046557 +  2.90780217131153e-09VOLUME[t] +  0.396048966922346LINKEDIN[t] -0.0318437408507976NASDAQ[t] -793.799909436424INF.CONS.CONF[t] +  0.179021825210181FED[t] +  39.4392171796887FUNDS.RATE[t] -0.050684554170759t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
FACEBOOK[t] = + 75.4666021046557 + 2.90780217131153e-09VOLUME[t] + 0.396048966922346LINKEDIN[t] -0.0318437408507976NASDAQ[t] -793.799909436424INF.CONS.CONF[t] + 0.179021825210181FED[t] + 39.4392171796887FUNDS.RATE[t] -0.050684554170759t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)75.466602104655713.1700115.730200
VOLUME2.90780217131153e-0900.51490.607590.303795
LINKEDIN0.3960489669223460.0605386.542200
NASDAQ-0.03184374085079760.005002-6.366400
INF.CONS.CONF-793.799909436424136.458919-5.817100
FED0.1790218252101810.1164811.53690.126990.063495
FUNDS.RATE39.439217179688715.6605412.51840.0131290.006564
t-0.0506845541707590.013667-3.70850.0003190.00016

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 75.4666021046557 & 13.170011 & 5.7302 & 0 & 0 \tabularnewline
VOLUME & 2.90780217131153e-09 & 0 & 0.5149 & 0.60759 & 0.303795 \tabularnewline
LINKEDIN & 0.396048966922346 & 0.060538 & 6.5422 & 0 & 0 \tabularnewline
NASDAQ & -0.0318437408507976 & 0.005002 & -6.3664 & 0 & 0 \tabularnewline
INF.CONS.CONF & -793.799909436424 & 136.458919 & -5.8171 & 0 & 0 \tabularnewline
FED & 0.179021825210181 & 0.116481 & 1.5369 & 0.12699 & 0.063495 \tabularnewline
FUNDS.RATE & 39.4392171796887 & 15.660541 & 2.5184 & 0.013129 & 0.006564 \tabularnewline
t & -0.050684554170759 & 0.013667 & -3.7085 & 0.000319 & 0.00016 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]75.4666021046557[/C][C]13.170011[/C][C]5.7302[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]VOLUME[/C][C]2.90780217131153e-09[/C][C]0[/C][C]0.5149[/C][C]0.60759[/C][C]0.303795[/C][/ROW]
[ROW][C]LINKEDIN[/C][C]0.396048966922346[/C][C]0.060538[/C][C]6.5422[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]NASDAQ[/C][C]-0.0318437408507976[/C][C]0.005002[/C][C]-6.3664[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]INF.CONS.CONF[/C][C]-793.799909436424[/C][C]136.458919[/C][C]-5.8171[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]FED[/C][C]0.179021825210181[/C][C]0.116481[/C][C]1.5369[/C][C]0.12699[/C][C]0.063495[/C][/ROW]
[ROW][C]FUNDS.RATE[/C][C]39.4392171796887[/C][C]15.660541[/C][C]2.5184[/C][C]0.013129[/C][C]0.006564[/C][/ROW]
[ROW][C]t[/C][C]-0.050684554170759[/C][C]0.013667[/C][C]-3.7085[/C][C]0.000319[/C][C]0.00016[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)75.466602104655713.1700115.730200
VOLUME2.90780217131153e-0900.51490.607590.303795
LINKEDIN0.3960489669223460.0605386.542200
NASDAQ-0.03184374085079760.005002-6.366400
INF.CONS.CONF-793.799909436424136.458919-5.817100
FED0.1790218252101810.1164811.53690.126990.063495
FUNDS.RATE39.439217179688715.6605412.51840.0131290.006564
t-0.0506845541707590.013667-3.70850.0003190.00016







Multiple Linear Regression - Regression Statistics
Multiple R0.887849878745491
R-squared0.788277407188384
Adjusted R-squared0.775717592360576
F-TEST (value)62.7618653615113
F-TEST (DF numerator)7
F-TEST (DF denominator)118
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.12164660428119
Sum Squared Residuals531.163348988033

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.887849878745491 \tabularnewline
R-squared & 0.788277407188384 \tabularnewline
Adjusted R-squared & 0.775717592360576 \tabularnewline
F-TEST (value) & 62.7618653615113 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 118 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 2.12164660428119 \tabularnewline
Sum Squared Residuals & 531.163348988033 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.887849878745491[/C][/ROW]
[ROW][C]R-squared[/C][C]0.788277407188384[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.775717592360576[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]62.7618653615113[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]118[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]2.12164660428119[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]531.163348988033[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.887849878745491
R-squared0.788277407188384
Adjusted R-squared0.775717592360576
F-TEST (value)62.7618653615113
F-TEST (DF numerator)7
F-TEST (DF denominator)118
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.12164660428119
Sum Squared Residuals531.163348988033







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
127.7229.1241162239348-1.40411622393485
226.928.8831954663939-1.98319546639389
325.8629.0334212875205-3.17342128752046
426.8126.55434019178060.255659808219389
526.3127.253132953266-0.94313295326595
627.127.5029682513327-0.402968251332684
72728.2934966517293-1.2934966517293
827.426.81804273006270.581957269937321
927.2728.3682022983861-1.09820229838606
1028.2928.8455431771785-0.555543177178503
1130.0129.57879816571040.43120183428956
1231.4129.66221010304951.74778989695052
1331.9128.55115801445423.35884198554575
1431.628.01196292414173.58803707585833
1531.8429.42650882939872.41349117060133
1633.0530.31005030672522.73994969327484
1732.0630.40315246254671.65684753745333
1833.130.72408151266052.3759184873395
1932.2329.11790215889943.1120978411006
2031.3628.89566234371932.46433765628069
2131.0925.15750628804565.93249371195443
2230.7730.65562640711960.114373592880394
2331.229.76409585759431.4359041424057
2431.4729.59699178891811.87300821108194
2531.7331.02974013941070.700259860589264
2632.1728.84714794130083.32285205869916
2731.4728.35734584236783.11265415763223
2830.9729.37388794308821.59611205691177
2930.8131.8164660359528-1.00646603595277
3030.7231.180771766364-0.46077176636403
3128.2430.2080818808894-1.96808188088937
3228.0929.6124048423568-1.52240484235683
3329.1128.39589936744150.714100632558501
342928.01099655367840.989003446321612
3528.7628.30132763226250.458672367737477
3628.7528.9500210267795-0.200021026779477
3728.4529.6768519442175-1.22685194421746
3829.3429.6031909699179-0.26319096991785
3926.8427.5020001173177-0.662000117317694
4023.726.596584299683-2.896584299683
4123.1526.9643539130803-3.8143539130803
4221.7126.1923439662043-4.4823439662043
4320.8821.3845522018076-0.504552201807608
4420.0420.8569745426461-0.816974542646142
4521.0924.9667870152787-3.87678701527868
4621.9225.2654099779379-3.34540997793794
4720.7222.0992207330757-1.37922073307572
4820.7221.4734370885001-0.753437088500082
4921.0121.2657985513168-0.255798551316751
5021.821.05103879478970.748961205210337
5121.620.81840377567550.781596224324486
5220.3819.86025742793770.51974257206227
5321.219.57682478295961.62317521704044
5419.8719.5398045441480.330195455852003
5519.0517.91353128556941.1364687144306
5620.0118.41067002502491.59932997497507
5719.1519.4795729527652-0.329572952765201
5819.4319.34674975730650.0832502426934627
5919.4419.7771566346812-0.337156634681211
6019.419.07259424754430.327405752455717
6119.1518.7134259279890.436574072010997
6219.3419.6755199479366-0.335519947936558
6319.120.0588462048101-0.958846204810132
6419.0820.8334425385433-1.75344253854329
6518.0519.8610318241278-1.81103182412778
6617.7219.1681654676962-1.44816546769616
6718.5822.4733975036189-3.8933975036189
6818.9622.5662970664479-3.60629706644792
6918.9822.0498183742338-3.06981837423375
7018.8122.5061167399034-3.69611673990337
7119.4322.5444860029463-3.11448600294634
7220.9323.0511917612401-2.12119176124012
7320.7121.4823723795334-0.77237237953341
742222.4424902940288-0.442490294028751
7521.5221.7708681774901-0.250868177490094
7621.8721.71935889668810.150641103311913
7723.2921.67015905913381.61984094086619
7822.5922.27062229506690.31937770493315
7922.8621.70462618887561.15537381112438
8020.7922.6845020960528-1.8945020960528
8120.2822.4020280458675-2.12202804586753
8220.6222.7392705359978-2.11927053599775
8320.3221.1476415955619-0.827641595561941
8421.6620.18933523586741.47066476413261
8521.9920.72716175550671.2628382444933
8622.2721.12854396467531.14145603532465
8721.8321.75440198202150.0755980179785362
8821.9421.01748266524770.92251733475234
8920.9120.12417268335520.785827316644757
9020.420.4679247095823-0.0679247095823432
9120.2220.3634299924265-0.143429992426549
