Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationFri, 21 Dec 2012 04:00:38 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/21/t1356080566ziews0ezvwpkz4q.htm/, Retrieved Fri, 01 Nov 2024 00:37:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=203307, Retrieved Fri, 01 Nov 2024 00:37:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact158
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2012-12-21 09:00:38] [8bd99bfaf99999ed7326241cfa314d8e] [Current]
Feedback Forum

Post a new message
Dataseries X:
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.36
0.36
0.38
0.38
0.39
0.39
0.39
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.39
0.39
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.41
0.41
0.41
0.41
0.41
0.41
0.42
0.42
0.42
0.42




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203307&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203307&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203307&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.899590659914601
beta0
gamma0.775769860282962

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.899590659914601 \tabularnewline
beta & 0 \tabularnewline
gamma & 0.775769860282962 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203307&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.899590659914601[/C][/ROW]
[ROW][C]beta[/C][C]0[/C][/ROW]
[ROW][C]gamma[/C][C]0.775769860282962[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203307&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203307&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.899590659914601
beta0
gamma0.775769860282962







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
130.340.3354887820512820.00451121794871812
140.340.3396475560583120.000352443941687763
150.350.350065135811922-6.51358119224676e-05
160.350.3496903980527490.000309601947251159
170.350.3492361042149780.000763895785021562
180.350.348357155537190.00164284446281027
190.350.351602234213817-0.0016022342138175
200.350.351094737088929-0.00109473708892943
210.350.350627112970858-0.000627112970857546
220.360.3501634924750870.00983650752491277
230.360.3591128472462030.000887152753797082
240.380.3600114460529610.0199885539470393
250.380.3784448862101740.00155511378982581
260.390.3796204307390150.0103795692609849
270.390.399025791592951-0.00902579159295053
280.390.390619321611724-0.000619321611724233
290.40.389364763825920.0106352361740801
300.40.3974344460656680.002565553934332
310.40.401256811654791-0.00125681165479063
320.40.401099584692684-0.00109958469268395
330.40.400664025080995-0.000664025080995001
340.40.400982257698126-0.000982257698125932
350.40.3995020464520180.000497953547981822
360.40.401538420142508-0.00153842014250788
370.40.399170531135870.000829468864129934
380.40.400380669164427-0.000380669164426917
390.40.408594648380412-0.00859464838041218
400.40.401230848916206-0.00123084891620556
410.40.400302835477587-0.000302835477587471
420.40.3979041464381930.00209585356180697
430.40.401006232550992-0.00100623255099247
440.40.401086671332079-0.00108667133207868
450.40.400696656174455-0.000696656174455412
460.40.400960745581448-0.000960745581448319
470.390.399615186808296-0.00961518680829626
480.390.392395251500536-0.00239525150053549
490.40.3894410106313960.0105589893686042
500.40.3993094712864820.000690528713517824
510.40.407847265978013-0.00784726597801289
520.40.401729404512311-0.00172940451231129
530.40.400425182295652-0.000425182295651971
540.40.3981032759801330.00189672401986657
550.40.400784591446934-0.000784591446933547
560.40.401058150753255-0.00105815075325527
570.40.400724172493147-0.000724172493147379
580.40.400942937354045-0.00094293735404466
590.40.3989392649799560.00106073502004378
600.40.401885682772621-0.00188568277262086
610.40.40039890980174-0.000398909801740011
620.40.3996410475103360.000358952489664499
630.410.4072155117400390.00278448825996069
640.410.411138425088324-0.00113842508832379
650.410.410467434230957-0.000467434230956576
660.410.4082883822928160.00171161770718381
670.410.410594318015481-0.000594318015480599
680.410.411017736747313-0.0010177367473127
690.420.4107461296323310.00925387036766889
700.420.4199240080668987.59919331022041e-05
710.420.4189930300999880.00100696990001226
720.420.421661571435033-0.00166157143503343