9219.6420.3380126172211-0.698012617221082
9319.7521.020900748768-1.270900748768
9419.5119.7993662282416-0.289366228241613
9519.5219.28794207503680.23205792496322
9619.4818.19488426315851.28511573684154
9719.8817.02338817704022.85661182295981
9818.9717.77337060650361.19662939349637
991919.3567878618923-0.356787861892316
10019.3218.76512065271060.554879347289427
10119.518.42708659909211.07291340090795
10223.2221.25248554700881.96751445299117
10322.5619.49898909425433.06101090574573
10421.9418.73459263408033.2054073659197
10521.1121.01635398507390.0936460149261007
10621.2122.171570925187-0.961570925186961
10721.1822.9085740433667-1.72857404336667
10821.2522.8769819279593-1.62698192795933
10921.1720.78571426524550.384285734754529
11020.4721.9639909831725-1.49399098317248
11119.9921.3189031308589-1.32890313085889
11219.2120.7069758284392-1.49697582843916
11320.0722.0869482030368-2.01694820303681
11419.8622.8004084747079-2.94040847470788
11522.3624.1945706859003-1.83457068590027
11622.1724.7657922503778-2.59579225037777
11723.5625.2639992627244-1.70399926272441
11822.9224.095187998096-1.17518799809598
11923.124.400475904942-1.30047590494203
12024.3224.4898466199595-0.169846619959511
12123.9922.9926893140370.99731068596299
12225.9423.3743699386162.565630061384
12326.1523.01282849378043.13717150621962
12426.3622.19483423734244.16516576265761
12527.3221.32097942371035.99902057628971
1262821.84657817013966.15342182986041

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 27.72 & 29.1241162239348 & -1.40411622393485 \tabularnewline
2 & 26.9 & 28.8831954663939 & -1.98319546639389 \tabularnewline
3 & 25.86 & 29.0334212875205 & -3.17342128752046 \tabularnewline
4 & 26.81 & 26.5543401917806 & 0.255659808219389 \tabularnewline
5 & 26.31 & 27.253132953266 & -0.94313295326595 \tabularnewline
6 & 27.1 & 27.5029682513327 & -0.402968251332684 \tabularnewline
7 & 27 & 28.2934966517293 & -1.2934966517293 \tabularnewline
8 & 27.4 & 26.8180427300627 & 0.581957269937321 \tabularnewline
9 & 27.27 & 28.3682022983861 & -1.09820229838606 \tabularnewline
10 & 28.29 & 28.8455431771785 & -0.555543177178503 \tabularnewline
11 & 30.01 & 29.5787981657104 & 0.43120183428956 \tabularnewline
12 & 31.41 & 29.6622101030495 & 1.74778989695052 \tabularnewline
13 & 31.91 & 28.5511580144542 & 3.35884198554575 \tabularnewline
14 & 31.6 & 28.0119629241417 & 3.58803707585833 \tabularnewline
15 & 31.84 & 29.4265088293987 & 2.41349117060133 \tabularnewline
16 & 33.05 & 30.3100503067252 & 2.73994969327484 \tabularnewline
17 & 32.06 & 30.4031524625467 & 1.65684753745333 \tabularnewline
18 & 33.1 & 30.7240815126605 & 2.3759184873395 \tabularnewline
19 & 32.23 & 29.1179021588994 & 3.1120978411006 \tabularnewline
20 & 31.36 & 28.8956623437193 & 2.46433765628069 \tabularnewline
21 & 31.09 & 25.1575062880456 & 5.93249371195443 \tabularnewline
22 & 30.77 & 30.6556264071196 & 0.114373592880394 \tabularnewline
23 & 31.2 & 29.7640958575943 & 1.4359041424057 \tabularnewline
24 & 31.47 & 29.5969917889181 & 1.87300821108194 \tabularnewline
25 & 31.73 & 31.0297401394107 & 0.700259860589264 \tabularnewline
26 & 32.17 & 28.8471479413008 & 3.32285205869916 \tabularnewline
27 & 31.47 & 28.3573458423678 & 3.11265415763223 \tabularnewline
28 & 30.97 & 29.3738879430882 & 1.59611205691177 \tabularnewline
29 & 30.81 & 31.8164660359528 & -1.00646603595277 \tabularnewline
30 & 30.72 & 31.180771766364 & -0.46077176636403 \tabularnewline
31 & 28.24 & 30.2080818808894 & -1.96808188088937 \tabularnewline
32 & 28.09 & 29.6124048423568 & -1.52240484235683 \tabularnewline
33 & 29.11 & 28.3958993674415 & 0.714100632558501 \tabularnewline
34 & 29 & 28.0109965536784 & 0.989003446321612 \tabularnewline
35 & 28.76 & 28.3013276322625 & 0.458672367737477 \tabularnewline
36 & 28.75 & 28.9500210267795 & -0.200021026779477 \tabularnewline
37 & 28.45 & 29.6768519442175 & -1.22685194421746 \tabularnewline
38 & 29.34 & 29.6031909699179 & -0.26319096991785 \tabularnewline
39 & 26.84 & 27.5020001173177 & -0.662000117317694 \tabularnewline
40 & 23.7 & 26.596584299683 & -2.896584299683 \tabularnewline
41 & 23.15 & 26.9643539130803 & -3.8143539130803 \tabularnewline
42 & 21.71 & 26.1923439662043 & -4.4823439662043 \tabularnewline
43 & 20.88 & 21.3845522018076 & -0.504552201807608 \tabularnewline
44 & 20.04 & 20.8569745426461 & -0.816974542646142 \tabularnewline
45 & 21.09 & 24.9667870152787 & -3.87678701527868 \tabularnewline
46 & 21.92 & 25.2654099779379 & -3.34540997793794 \tabularnewline
47 & 20.72 & 22.0992207330757 & -1.37922073307572 \tabularnewline
48 & 20.72 & 21.4734370885001 & -0.753437088500082 \tabularnewline
49 & 21.01 & 21.2657985513168 & -0.255798551316751 \tabularnewline
50 & 21.8 & 21.0510387947897 & 0.748961205210337 \tabularnewline
51 & 21.6 & 20.8184037756755 & 0.781596224324486 \tabularnewline
52 & 20.38 & 19.8602574279377 & 0.51974257206227 \tabularnewline
53 & 21.2 & 19.5768247829596 & 1.62317521704044 \tabularnewline
54 & 19.87 & 19.539804544148 & 0.330195455852003 \tabularnewline
55 & 19.05 & 17.9135312855694 & 1.1364687144306 \tabularnewline
56 & 20.01 & 18.4106700250249 & 1.59932997497507 \tabularnewline
57 & 19.15 & 19.4795729527652 & -0.329572952765201 \tabularnewline
58 & 19.43 & 19.3467497573065 & 0.0832502426934627 \tabularnewline
59 & 19.44 & 19.7771566346812 & -0.337156634681211 \tabularnewline
60 & 19.4 & 19.0725942475443 & 0.327405752455717 \tabularnewline
61 & 19.15 & 18.713425927989 & 0.436574072010997 \tabularnewline
62 & 19.34 & 19.6755199479366 & -0.335519947936558 \tabularnewline
63 & 19.1 & 20.0588462048101 & -0.958846204810132 \tabularnewline
64 & 19.08 & 20.8334425385433 & -1.75344253854329 \tabularnewline
65 & 18.05 & 19.8610318241278 & -1.81103182412778 \tabularnewline
66 & 17.72 & 19.1681654676962 & -1.44816546769616 \tabularnewline
67 & 18.58 & 22.4733975036189 & -3.8933975036189 \tabularnewline
68 & 18.96 & 22.5662970664479 & -3.60629706644792 \tabularnewline
69 & 18.98 & 22.0498183742338 & -3.06981837423375 \tabularnewline
70 & 18.81 & 22.5061167399034 & -3.69611673990337 \tabularnewline
71 & 19.43 & 22.5444860029463 & -3.11448600294634 \tabularnewline
72 & 20.93 & 23.0511917612401 & -2.12119176124012 \tabularnewline
73 & 20.71 & 21.4823723795334 & -0.77237237953341 \tabularnewline
74 & 22 & 22.4424902940288 & -0.442490294028751 \tabularnewline
75 & 21.52 & 21.7708681774901 & -0.250868177490094 \tabularnewline
76 & 21.87 & 21.7193588966881 & 0.150641103311913 \tabularnewline
77 & 23.29 & 21.6701590591338 & 1.61984094086619 \tabularnewline
78 & 22.59 & 22.2706222950669 & 0.31937770493315 \tabularnewline
79 & 22.86 & 21.7046261888756 & 1.15537381112438 \tabularnewline
80 & 20.79 & 22.6845020960528 & -1.8945020960528 \tabularnewline
81 & 20.28 & 22.4020280458675 & -2.12202804586753 \tabularnewline
82 & 20.62 & 22.7392705359978 & -2.11927053599775 \tabularnewline
83 & 20.32 & 21.1476415955619 & -0.827641595561941 \tabularnewline
84 & 21.66 & 20.1893352358674 & 1.47066476413261 \tabularnewline
85 & 21.99 & 20.7271617555067 & 1.2628382444933 \tabularnewline
86 & 22.27 & 21.1285439646753 & 1.14145603532465 \tabularnewline
87 & 21.83 & 21.7544019820215 & 0.0755980179785362 \tabularnewline
88 & 21.94 & 21.0174826652477 & 0.92251733475234 \tabularnewline
89 & 20.91 & 20.1241726833552 & 0.785827316644757 \tabularnewline
90 & 20.4 & 20.4679247095823 & -0.0679247095823432 \tabularnewline
91 & 20.22 & 20.3634299924265 & -0.143429992426549 \tabularnewline
92 & 19.64 & 20.3380126172211 & -0.698012617221082 \tabularnewline
93 & 19.75 & 21.020900748768 & -1.270900748768 \tabularnewline
94 & 19.51 & 19.7993662282416 & -0.289366228241613 \tabularnewline
95 & 19.52 & 19.2879420750368 & 0.23205792496322 \tabularnewline
96 & 19.48 & 18.1948842631585 & 1.28511573684154 \tabularnewline
97 & 19.88 & 17.0233881770402 & 2.85661182295981 \tabularnewline
98 & 18.97 & 17.7733706065036 & 1.19662939349637 \tabularnewline
99 & 19 & 19.3567878618923 & -0.356787861892316 \tabularnewline
100 & 19.32 & 18.7651206527106 & 0.554879347289427 \tabularnewline
101 & 19.5 & 18.4270865990921 & 1.07291340090795 \tabularnewline
102 & 23.22 & 21.2524855470088 & 1.96751445299117 \tabularnewline
103 & 22.56 & 19.4989890942543 & 3.06101090574573 \tabularnewline
104 & 21.94 & 18.7345926340803 & 3.2054073659197 \tabularnewline
105 & 21.11 & 21.0163539850739 & 0.0936460149261007 \tabularnewline
106 & 21.21 & 22.171570925187 & -0.961570925186961 \tabularnewline
107 & 21.18 & 22.9085740433667 & -1.72857404336667 \tabularnewline
108 & 21.25 & 22.8769819279593 & -1.62698192795933 \tabularnewline
109 & 21.17 & 20.7857142652455 & 0.384285734754529 \tabularnewline
110 & 20.47 & 21.9639909831725 & -1.49399098317248 \tabularnewline
111 & 19.99 & 21.3189031308589 & -1.32890313085889 \tabularnewline
112 & 19.21 & 20.7069758284392 & -1.49697582843916 \tabularnewline
113 & 20.07 & 22.0869482030368 & -2.01694820303681 \tabularnewline
114 & 19.86 & 22.8004084747079 & -2.94040847470788 \tabularnewline
115 & 22.36 & 24.1945706859003 & -1.83457068590027 \tabularnewline
116 & 22.17 & 24.7657922503778 & -2.59579225037777 \tabularnewline
117 & 23.56 & 25.2639992627244 & -1.70399926272441 \tabularnewline
118 & 22.92 & 24.095187998096 & -1.17518799809598 \tabularnewline
119 & 23.1 & 24.400475904942 & -1.30047590494203 \tabularnewline
120 & 24.32 & 24.4898466199595 & -0.169846619959511 \tabularnewline
121 & 23.99 & 22.992689314037 & 0.99731068596299 \tabularnewline
122 & 25.94 & 23.374369938616 & 2.565630061384 \tabularnewline
123 & 26.15 & 23.0128284937804 & 3.13717150621962 \tabularnewline
124 & 26.36 & 22.1948342373424 & 4.16516576265761 \tabularnewline
125 & 27.32 & 21.3209794237103 & 5.99902057628971 \tabularnewline
126 & 28 & 21.8465781701396 & 6.15342182986041 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]27.72[/C][C]29.1241162239348[/C][C]-1.40411622393485[/C][/ROW]
[ROW][C]2[/C][C]26.9[/C][C]28.8831954663939[/C][C]-1.98319546639389[/C][/ROW]
[ROW][C]3[/C][C]25.86[/C][C]29.0334212875205[/C][C]-3.17342128752046[/C][/ROW]
[ROW][C]4[/C][C]26.81[/C][C]26.5543401917806[/C][C]0.255659808219389[/C][/ROW]
[ROW][C]5[/C][C]26.31[/C][C]27.253132953266[/C][C]-0.94313295326595[/C][/ROW]
[ROW][C]6[/C][C]27.1[/C][C]27.5029682513327[/C][C]-0.402968251332684[/C][/ROW]
[ROW][C]7[/C][C]27[/C][C]28.2934966517293[/C][C]-1.2934966517293[/C][/ROW]
[ROW][C]8[/C][C]27.4[/C][C]26.8180427300627[/C][C]0.581957269937321[/C][/ROW]
[ROW][C]9[/C][C]27.27[/C][C]28.3682022983861[/C][C]-1.09820229838606[/C][/ROW]
[ROW][C]10[/C][C]28.29[/C][C]28.8455431771785[/C][C]-0.555543177178503[/C][/ROW]
[ROW][C]11[/C][C]30.01[/C][C]29.5787981657104[/C][C]0.43120183428956[/C][/ROW]
[ROW][C]12[/C][C]31.41[/C][C]29.6622101030495[/C][C]1.74778989695052[/C][/ROW]
[ROW][C]13[/C][C]31.91[/C][C]28.5511580144542[/C][C]3.35884198554575[/C][/ROW]
[ROW][C]14[/C][C]31.6[/C][C]28.0119629241417[/C][C]3.58803707585833[/C][/ROW]
[ROW][C]15[/C][C]31.84[/C][C]29.4265088293987[/C][C]2.41349117060133[/C][/ROW]
[ROW][C]16[/C][C]33.05[/C][C]30.3100503067252[/C][C]2.73994969327484[/C][/ROW]
[ROW][C]17[/C][C]32.06[/C][C]30.4031524625467[/C][C]1.65684753745333[/C][/ROW]
[ROW][C]18[/C][C]33.1[/C][C]30.7240815126605[/C][C]2.3759184873395[/C][/ROW]
[ROW][C]19[/C][C]32.23[/C][C]29.1179021588994[/C][C]3.1120978411006[/C][/ROW]
[ROW][C]20[/C][C]31.36[/C][C]28.8956623437193[/C][C]2.46433765628069[/C][/ROW]
[ROW][C]21[/C][C]31.09[/C][C]25.1575062880456[/C][C]5.93249371195443[/C][/ROW]
[ROW][C]22[/C][C]30.77[/C][C]30.6556264071196[/C][C]0.114373592880394[/C][/ROW]
[ROW][C]23[/C][C]31.2[/C][C]29.7640958575943[/C][C]1.4359041424057[/C][/ROW]
[ROW][C]24[/C][C]31.47[/C][C]29.5969917889181[/C][C]1.87300821108194[/C][/ROW]
[ROW][C]25[/C][C]31.73[/C][C]31.0297401394107[/C][C]0.700259860589264[/C][/ROW]
[ROW][C]26[/C][C]32.17[/C][C]28.8471479413008[/C][C]3.32285205869916[/C][/ROW]
[ROW][C]27[/C][C]31.47[/C][C]28.3573458423678[/C][C]3.11265415763223[/C][/ROW]
[ROW][C]28[/C][C]30.97[/C][C]29.3738879430882[/C][C]1.59611205691177[/C][/ROW]
[ROW][C]29[/C][C]30.81[/C][C]31.8164660359528[/C][C]-1.00646603595277[/C][/ROW]
[ROW][C]30[/C][C]30.72[/C][C]31.180771766364[/C][C]-0.46077176636403[/C][/ROW]
[ROW][C]31[/C][C]28.24[/C][C]30.2080818808894[/C][C]-1.96808188088937[/C][/ROW]
[ROW][C]32[/C][C]28.09[/C][C]29.6124048423568[/C][C]-1.52240484235683[/C][/ROW]
[ROW][C]33[/C][C]29.11[/C][C]28.3958993674415[/C][C]0.714100632558501[/C][/ROW]
[ROW][C]34[/C][C]29[/C][C]28.0109965536784[/C][C]0.989003446321612[/C][/ROW]
[ROW][C]35[/C][C]28.76[/C][C]28.3013276322625[/C][C]0.458672367737477[/C][/ROW]
[ROW][C]36[/C][C]28.75[/C][C]28.9500210267795[/C][C]-0.200021026779477[/C][/ROW]
[ROW][C]37[/C][C]28.45[/C][C]29.6768519442175[/C][C]-1.22685194421746[/C][/ROW]
[ROW][C]38[/C][C]29.34[/C][C]29.6031909699179[/C][C]-0.26319096991785[/C][/ROW]
[ROW][C]39[/C][C]26.84[/C][C]27.5020001173177[/C][C]-0.662000117317694[/C][/ROW]
[ROW][C]40[/C][C]23.7[/C][C]26.596584299683[/C][C]-2.896584299683[/C][/ROW]
[ROW][C]41[/C][C]23.15[/C][C]26.9643539130803[/C][C]-3.8143539130803[/C][/ROW]
[ROW][C]42[/C][C]21.71[/C][C]26.1923439662043[/C][C]-4.4823439662043[/C][/ROW]
[ROW][C]43[/C][C]20.88[/C][C]21.3845522018076[/C][C]-0.504552201807608[/C][/ROW]
[ROW][C]44[/C][C]20.04[/C][C]20.8569745426461[/C][C]-0.816974542646142[/C][/ROW]
[ROW][C]45[/C][C]21.09[/C][C]24.9667870152787[/C][C]-3.87678701527868[/C][/ROW]
[ROW][C]46[/C][C]21.92[/C][C]25.2654099779379[/C][C]-3.34540997793794[/C][/ROW]
[ROW][C]47[/C][C]20.72[/C][C]22.0992207330757[/C][C]-1.37922073307572[/C][/ROW]
[ROW][C]48[/C][C]20.72[/C][C]21.4734370885001[/C][C]-0.753437088500082[/C][/ROW]
[ROW][C]49[/C][C]21.01[/C][C]21.2657985513168[/C][C]-0.255798551316751[/C][/ROW]
[ROW][C]50[/C][C]21.8[/C][C]21.0510387947897[/C][C]0.748961205210337[/C][/ROW]
[ROW][C]51[/C][C]21.6[/C][C]20.8184037756755[/C][C]0.781596224324486[/C][/ROW]
[ROW][C]52[/C][C]20.38[/C][C]19.8602574279377[/C][C]0.51974257206227[/C][/ROW]
[ROW][C]53[/C][C]21.2[/C][C]19.5768247829596[/C][C]1.62317521704044[/C][/ROW]
[ROW][C]54[/C][C]19.87[/C][C]19.539804544148[/C][C]0.330195455852003[/C][/ROW]
[ROW][C]55[/C][C]19.05[/C][C]17.9135312855694[/C][C]1.1364687144306[/C][/ROW]
[ROW][C]56[/C][C]20.01[/C][C]18.4106700250249[/C][C]1.59932997497507[/C][/ROW]
[ROW][C]57[/C][C]19.15[/C][C]19.4795729527652[/C][C]-0.329572952765201[/C][/ROW]
[ROW][C]58[/C][C]19.43[/C][C]19.3467497573065[/C][C]0.0832502426934627[/C][/ROW]
[ROW][C]59[/C][C]19.44[/C][C]19.7771566346812[/C][C]-0.337156634681211[/C][/ROW]
[ROW][C]60[/C][C]19.4[/C][C]19.0725942475443[/C][C]0.327405752455717[/C][/ROW]
[ROW][C]61[/C][C]19.15[/C][C]18.713425927989[/C][C]0.436574072010997[/C][/ROW]
[ROW][C]62[/C][C]19.34[/C][C]19.6755199479366[/C][C]-0.335519947936558[/C][/ROW]
[ROW][C]63[/C][C]19.1[/C][C]20.0588462048101[/C][C]-0.958846204810132[/C][/ROW]
[ROW][C]64[/C][C]19.08[/C][C]20.8334425385433[/C][C]-1.75344253854329[/C][/ROW]
[ROW][C]65[/C][C]18.05[/C][C]19.8610318241278[/C][C]-1.81103182412778[/C][/ROW]
[ROW][C]66[/C][C]17.72[/C][C]19.1681654676962[/C][C]-1.44816546769616[/C][/ROW]
[ROW][C]67[/C][C]18.58[/C][C]22.4733975036189[/C][C]-3.8933975036189[/C][/ROW]
[ROW][C]68[/C][C]18.96[/C][C]22.5662970664479[/C][C]-3.60629706644792[/C][/ROW]
[ROW][C]69[/C][C]18.98[/C][C]22.0498183742338[/C][C]-3.06981837423375[/C][/ROW]
[ROW][C]70[/C][C]18.81[/C][C]22.5061167399034[/C][C]-3.69611673990337[/C][/ROW]
[ROW][C]71[/C][C]19.43[/C][C]22.5444860029463[/C][C]-3.11448600294634[/C][/ROW]
[ROW][C]72[/C][C]20.93[/C][C]23.0511917612401[/C][C]-2.12119176124012[/C][/ROW]
[ROW][C]73[/C][C]20.71[/C][C]21.4823723795334[/C][C]-0.77237237953341[/C][/ROW]
[ROW][C]74[/C][C]22[/C][C]22.4424902940288[/C][C]-0.442490294028751[/C][/ROW]
[ROW][C]75[/C][C]21.52[/C][C]21.7708681774901[/C][C]-0.250868177490094[/C][/ROW]
[ROW][C]76[/C][C]21.87[/C][C]21.7193588966881[/C][C]0.150641103311913[/C][/ROW]
[ROW][C]77[/C][C]23.29[/C][C]21.6701590591338[/C][C]1.61984094086619[/C][/ROW]
[ROW][C]78[/C][C]22.59[/C][C]22.2706222950669[/C][C]0.31937770493315[/C][/ROW]
[ROW][C]79[/C][C]22.86[/C][C]21.7046261888756[/C][C]1.15537381112438[/C][/ROW]
[ROW][C]80[/C][C]20.79[/C][C]22.6845020960528[/C][C]-1.8945020960528[/C][/ROW]
[ROW][C]81[/C][C]20.28[/C][C]22.4020280458675[/C][C]-2.12202804586753[/C][/ROW]
[ROW][C]82[/C][C]20.62[/C][C]22.7392705359978[/C][C]-2.11927053599775[/C][/ROW]
[ROW][C]83[/C][C]20.32[/C][C]21.1476415955619[/C][C]-0.827641595561941[/C][/ROW]
[ROW][C]84[/C][C]21.66[/C][C]20.1893352358674[/C][C]1.47066476413261[/C][/ROW]
[ROW][C]85[/C][C]21.99[/C][C]20.7271617555067[/C][C]1.2628382444933[/C][/ROW]
[ROW][C]86[/C][C]22.27[/C][C]21.1285439646753[/C][C]1.14145603532465[/C][/ROW]
[ROW][C]87[/C][C]21.83[/C][C]21.7544019820215[/C][C]0.0755980179785362[/C][/ROW]
[ROW][C]88[/C][C]21.94[/C][C]21.0174826652477[/C][C]0.92251733475234[/C][/ROW]
[ROW][C]89[/C][C]20.91[/C][C]20.1241726833552[/C][C]0.785827316644757[/C][/ROW]
[ROW][C]90[/C][C]20.4[/C][C]20.4679247095823[/C][C]-0.0679247095823432[/C][/ROW]
[ROW][C]91[/C][C]20.22[/C][C]20.3634299924265[/C][C]-0.143429992426549[/C][/ROW]
[ROW][C]92[/C][C]19.64[/C][C]20.3380126172211[/C][C]-0.698012617221082[/C][/ROW]
[ROW][C]93[/C][C]19.75[/C][C]21.020900748768[/C][C]-1.270900748768[/C][/ROW]
[ROW][C]94[/C][C]19.51[/C][C]19.7993662282416[/C][C]-0.289366228241613[/C][/ROW]
[ROW][C]95[/C][C]19.52[/C][C]19.2879420750368[/C][C]0.23205792496322[/C][/ROW]
[ROW][C]96[/C][C]19.48[/C][C]18.1948842631585[/C][C]1.28511573684154[/C][/ROW]
[ROW][C]97[/C][C]19.88[/C][C]17.0233881770402[/C][C]2.85661182295981[/C][/ROW]
[ROW][C]98[/C][C]18.97[/C][C]17.7733706065036[/C][C]1.19662939349637[/C][/ROW]
[ROW][C]99[/C][C]19[/C][C]19.3567878618923[/C][C]-0.356787861892316[/C][/ROW]
[ROW][C]100[/C][C]19.32[/C][C]18.7651206527106[/C][C]0.554879347289427[/C][/ROW]
[ROW][C]101[/C][C]19.5[/C][C]18.4270865990921[/C][C]1.07291340090795[/C][/ROW]
[ROW][C]102[/C][C]23.22[/C][C]21.2524855470088[/C][C]1.96751445299117[/C][/ROW]
[ROW][C]103[/C][C]22.56[/C][C]19.4989890942543[/C][C]3.06101090574573[/C][/ROW]
[ROW][C]104[/C][C]21.94[/C][C]18.7345926340803[/C][C]3.2054073659197[/C][/ROW]
[ROW][C]105[/C][C]21.11[/C][C]21.0163539850739[/C][C]0.0936460149261007[/C][/ROW]
[ROW][C]106[/C][C]21.21[/C][C]22.171570925187[/C][C]-0.961570925186961[/C][/ROW]
[ROW][C]107[/C][C]21.18[/C][C]22.9085740433667[/C][C]-1.72857404336667[/C][/ROW]
[ROW][C]108[/C][C]21.25[/C][C]22.8769819279593[/C][C]-1.62698192795933[/C][/ROW]
[ROW][C]109[/C][C]21.17[/C][C]20.7857142652455[/C][C]0.384285734754529[/C][/ROW]
[ROW][C]110[/C][C]20.47[/C][C]21.9639909831725[/C][C]-1.49399098317248[/C][/ROW]
[ROW][C]111[/C][C]19.99[/C][C]21.3189031308589[/C][C]-1.32890313085889[/C][/ROW]
[ROW][C]112[/C][C]19.21[/C][C]20.7069758284392[/C][C]-1.49697582843916[/C][/ROW]
[ROW][C]113[/C][C]20.07[/C][C]22.0869482030368[/C][C]-2.01694820303681[/C][/ROW]
[ROW][C]114[/C][C]19.86[/C][C]22.8004084747079[/C][C]-2.94040847470788[/C][/ROW]
[ROW][C]115[/C][C]22.36[/C][C]24.1945706859003[/C][C]-1.83457068590027[/C][/ROW]
[ROW][C]116[/C][C]22.17[/C][C]24.7657922503778[/C][C]-2.59579225037777[/C][/ROW]
[ROW][C]117[/C][C]23.56[/C][C]25.2639992627244[/C][C]-1.70399926272441[/C][/ROW]
[ROW][C]118[/C][C]22.92[/C][C]24.095187998096[/C][C]-1.17518799809598[/C][/ROW]
[ROW][C]119[/C][C]23.1[/C][C]24.400475904942[/C][C]-1.30047590494203[/C][/ROW]
[ROW][C]120[/C][C]24.32[/C][C]24.4898466199595[/C][C]-0.169846619959511[/C][/ROW]
[ROW][C]121[/C][C]23.99[/C][C]22.992689314037[/C][C]0.99731068596299[/C][/ROW]
[ROW][C]122[/C][C]25.94[/C][C]23.374369938616[/C][C]2.565630061384[/C][/ROW]
[ROW][C]123[/C][C]26.15[/C][C]23.0128284937804[/C][C]3.13717150621962[/C][/ROW]
[ROW][C]124[/C][C]26.36[/C][C]22.1948342373424[/C][C]4.16516576265761[/C][/ROW]
[ROW][C]125[/C][C]27.32[/C][C]21.3209794237103[/C][C]5.99902057628971[/C][/ROW]
[ROW][C]126[/C][C]28[/C][C]21.8465781701396[/C][C]6.15342182986041[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
127.7229.1241162239348-1.40411622393485
226.928.8831954663939-1.98319546639389
325.8629.0334212875205-3.17342128752046
426.8126.55434019178060.255659808219389
526.3127.253132953266-0.94313295326595
627.127.5029682513327-0.402968251332684
72728.2934966517293-1.2934966517293
827.426.81804273006270.581957269937321
927.2728.3682022983861-1.09820229838606
1028.2928.8455431771785-0.555543177178503
1130.0129.57879816571040.43120183428956
1231.4129.66221010304951.74778989695052
1331.9128.55115801445423.35884198554575
1431.628.01196292414173.58803707585833
1531.8429.42650882939872.41349117060133
1633.0530.31005030672522.73994969327484
1732.0630.40315246254671.65684753745333
1833.130.72408151266052.3759184873395
1932.2329.11790215889943.1120978411006
2031.3628.89566234371932.46433765628069
2131.0925.15750628804565.93249371195443
2230.7730.65562640711960.114373592880394
2331.229.76409585759431.4359041424057
2431.4729.59699178891811.87300821108194
2531.7331.02974013941070.700259860589264
2632.1728.84714794130083.32285205869916
2731.4728.35734584236783.11265415763223
2830.9729.37388794308821.59611205691177
2930.8131.8164660359528-1.00646603595277
3030.7231.180771766364-0.46077176636403
3128.2430.2080818808894-1.96808188088937
3228.0929.6124048423568-1.52240484235683
3329.1128.39589936744150.714100632558501
342928.01099655367840.989003446321612
3528.7628.30132763226250.458672367737477
3628.7528.9500210267795-0.200021026779477
3728.4529.6768519442175-1.22685194421746
3829.3429.6031909699179-0.26319096991785
3926.8427.5020001173177-0.662000117317694
4023.726.596584299683-2.896584299683
4123.1526.9643539130803-3.8143539130803
4221.7126.1923439662043-4.4823439662043
4320.8821.3845522018076-0.504552201807608
4420.0420.8569745426461-0.816974542646142
4521.0924.9667870152787-3.87678701527868
4621.9225.2654099779379-3.34540997793794
4720.7222.0992207330757-1.37922073307572
4820.7221.4734370885001-0.753437088500082
4921.0121.2657985513168-0.255798551316751
5021.821.05103879478970.748961205210337
5121.620.81840377567550.781596224324486
5220.3819.86025742793770.51974257206227
5321.219.57682478295961.62317521704044
5419.8719.5398045441480.330195455852003
5519.0517.91353128556941.1364687144306
5620.0118.41067002502491.59932997497507
5719.1519.4795729527652-0.329572952765201
5819.4319.34674975730650.0832502426934627
5919.4419.7771566346812-0.337156634681211
6019.419.07259424754430.327405752455717
6119.1518.7134259279890.436574072010997
6219.3419.6755199479366-0.335519947936558
6319.120.0588462048101-0.958846204810132
6419.0820.8334425385433-1.75344253854329
6518.0519.8610318241278-1.81103182412778
6617.7219.1681654676962-1.44816546769616
6718.5822.4733975036189-3.8933975036189
6818.9622.5662970664479-3.60629706644792
6918.9822.0498183742338-3.06981837423375
7018.8122.5061167399034-3.69611673990337
7119.4322.5444860029463-3.11448600294634
7220.9323.0511917612401-2.12119176124012
7320.7121.4823723795334-0.77237237953341
742222.4424902940288-0.442490294028751
7521.5221.7708681774901-0.250868177490094
7621.8721.71935889668810.150641103311913
7723.2921.67015905913381.61984094086619
7822.5922.27062229506690.31937770493315
7922.8621.70462618887561.15537381112438
8020.7922.6845020960528-1.8945020960528
8120.2822.4020280458675-2.12202804586753
8220.6222.7392705359978-2.11927053599775
8320.3221.1476415955619-0.827641595561941
8421.6620.18933523586741.47066476413261
8521.9920.72716175550671.2628382444933
8622.2721.12854396467531.14145603532465
8721.8321.75440198202150.0755980179785362
8821.9421.01748266524770.92251733475234
8920.9120.12417268335520.785827316644757
9020.420.4679247095823-0.0679247095823432
9120.2220.3634299924265-0.143429992426549
9219.6420.3380126172211-0.698012617221082
9319.7521.020900748768-1.270900748768
9419.5119.7993662282416-0.289366228241613
9519.5219.28794207503680.23205792496322
9619.4818.19488426315851.28511573684154
9719.8817.02338817704022.85661182295981
9818.9717.77337060650361.19662939349637
991919.3567878618923-0.356787861892316
10019.3218.76512065271060.554879347289427
10119.518.42708659909211.07291340090795
10223.2221.25248554700881.96751445299117
10322.5619.49898909425433.06101090574573
10421.9418.73459263408033.2054073659197
10521.1121.01635398507390.0936460149261007
10621.2122.171570925187-0.961570925186961
10721.1822.9085740433667-1.72857404336667
10821.2522.8769819279593-1.62698192795933
10921.1720.78571426524550.384285734754529
11020.4721.9639909831725-1.49399098317248
11119.9921.3189031308589-1.32890313085889
11219.2120.7069758284392-1.49697582843916
11320.0722.0869482030368-2.01694820303681
11419.8622.8004084747079-2.94040847470788
11522.3624.1945706859003-1.83457068590027
11622.1724.7657922503778-2.59579225037777
11723.5625.2639992627244-1.70399926272441
11822.9224.095187998096-1.17518799809598
11923.124.400475904942-1.30047590494203
12024.3224.4898466199595-0.169846619959511
12123.9922.9926893140370.99731068596299
12225.9423.3743699386162.565630061384
12326.1523.01282849378043.13717150621962
12426.3622.19483423734244.16516576265761
12527.3221.32097942371035.99902057628971
1262821.84657817013966.15342182986041







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.1154576530966970.2309153061933940.884542346903303
120.04264674007829330.08529348015658670.957353259921707
130.02397783529958840.04795567059917680.976022164700412
140.008747198272171970.01749439654434390.991252801727828
150.005965124802229270.01193024960445850.994034875197771
160.002557009780703670.005114019561407340.997442990219296
170.0008776529435229140.001755305887045830.999122347056477
180.000521128198559090.001042256397118180.999478871801441
190.0003203277474857870.0006406554949715740.999679672252514
200.000144508992444490.0002890179848889790.999855491007556
210.0002140794502979760.0004281589005959520.999785920549702
227.62767608232068e-050.0001525535216464140.999923723239177
233.002692099342e-056.005384198684e-050.999969973079007
241.35558063181392e-052.71116126362784e-050.999986444193682
255.19015404948624e-061.03803080989725e-050.99999480984595
264.43838230874964e-058.87676461749929e-050.999955616176913
273.9600416668836e-057.92008333376721e-050.999960399583331
282.62563095096713e-055.25126190193425e-050.99997374369049
296.78684466258649e-050.000135736893251730.999932131553374
300.0001629623149787550.0003259246299575090.999837037685021
310.004375368974513460.008750737949026920.995624631025486
320.01687624083295720.03375248166591440.983123759167043
330.0207484460524310.04149689210486190.979251553947569
340.04365201262820780.08730402525641560.956347987371792
350.05342155726485680.1068431145297140.946578442735143
360.05822647194196550.1164529438839310.941773528058034
370.066693796368990.133387592737980.93330620363101
380.1243658962849030.2487317925698060.875634103715097
390.2017815933007410.4035631866014820.798218406699259
400.2956139810795660.5912279621591320.704386018920434
410.6901966892134920.6196066215730160.309803310786508
420.8357073070487690.3285853859024630.164292692951231
430.8560499407645360.2879001184709290.143950059235464
440.8769979938951040.2460040122097910.123002006104896
450.9556264786083770.08874704278324570.0443735213916229
460.9836033362613680.03279332747726360.0163966637386318
470.9829253027654350.03414939446912910.0170746972345646
480.9833702468221450.03325950635570910.0166297531778546
490.9872688661954280.02546226760914460.0127311338045723
500.9952767201414450.009446559717110380.00472327985855519
510.9989669679571170.002066064085766770.00103303204288339
520.9997268389179250.0005463221641493140.000273161082074657
530.9999906038616991.87922766013504e-059.39613830067519e-06
540.9999917073672921.65852654162767e-058.29263270813833e-06
550.9999872753802022.54492395963918e-051.27246197981959e-05
560.9999857847489792.84305020417056e-051.42152510208528e-05
570.9999807871857853.84256284310376e-051.92128142155188e-05
580.9999773783192094.52433615822122e-052.26216807911061e-05
590.9999799131482144.01737035719374e-052.00868517859687e-05
600.999979948740714.0102518580232e-052.0051259290116e-05
610.9999805760935363.88478129286435e-051.94239064643217e-05
620.999978885099154.22298016996697e-052.11149008498348e-05
630.9999776033384514.47933230977593e-052.23966615488796e-05
640.9999757433059854.85133880306652e-052.42566940153326e-05
650.9999708179637725.83640724551693e-052.91820362275847e-05
660.9999956765233468.64695330789717e-064.32347665394858e-06
670.9999966031100746.7937798512367e-063.39688992561835e-06
680.9999951408350519.71832989759071e-064.85916494879536e-06
690.9999915612911391.68774177212731e-058.43870886063657e-06
700.9999860500869262.7899826148518e-051.3949913074259e-05
710.999977712834634.45743307395842e-052.22871653697921e-05
720.9999689537282086.20925435834414e-053.10462717917207e-05
730.9999586871374498.26257251021662e-054.13128625510831e-05
740.9999369511187250.0001260977625500786.30488812750391e-05
750.9999130957147990.0001738085704017938.69042852008965e-05
760.9999110192329980.0001779615340039058.89807670019523e-05
770.9999670041310546.59917378914715e-053.29958689457357e-05
780.999970980716055.80385679000044e-052.90192839500022e-05
790.9999867248444312.65503111382045e-051.32751555691023e-05
800.9999799912635644.00174728725691e-052.00087364362845e-05
810.9999639665813717.20668372578049e-053.60334186289025e-05
820.9999442989063540.0001114021872914535.57010936457263e-05
830.9999130890172790.000173821965442218.6910982721105e-05
840.999886284651710.0002274306965808570.000113715348290429
850.9999828813853643.42372292721592e-051.71186146360796e-05
860.9999982241798823.55164023623082e-061.77582011811541e-06
870.9999978479960984.30400780416551e-062.15200390208276e-06
880.9999973779557795.24408844094079e-062.62204422047039e-06
890.9999962177101827.56457963657064e-063.78228981828532e-06
900.9999929799711961.40400576081064e-057.02002880405318e-06
910.9999946325298841.07349402325151e-055.36747011625757e-06
920.9999919087787661.61824424681978e-058.0912212340989e-06
930.9999845366645383.09266709231121e-051.5463335461556e-05
940.9999773690019454.52619961105892e-052.26309980552946e-05
950.9999572547933978.54904132068802e-054.27452066034401e-05
960.9999293912573720.0001412174852552277.06087426276134e-05
970.9998978809545930.0002042380908132330.000102119045406616
980.9999233844311610.0001532311376788997.66155688394496e-05
990.9998868839663560.0002262320672884070.000113116033644203
1000.9999092238894290.0001815522211416529.07761105708262e-05
1010.9999908815850811.82368298376796e-059.11841491883982e-06
1020.9999828703636653.42592726692328e-051.71296363346164e-05
1030.9999627317694317.45364611386754e-053.72682305693377e-05
1040.9999677058963816.45882072382666e-053.22941036191333e-05
1050.9999028407309760.0001943185380486249.71592690243122e-05
1060.9997309051263050.0005381897473901510.000269094873695076
1070.9994125016443830.001174996711233940.00058749835561697
1080.9984027291548060.003194541690388930.00159727084519447
1090.9968670138632540.006265972273491690.00313298613674585
1100.9984726902963010.003054619407397810.0015273097036989
1110.9997004720765550.0005990558468891560.000299527923444578
1120.9990570929693580.001885814061283890.000942907030641943
1130.9994784884022080.00104302319558370.000521511597791851
1140.9970623717426980.005875256514604920.00293762825730246
1150.9894190317019640.02116193659607180.0105809682980359

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 & 0.115457653096697 & 0.230915306193394 & 0.884542346903303 \tabularnewline
12 & 0.0426467400782933 & 0.0852934801565867 & 0.957353259921707 \tabularnewline
13 & 0.0239778352995884 & 0.0479556705991768 & 0.976022164700412 \tabularnewline
14 & 0.00874719827217197 & 0.0174943965443439 & 0.991252801727828 \tabularnewline
15 & 0.00596512480222927 & 0.0119302496044585 & 0.994034875197771 \tabularnewline
16 & 0.00255700978070367 & 0.00511401956140734 & 0.997442990219296 \tabularnewline
17 & 0.000877652943522914 & 0.00175530588704583 & 0.999122347056477 \tabularnewline
18 & 0.00052112819855909 & 0.00104225639711818 & 0.999478871801441 \tabularnewline
19 & 0.000320327747485787 & 0.000640655494971574 & 0.999679672252514 \tabularnewline
20 & 0.00014450899244449 & 0.000289017984888979 & 0.999855491007556 \tabularnewline
21 & 0.000214079450297976 & 0.000428158900595952 & 0.999785920549702 \tabularnewline
22 & 7.62767608232068e-05 & 0.000152553521646414 & 0.999923723239177 \tabularnewline
23 & 3.002692099342e-05 & 6.005384198684e-05 & 0.999969973079007 \tabularnewline
24 & 1.35558063181392e-05 & 2.71116126362784e-05 & 0.999986444193682 \tabularnewline
25 & 5.19015404948624e-06 & 1.03803080989725e-05 & 0.99999480984595 \tabularnewline
26 & 4.43838230874964e-05 & 8.87676461749929e-05 & 0.999955616176913 \tabularnewline
27 & 3.9600416668836e-05 & 7.92008333376721e-05 & 0.999960399583331 \tabularnewline
28 & 2.62563095096713e-05 & 5.25126190193425e-05 & 0.99997374369049 \tabularnewline
29 & 6.78684466258649e-05 & 0.00013573689325173 & 0.999932131553374 \tabularnewline
30 & 0.000162962314978755 & 0.000325924629957509 & 0.999837037685021 \tabularnewline
31 & 0.00437536897451346 & 0.00875073794902692 & 0.995624631025486 \tabularnewline
32 & 0.0168762408329572 & 0.0337524816659144 & 0.983123759167043 \tabularnewline
33 & 0.020748446052431 & 0.0414968921048619 & 0.979251553947569 \tabularnewline
34 & 0.0436520126282078 & 0.0873040252564156 & 0.956347987371792 \tabularnewline
35 & 0.0534215572648568 & 0.106843114529714 & 0.946578442735143 \tabularnewline
36 & 0.0582264719419655 & 0.116452943883931 & 0.941773528058034 \tabularnewline
37 & 0.06669379636899 & 0.13338759273798 & 0.93330620363101 \tabularnewline
38 & 0.124365896284903 & 0.248731792569806 & 0.875634103715097 \tabularnewline
39 & 0.201781593300741 & 0.403563186601482 & 0.798218406699259 \tabularnewline
40 & 0.295613981079566 & 0.591227962159132 & 0.704386018920434 \tabularnewline
41 & 0.690196689213492 & 0.619606621573016 & 0.309803310786508 \tabularnewline
42 & 0.835707307048769 & 0.328585385902463 & 0.164292692951231 \tabularnewline
43 & 0.856049940764536 & 0.287900118470929 & 0.143950059235464 \tabularnewline
44 & 0.876997993895104 & 0.246004012209791 & 0.123002006104896 \tabularnewline
45 & 0.955626478608377 & 0.0887470427832457 & 0.0443735213916229 \tabularnewline
46 & 0.983603336261368 & 0.0327933274772636 & 0.0163966637386318 \tabularnewline
47 & 0.982925302765435 & 0.0341493944691291 & 0.0170746972345646 \tabularnewline
48 & 0.983370246822145 & 0.0332595063557091 & 0.0166297531778546 \tabularnewline
49 & 0.987268866195428 & 0.0254622676091446 & 0.0127311338045723 \tabularnewline
50 & 0.995276720141445 & 0.00944655971711038 & 0.00472327985855519 \tabularnewline
51 & 0.998966967957117 & 0.00206606408576677 & 0.00103303204288339 \tabularnewline
52 & 0.999726838917925 & 0.000546322164149314 & 0.000273161082074657 \tabularnewline
53 & 0.999990603861699 & 1.87922766013504e-05 & 9.39613830067519e-06 \tabularnewline
54 & 0.999991707367292 & 1.65852654162767e-05 & 8.29263270813833e-06 \tabularnewline
55 & 0.999987275380202 & 2.54492395963918e-05 & 1.27246197981959e-05 \tabularnewline
56 & 0.999985784748979 & 2.84305020417056e-05 & 1.42152510208528e-05 \tabularnewline
57 & 0.999980787185785 & 3.84256284310376e-05 & 1.92128142155188e-05 \tabularnewline
58 & 0.999977378319209 & 4.52433615822122e-05 & 2.26216807911061e-05 \tabularnewline
59 & 0.999979913148214 & 4.01737035719374e-05 & 2.00868517859687e-05 \tabularnewline
60 & 0.99997994874071 & 4.0102518580232e-05 & 2.0051259290116e-05 \tabularnewline
61 & 0.999980576093536 & 3.88478129286435e-05 & 1.94239064643217e-05 \tabularnewline
62 & 0.99997888509915 & 4.22298016996697e-05 & 2.11149008498348e-05 \tabularnewline
63 & 0.999977603338451 & 4.47933230977593e-05 & 2.23966615488796e-05 \tabularnewline
64 & 0.999975743305985 & 4.85133880306652e-05 & 2.42566940153326e-05 \tabularnewline
65 & 0.999970817963772 & 5.83640724551693e-05 & 2.91820362275847e-05 \tabularnewline
66 & 0.999995676523346 & 8.64695330789717e-06 & 4.32347665394858e-06 \tabularnewline
67 & 0.999996603110074 & 6.7937798512367e-06 & 3.39688992561835e-06 \tabularnewline
68 & 0.999995140835051 & 9.71832989759071e-06 & 4.85916494879536e-06 \tabularnewline
69 & 0.999991561291139 & 1.68774177212731e-05 & 8.43870886063657e-06 \tabularnewline
70 & 0.999986050086926 & 2.7899826148518e-05 & 1.3949913074259e-05 \tabularnewline
71 & 0.99997771283463 & 4.45743307395842e-05 & 2.22871653697921e-05 \tabularnewline
72 & 0.999968953728208 & 6.20925435834414e-05 & 3.10462717917207e-05 \tabularnewline
73 & 0.999958687137449 & 8.26257251021662e-05 & 4.13128625510831e-05 \tabularnewline
74 & 0.999936951118725 & 0.000126097762550078 & 6.30488812750391e-05 \tabularnewline
75 & 0.999913095714799 & 0.000173808570401793 & 8.69042852008965e-05 \tabularnewline
76 & 0.999911019232998 & 0.000177961534003905 & 8.89807670019523e-05 \tabularnewline
77 & 0.999967004131054 & 6.59917378914715e-05 & 3.29958689457357e-05 \tabularnewline
78 & 0.99997098071605 & 5.80385679000044e-05 & 2.90192839500022e-05 \tabularnewline
79 & 0.999986724844431 & 2.65503111382045e-05 & 1.32751555691023e-05 \tabularnewline
80 & 0.999979991263564 & 4.00174728725691e-05 & 2.00087364362845e-05 \tabularnewline
81 & 0.999963966581371 & 7.20668372578049e-05 & 3.60334186289025e-05 \tabularnewline
82 & 0.999944298906354 & 0.000111402187291453 & 5.57010936457263e-05 \tabularnewline
83 & 0.999913089017279 & 0.00017382196544221 & 8.6910982721105e-05 \tabularnewline
84 & 0.99988628465171 & 0.000227430696580857 & 0.000113715348290429 \tabularnewline
85 & 0.999982881385364 & 3.42372292721592e-05 & 1.71186146360796e-05 \tabularnewline
86 & 0.999998224179882 & 3.55164023623082e-06 & 1.77582011811541e-06 \tabularnewline
87 & 0.999997847996098 & 4.30400780416551e-06 & 2.15200390208276e-06 \tabularnewline
88 & 0.999997377955779 & 5.24408844094079e-06 & 2.62204422047039e-06 \tabularnewline
89 & 0.999996217710182 & 7.56457963657064e-06 & 3.78228981828532e-06 \tabularnewline
90 & 0.999992979971196 & 1.40400576081064e-05 & 7.02002880405318e-06 \tabularnewline
91 & 0.999994632529884 & 1.07349402325151e-05 & 5.36747011625757e-06 \tabularnewline
92 & 0.999991908778766 & 1.61824424681978e-05 & 8.0912212340989e-06 \tabularnewline
93 & 0.999984536664538 & 3.09266709231121e-05 & 1.5463335461556e-05 \tabularnewline
94 & 0.999977369001945 & 4.52619961105892e-05 & 2.26309980552946e-05 \tabularnewline
95 & 0.999957254793397 & 8.54904132068802e-05 & 4.27452066034401e-05 \tabularnewline
96 & 0.999929391257372 & 0.000141217485255227 & 7.06087426276134e-05 \tabularnewline
97 & 0.999897880954593 & 0.000204238090813233 & 0.000102119045406616 \tabularnewline
98 & 0.999923384431161 & 0.000153231137678899 & 7.66155688394496e-05 \tabularnewline
99 & 0.999886883966356 & 0.000226232067288407 & 0.000113116033644203 \tabularnewline
100 & 0.999909223889429 & 0.000181552221141652 & 9.07761105708262e-05 \tabularnewline
101 & 0.999990881585081 & 1.82368298376796e-05 & 9.11841491883982e-06 \tabularnewline
102 & 0.999982870363665 & 3.42592726692328e-05 & 1.71296363346164e-05 \tabularnewline
103 & 0.999962731769431 & 7.45364611386754e-05 & 3.72682305693377e-05 \tabularnewline
104 & 0.999967705896381 & 6.45882072382666e-05 & 3.22941036191333e-05 \tabularnewline
105 & 0.999902840730976 & 0.000194318538048624 & 9.71592690243122e-05 \tabularnewline
106 & 0.999730905126305 & 0.000538189747390151 & 0.000269094873695076 \tabularnewline
107 & 0.999412501644383 & 0.00117499671123394 & 0.00058749835561697 \tabularnewline
108 & 0.998402729154806 & 0.00319454169038893 & 0.00159727084519447 \tabularnewline
109 & 0.996867013863254 & 0.00626597227349169 & 0.00313298613674585 \tabularnewline
110 & 0.998472690296301 & 0.00305461940739781 & 0.0015273097036989 \tabularnewline
111 & 0.999700472076555 & 0.000599055846889156 & 0.000299527923444578 \tabularnewline
112 & 0.999057092969358 & 0.00188581406128389 & 0.000942907030641943 \tabularnewline
113 & 0.999478488402208 & 0.0010430231955837 & 0.000521511597791851 \tabularnewline
114 & 0.997062371742698 & 0.00587525651460492 & 0.00293762825730246 \tabularnewline
115 & 0.989419031701964 & 0.0211619365960718 & 0.0105809682980359 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C]0.115457653096697[/C][C]0.230915306193394[/C][C]0.884542346903303[/C][/ROW]
[ROW][C]12[/C][C]0.0426467400782933[/C][C]0.0852934801565867[/C][C]0.957353259921707[/C][/ROW]
[ROW][C]13[/C][C]0.0239778352995884[/C][C]0.0479556705991768[/C][C]0.976022164700412[/C][/ROW]
[ROW][C]14[/C][C]0.00874719827217197[/C][C]0.0174943965443439[/C][C]0.991252801727828[/C][/ROW]
[ROW][C]15[/C][C]0.00596512480222927[/C][C]0.0119302496044585[/C][C]0.994034875197771[/C][/ROW]
[ROW][C]16[/C][C]0.00255700978070367[/C][C]0.00511401956140734[/C][C]0.997442990219296[/C][/ROW]
[ROW][C]17[/C][C]0.000877652943522914[/C][C]0.00175530588704583[/C][C]0.999122347056477[/C][/ROW]
[ROW][C]18[/C][C]0.00052112819855909[/C][C]0.00104225639711818[/C][C]0.999478871801441[/C][/ROW]
[ROW][C]19[/C][C]0.000320327747485787[/C][C]0.000640655494971574[/C][C]0.999679672252514[/C][/ROW]
[ROW][C]20[/C][C]0.00014450899244449[/C][C]0.000289017984888979[/C][C]0.999855491007556[/C][/ROW]
[ROW][C]21[/C][C]0.000214079450297976[/C][C]0.000428158900595952[/C][C]0.999785920549702[/C][/ROW]
[ROW][C]22[/C][C]7.62767608232068e-05[/C][C]0.000152553521646414[/C][C]0.999923723239177[/C][/ROW]
[ROW][C]23[/C][C]3.002692099342e-05[/C][C]6.005384198684e-05[/C][C]0.999969973079007[/C][/ROW]
[ROW][C]24[/C][C]1.35558063181392e-05[/C][C]2.71116126362784e-05[/C][C]0.999986444193682[/C][/ROW]
[ROW][C]25[/C][C]5.19015404948624e-06[/C][C]1.03803080989725e-05[/C][C]0.99999480984595[/C][/ROW]
[ROW][C]26[/C][C]4.43838230874964e-05[/C][C]8.87676461749929e-05[/C][C]0.999955616176913[/C][/ROW]
[ROW][C]27[/C][C]3.9600416668836e-05[/C][C]7.92008333376721e-05[/C][C]0.999960399583331[/C][/ROW]
[ROW][C]28[/C][C]2.62563095096713e-05[/C][C]5.25126190193425e-05[/C][C]0.99997374369049[/C][/ROW]
[ROW][C]29[/C][C]6.78684466258649e-05[/C][C]0.00013573689325173[/C][C]0.999932131553374[/C][/ROW]
[ROW][C]30[/C][C]0.000162962314978755[/C][C]0.000325924629957509[/C][C]0.999837037685021[/C][/ROW]
[ROW][C]31[/C][C]0.00437536897451346[/C][C]0.00875073794902692[/C][C]0.995624631025486[/C][/ROW]
[ROW][C]32[/C][C]0.0168762408329572[/C][C]0.0337524816659144[/C][C]0.983123759167043[/C][/ROW]
[ROW][C]33[/C][C]0.020748446052431[/C][C]0.0414968921048619[/C][C]0.979251553947569[/C][/ROW]
[ROW][C]34[/C][C]0.0436520126282078[/C][C]0.0873040252564156[/C][C]0.956347987371792[/C][/ROW]
[ROW][C]35[/C][C]0.0534215572648568[/C][C]0.106843114529714[/C][C]0.946578442735143[/C][/ROW]
[ROW][C]36[/C][C]0.0582264719419655[/C][C]0.116452943883931[/C][C]0.941773528058034[/C][/ROW]
[ROW][C]37[/C][C]0.06669379636899[/C][C]0.13338759273798[/C][C]0.93330620363101[/C][/ROW]
[ROW][C]38[/C][C]0.124365896284903[/C][C]0.248731792569806[/C][C]0.875634103715097[/C][/ROW]
[ROW][C]39[/C][C]0.201781593300741[/C][C]0.403563186601482[/C][C]0.798218406699259[/C][/ROW]
[ROW][C]40[/C][C]0.295613981079566[/C][C]0.591227962159132[/C][C]0.704386018920434[/C][/ROW]
[ROW][C]41[/C][C]0.690196689213492[/C][C]0.619606621573016[/C][C]0.309803310786508[/C][/ROW]
[ROW][C]42[/C][C]0.835707307048769[/C][C]0.328585385902463[/C][C]0.164292692951231[/C][/ROW]
[ROW][C]43[/C][C]0.856049940764536[/C][C]0.287900118470929[/C][C]0.143950059235464[/C][/ROW]
[ROW][C]44[/C][C]0.876997993895104[/C][C]0.246004012209791[/C][C]0.123002006104896[/C][/ROW]
[ROW][C]45[/C][C]0.955626478608377[/C][C]0.0887470427832457[/C][C]0.0443735213916229[/C][/ROW]
[ROW][C]46[/C][C]0.983603336261368[/C][C]0.0327933274772636[/C][C]0.0163966637386318[/C][/ROW]
[ROW][C]47[/C][C]0.982925302765435[/C][C]0.0341493944691291[/C][C]0.0170746972345646[/C][/ROW]
[ROW][C]48[/C][C]0.983370246822145[/C][C]0.0332595063557091[/C][C]0.0166297531778546[/C][/ROW]
[ROW][C]49[/C][C]0.987268866195428[/C][C]0.0254622676091446[/C][C]0.0127311338045723[/C][/ROW]
[ROW][C]50[/C][C]0.995276720141445[/C][C]0.00944655971711038[/C][C]0.00472327985855519[/C][/ROW]
[ROW][C]51[/C][C]0.998966967957117[/C][C]0.00206606408576677[/C][C]0.00103303204288339[/C][/ROW]
[ROW][C]52[/C][C]0.999726838917925[/C][C]0.000546322164149314[/C][C]0.000273161082074657[/C][/ROW]
[ROW][C]53[/C][C]0.999990603861699[/C][C]1.87922766013504e-05[/C][C]9.39613830067519e-06[/C][/ROW]
[ROW][C]54[/C][C]0.999991707367292[/C][C]1.65852654162767e-05[/C][C]8.29263270813833e-06[/C][/ROW]
[ROW][C]55[/C][C]0.999987275380202[/C][C]2.54492395963918e-05[/C][C]1.27246197981959e-05[/C][/ROW]
[ROW][C]56[/C][C]0.999985784748979[/C][C]2.84305020417056e-05[/C][C]1.42152510208528e-05[/C][/ROW]
[ROW][C]57[/C][C]0.999980787185785[/C][C]3.84256284310376e-05[/C][C]1.92128142155188e-05[/C][/ROW]
[ROW][C]58[/C][C]0.999977378319209[/C][C]4.52433615822122e-05[/C][C]2.26216807911061e-05[/C][/ROW]
[ROW][C]59[/C][C]0.999979913148214[/C][C]4.01737035719374e-05[/C][C]2.00868517859687e-05[/C][/ROW]
[ROW][C]60[/C][C]0.99997994874071[/C][C]4.0102518580232e-05[/C][C]2.0051259290116e-05[/C][/ROW]
[ROW][C]61[/C][C]0.999980576093536[/C][C]3.88478129286435e-05[/C][C]1.94239064643217e-05[/C][/ROW]
[ROW][C]62[/C][C]0.99997888509915[/C][C]4.22298016996697e-05[/C][C]2.11149008498348e-05[/C][/ROW]
[ROW][C]63[/C][C]0.999977603338451[/C][C]4.47933230977593e-05[/C][C]2.23966615488796e-05[/C][/ROW]
[ROW][C]64[/C][C]0.999975743305985[/C][C]4.85133880306652e-05[/C][C]2.42566940153326e-05[/C][/ROW]
[ROW][C]65[/C][C]0.999970817963772[/C][C]5.83640724551693e-05[/C][C]2.91820362275847e-05[/C][/ROW]
[ROW][C]66[/C][C]0.999995676523346[/C][C]8.64695330789717e-06[/C][C]4.32347665394858e-06[/C][/ROW]
[ROW][C]67[/C][C]0.999996603110074[/C][C]6.7937798512367e-06[/C][C]3.39688992561835e-06[/C][/ROW]
[ROW][C]68[/C][C]0.999995140835051[/C][C]9.71832989759071e-06[/C][C]4.85916494879536e-06[/C][/ROW]
[ROW][C]69[/C][C]0.999991561291139[/C][C]1.68774177212731e-05[/C][C]8.43870886063657e-06[/C][/ROW]
[ROW][C]70[/C][C]0.999986050086926[/C][C]2.7899826148518e-05[/C][C]1.3949913074259e-05[/C][/ROW]
[ROW][C]71[/C][C]0.99997771283463[/C][C]4.45743307395842e-05[/C][C]2.22871653697921e-05[/C][/ROW]
[ROW][C]72[/C][C]0.999968953728208[/C][C]6.20925435834414e-05[/C][C]3.10462717917207e-05[/C][/ROW]
[ROW][C]73[/C][C]0.999958687137449[/C][C]8.26257251021662e-05[/C][C]4.13128625510831e-05[/C][/ROW]
[ROW][C]74[/C][C]0.999936951118725[/C][C]0.000126097762550078[/C][C]6.30488812750391e-05[/C][/ROW]
[ROW][C]75[/C][C]0.999913095714799[/C][C]0.000173808570401793[/C][C]8.69042852008965e-05[/C][/ROW]
[ROW][C]76[/C][C]0.999911019232998[/C][C]0.000177961534003905[/C][C]8.89807670019523e-05[/C][/ROW]
[ROW][C]77[/C][C]0.999967004131054[/C][C]6.59917378914715e-05[/C][C]3.29958689457357e-05[/C][/ROW]
[ROW][C]78[/C][C]0.99997098071605[/C][C]5.80385679000044e-05[/C][C]2.90192839500022e-05[/C][/ROW]
[ROW][C]79[/C][C]0.999986724844431[/C][C]2.65503111382045e-05[/C][C]1.32751555691023e-05[/C][/ROW]
[ROW][C]80[/C][C]0.999979991263564[/C][C]4.00174728725691e-05[/C][C]2.00087364362845e-05[/C][/ROW]
[ROW][C]81[/C][C]0.999963966581371[/C][C]7.20668372578049e-05[/C][C]3.60334186289025e-05[/C][/ROW]
[ROW][C]82[/C][C]0.999944298906354[/C][C]0.000111402187291453[/C][C]5.57010936457263e-05[/C][/ROW]
[ROW][C]83[/C][C]0.999913089017279[/C][C]0.00017382196544221[/C][C]8.6910982721105e-05[/C][/ROW]
[ROW][C]84[/C][C]0.99988628465171[/C][C]0.000227430696580857[/C][C]0.000113715348290429[/C][/ROW]
[ROW][C]85[/C][C]0.999982881385364[/C][C]3.42372292721592e-05[/C][C]1.71186146360796e-05[/C][/ROW]
[ROW][C]86[/C][C]0.999998224179882[/C][C]3.55164023623082e-06[/C][C]1.77582011811541e-06[/C][/ROW]
[ROW][C]87[/C][C]0.999997847996098[/C][C]4.30400780416551e-06[/C][C]2.15200390208276e-06[/C][/ROW]
[ROW][C]88[/C][C]0.999997377955779[/C][C]5.24408844094079e-06[/C][C]2.62204422047039e-06[/C][/ROW]
[ROW][C]89[/C][C]0.999996217710182[/C][C]7.56457963657064e-06[/C][C]3.78228981828532e-06[/C][/ROW]
[ROW][C]90[/C][C]0.999992979971196[/C][C]1.40400576081064e-05[/C][C]7.02002880405318e-06[/C][/ROW]
[ROW][C]91[/C][C]0.999994632529884[/C][C]1.07349402325151e-05[/C][C]5.36747011625757e-06[/C][/ROW]
[ROW][C]92[/C][C]0.999991908778766[/C][C]1.61824424681978e-05[/C][C]8.0912212340989e-06[/C][/ROW]
[ROW][C]93[/C][C]0.999984536664538[/C][C]3.09266709231121e-05[/C][C]1.5463335461556e-05[/C][/ROW]
[ROW][C]94[/C][C]0.999977369001945[/C][C]4.52619961105892e-05[/C][C]2.26309980552946e-05[/C][/ROW]
[ROW][C]95[/C][C]0.999957254793397[/C][C]8.54904132068802e-05[/C][C]4.27452066034401e-05[/C][/ROW]
[ROW][C]96[/C][C]0.999929391257372[/C][C]0.000141217485255227[/C][C]7.06087426276134e-05[/C][/ROW]
[ROW][C]97[/C][C]0.999897880954593[/C][C]0.000204238090813233[/C][C]0.000102119045406616[/C][/ROW]
[ROW][C]98[/C][C]0.999923384431161[/C][C]0.000153231137678899[/C][C]7.66155688394496e-05[/C][/ROW]
[ROW][C]99[/C][C]0.999886883966356[/C][C]0.000226232067288407[/C][C]0.000113116033644203[/C][/ROW]
[ROW][C]100[/C][C]0.999909223889429[/C][C]0.000181552221141652[/C][C]9.07761105708262e-05[/C][/ROW]
[ROW][C]101[/C][C]0.999990881585081[/C][C]1.82368298376796e-05[/C][C]9.11841491883982e-06[/C][/ROW]
[ROW][C]102[/C][C]0.999982870363665[/C][C]3.42592726692328e-05[/C][C]1.71296363346164e-05[/C][/ROW]
[ROW][C]103[/C][C]0.999962731769431[/C][C]7.45364611386754e-05[/C][C]3.72682305693377e-05[/C][/ROW]
[ROW][C]104[/C][C]0.999967705896381[/C][C]6.45882072382666e-05[/C][C]3.22941036191333e-05[/C][/ROW]
[ROW][C]105[/C][C]0.999902840730976[/C][C]0.000194318538048624[/C][C]9.71592690243122e-05[/C][/ROW]
[ROW][C]106[/C][C]0.999730905126305[/C][C]0.000538189747390151[/C][C]0.000269094873695076[/C][/ROW]
[ROW][C]107[/C][C]0.999412501644383[/C][C]0.00117499671123394[/C][C]0.00058749835561697[/C][/ROW]
[ROW][C]108[/C][C]0.998402729154806[/C][C]0.00319454169038893[/C][C]0.00159727084519447[/C][/ROW]
[ROW][C]109[/C][C]0.996867013863254[/C][C]0.00626597227349169[/C][C]0.00313298613674585[/C][/ROW]
[ROW][C]110[/C][C]0.998472690296301[/C][C]0.00305461940739781[/C][C]0.0015273097036989[/C][/ROW]
[ROW][C]111[/C][C]0.999700472076555[/C][C]0.000599055846889156[/C][C]0.000299527923444578[/C][/ROW]
[ROW][C]112[/C][C]0.999057092969358[/C][C]0.00188581406128389[/C][C]0.000942907030641943[/C][/ROW]
[ROW][C]113[/C][C]0.999478488402208[/C][C]0.0010430231955837[/C][C]0.000521511597791851[/C][/ROW]
[ROW][C]114[/C][C]0.997062371742698[/C][C]0.00587525651460492[/C][C]0.00293762825730246[/C][/ROW]
[ROW][C]115[/C][C]0.989419031701964[/C][C]0.0211619365960718[/C][C]0.0105809682980359[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.1154576530966970.2309153061933940.884542346903303
120.04264674007829330.08529348015658670.957353259921707
130.02397783529958840.04795567059917680.976022164700412
140.008747198272171970.01749439654434390.991252801727828
150.005965124802229270.01193024960445850.994034875197771
160.002557009780703670.005114019561407340.997442990219296
170.0008776529435229140.001755305887045830.999122347056477
180.000521128198559090.001042256397118180.999478871801441
190.0003203277474857870.0006406554949715740.999679672252514
200.000144508992444490.0002890179848889790.999855491007556
210.0002140794502979760.0004281589005959520.999785920549702
227.62767608232068e-050.0001525535216464140.999923723239177
233.002692099342e-056.005384198684e-050.999969973079007
241.35558063181392e-052.71116126362784e-050.999986444193682
255.19015404948624e-061.03803080989725e-050.99999480984595
264.43838230874964e-058.87676461749929e-050.999955616176913
273.9600416668836e-057.92008333376721e-050.999960399583331
282.62563095096713e-055.25126190193425e-050.99997374369049
296.78684466258649e-050.000135736893251730.999932131553374
300.0001629623149787550.0003259246299575090.999837037685021
310.004375368974513460.008750737949026920.995624631025486
320.01687624083295720.03375248166591440.983123759167043
330.0207484460524310.04149689210486190.979251553947569
340.04365201262820780.08730402525641560.956347987371792
350.05342155726485680.1068431145297140.946578442735143
360.05822647194196550.1164529438839310.941773528058034
370.066693796368990.133387592737980.93330620363101
380.1243658962849030.2487317925698060.875634103715097
390.2017815933007410.4035631866014820.798218406699259
400.2956139810795660.5912279621591320.704386018920434
410.6901966892134920.6196066215730160.309803310786508
420.8357073070487690.3285853859024630.164292692951231
430.8560499407645360.2879001184709290.143950059235464
440.8769979938951040.2460040122097910.123002006104896
450.9556264786083770.08874704278324570.0443735213916229
460.9836033362613680.03279332747726360.0163966637386318
470.9829253027654350.03414939446912910.0170746972345646
480.9833702468221450.03325950635570910.0166297531778546
490.9872688661954280.02546226760914460.0127311338045723
500.9952767201414450.009446559717110380.00472327985855519
510.9989669679571170.002066064085766770.00103303204288339
520.9997268389179250.0005463221641493140.000273161082074657
530.9999906038616991.87922766013504e-059.39613830067519e-06
540.9999917073672921.65852654162767e-058.29263270813833e-06
550.9999872753802022.54492395963918e-051.27246197981959e-05
560.9999857847489792.84305020417056e-051.42152510208528e-05
570.9999807871857853.84256284310376e-051.92128142155188e-05
580.9999773783192094.52433615822122e-052.26216807911061e-05
590.9999799131482144.01737035719374e-052.00868517859687e-05
600.999979948740714.0102518580232e-052.0051259290116e-05
610.9999805760935363.88478129286435e-051.94239064643217e-05
620.999978885099154.22298016996697e-052.11149008498348e-05
630.9999776033384514.47933230977593e-052.23966615488796e-05
640.9999757433059854.85133880306652e-052.42566940153326e-05
650.9999708179637725.83640724551693e-052.91820362275847e-05
660.9999956765233468.64695330789717e-064.32347665394858e-06
670.9999966031100746.7937798512367e-063.39688992561835e-06
680.9999951408350519.71832989759071e-064.85916494879536e-06
690.9999915612911391.68774177212731e-058.43870886063657e-06
700.9999860500869262.7899826148518e-051.3949913074259e-05
710.999977712834634.45743307395842e-052.22871653697921e-05
720.9999689537282086.20925435834414e-053.10462717917207e-05
730.9999586871374498.26257251021662e-054.13128625510831e-05
740.9999369511187250.0001260977625500786.30488812750391e-05
750.9999130957147990.0001738085704017938.69042852008965e-05
760.9999110192329980.0001779615340039058.89807670019523e-05
770.9999670041310546.59917378914715e-053.29958689457357e-05
780.999970980716055.80385679000044e-052.90192839500022e-05
790.9999867248444312.65503111382045e-051.32751555691023e-05
800.9999799912635644.00174728725691e-052.00087364362845e-05
810.9999639665813717.20668372578049e-053.60334186289025e-05
820.9999442989063540.0001114021872914535.57010936457263e-05
830.9999130890172790.000173821965442218.6910982721105e-05
840.999886284651710.0002274306965808570.000113715348290429
850.9999828813853643.42372292721592e-051.71186146360796e-05
860.9999982241798823.55164023623082e-061.77582011811541e-06
870.9999978479960984.30400780416551e-062.15200390208276e-06
880.9999973779557795.24408844094079e-062.62204422047039e-06
890.9999962177101827.56457963657064e-063.78228981828532e-06
900.9999929799711961.40400576081064e-057.02002880405318e-06
910.9999946325298841.07349402325151e-055.36747011625757e-06
920.9999919087787661.61824424681978e-058.0912212340989e-06
930.9999845366645383.09266709231121e-051.5463335461556e-05
940.9999773690019454.52619961105892e-052.26309980552946e-05
950.9999572547933978.54904132068802e-054.27452066034401e-05
960.9999293912573720.0001412174852552277.06087426276134e-05
970.9998978809545930.0002042380908132330.000102119045406616
980.9999233844311610.0001532311376788997.66155688394496e-05
990.9998868839663560.0002262320672884070.000113116033644203
1000.9999092238894290.0001815522211416529.07761105708262e-05
1010.9999908815850811.82368298376796e-059.11841491883982e-06
1020.9999828703636653.42592726692328e-051.71296363346164e-05
1030.9999627317694317.45364611386754e-053.72682305693377e-05
1040.9999677058963816.45882072382666e-053.22941036191333e-05
1050.9999028407309760.0001943185380486249.71592690243122e-05
1060.9997309051263050.0005381897473901510.000269094873695076
1070.9994125016443830.001174996711233940.00058749835561697
1080.9984027291548060.003194541690388930.00159727084519447
1090.9968670138632540.006265972273491690.00313298613674585
1100.9984726902963010.003054619407397810.0015273097036989
1110.9997004720765550.0005990558468891560.000299527923444578
1120.9990570929693580.001885814061283890.000942907030641943
1130.9994784884022080.00104302319558370.000521511597791851
1140.9970623717426980.005875256514604920.00293762825730246
1150.9894190317019640.02116193659607180.0105809682980359







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level810.771428571428571NOK
5% type I error level910.866666666666667NOK
10% type I error level940.895238095238095NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 81 & 0.771428571428571 & NOK \tabularnewline
5% type I error level & 91 & 0.866666666666667 & NOK \tabularnewline
10% type I error level & 94 & 0.895238095238095 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203279&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]81[/C][C]0.771428571428571[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]91[/C][C]0.866666666666667[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]94[/C][C]0.895238095238095[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203279&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203279&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level810.771428571428571NOK
5% type I error level910.866666666666667NOK
10% type I error level940.895238095238095NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}