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 0.34 & 0.335488782051282 & 0.00451121794871812 \tabularnewline
14 & 0.34 & 0.339647556058312 & 0.000352443941687763 \tabularnewline
15 & 0.35 & 0.350065135811922 & -6.51358119224676e-05 \tabularnewline
16 & 0.35 & 0.349690398052749 & 0.000309601947251159 \tabularnewline
17 & 0.35 & 0.349236104214978 & 0.000763895785021562 \tabularnewline
18 & 0.35 & 0.34835715553719 & 0.00164284446281027 \tabularnewline
19 & 0.35 & 0.351602234213817 & -0.0016022342138175 \tabularnewline
20 & 0.35 & 0.351094737088929 & -0.00109473708892943 \tabularnewline
21 & 0.35 & 0.350627112970858 & -0.000627112970857546 \tabularnewline
22 & 0.36 & 0.350163492475087 & 0.00983650752491277 \tabularnewline
23 & 0.36 & 0.359112847246203 & 0.000887152753797082 \tabularnewline
24 & 0.38 & 0.360011446052961 & 0.0199885539470393 \tabularnewline
25 & 0.38 & 0.378444886210174 & 0.00155511378982581 \tabularnewline
26 & 0.39 & 0.379620430739015 & 0.0103795692609849 \tabularnewline
27 & 0.39 & 0.399025791592951 & -0.00902579159295053 \tabularnewline
28 & 0.39 & 0.390619321611724 & -0.000619321611724233 \tabularnewline
29 & 0.4 & 0.38936476382592 & 0.0106352361740801 \tabularnewline
30 & 0.4 & 0.397434446065668 & 0.002565553934332 \tabularnewline
31 & 0.4 & 0.401256811654791 & -0.00125681165479063 \tabularnewline
32 & 0.4 & 0.401099584692684 & -0.00109958469268395 \tabularnewline
33 & 0.4 & 0.400664025080995 & -0.000664025080995001 \tabularnewline
34 & 0.4 & 0.400982257698126 & -0.000982257698125932 \tabularnewline
35 & 0.4 & 0.399502046452018 & 0.000497953547981822 \tabularnewline
36 & 0.4 & 0.401538420142508 & -0.00153842014250788 \tabularnewline
37 & 0.4 & 0.39917053113587 & 0.000829468864129934 \tabularnewline
38 & 0.4 & 0.400380669164427 & -0.000380669164426917 \tabularnewline
39 & 0.4 & 0.408594648380412 & -0.00859464838041218 \tabularnewline
40 & 0.4 & 0.401230848916206 & -0.00123084891620556 \tabularnewline
41 & 0.4 & 0.400302835477587 & -0.000302835477587471 \tabularnewline
42 & 0.4 & 0.397904146438193 & 0.00209585356180697 \tabularnewline
43 & 0.4 & 0.401006232550992 & -0.00100623255099247 \tabularnewline
44 & 0.4 & 0.401086671332079 & -0.00108667133207868 \tabularnewline
45 & 0.4 & 0.400696656174455 & -0.000696656174455412 \tabularnewline
46 & 0.4 & 0.400960745581448 & -0.000960745581448319 \tabularnewline
47 & 0.39 & 0.399615186808296 & -0.00961518680829626 \tabularnewline
48 & 0.39 & 0.392395251500536 & -0.00239525150053549 \tabularnewline
49 & 0.4 & 0.389441010631396 & 0.0105589893686042 \tabularnewline
50 & 0.4 & 0.399309471286482 & 0.000690528713517824 \tabularnewline
51 & 0.4 & 0.407847265978013 & -0.00784726597801289 \tabularnewline
52 & 0.4 & 0.401729404512311 & -0.00172940451231129 \tabularnewline
53 & 0.4 & 0.400425182295652 & -0.000425182295651971 \tabularnewline
54 & 0.4 & 0.398103275980133 & 0.00189672401986657 \tabularnewline
55 & 0.4 & 0.400784591446934 & -0.000784591446933547 \tabularnewline
56 & 0.4 & 0.401058150753255 & -0.00105815075325527 \tabularnewline
57 & 0.4 & 0.400724172493147 & -0.000724172493147379 \tabularnewline
58 & 0.4 & 0.400942937354045 & -0.00094293735404466 \tabularnewline
59 & 0.4 & 0.398939264979956 & 0.00106073502004378 \tabularnewline
60 & 0.4 & 0.401885682772621 & -0.00188568277262086 \tabularnewline
61 & 0.4 & 0.40039890980174 & -0.000398909801740011 \tabularnewline
62 & 0.4 & 0.399641047510336 & 0.000358952489664499 \tabularnewline
63 & 0.41 & 0.407215511740039 & 0.00278448825996069 \tabularnewline
64 & 0.41 & 0.411138425088324 & -0.00113842508832379 \tabularnewline
65 & 0.41 & 0.410467434230957 & -0.000467434230956576 \tabularnewline
66 & 0.41 & 0.408288382292816 & 0.00171161770718381 \tabularnewline
67 & 0.41 & 0.410594318015481 & -0.000594318015480599 \tabularnewline
68 & 0.41 & 0.411017736747313 & -0.0010177367473127 \tabularnewline
69 & 0.42 & 0.410746129632331 & 0.00925387036766889 \tabularnewline
70 & 0.42 & 0.419924008066898 & 7.59919331022041e-05 \tabularnewline
71 & 0.42 & 0.418993030099988 & 0.00100696990001226 \tabularnewline
72 & 0.42 & 0.421661571435033 & -0.00166157143503343 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203307&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]0.34[/C][C]0.335488782051282[/C][C]0.00451121794871812[/C][/ROW]
[ROW][C]14[/C][C]0.34[/C][C]0.339647556058312[/C][C]0.000352443941687763[/C][/ROW]
[ROW][C]15[/C][C]0.35[/C][C]0.350065135811922[/C][C]-6.51358119224676e-05[/C][/ROW]
[ROW][C]16[/C][C]0.35[/C][C]0.349690398052749[/C][C]0.000309601947251159[/C][/ROW]
[ROW][C]17[/C][C]0.35[/C][C]0.349236104214978[/C][C]0.000763895785021562[/C][/ROW]
[ROW][C]18[/C][C]0.35[/C][C]0.34835715553719[/C][C]0.00164284446281027[/C][/ROW]
[ROW][C]19[/C][C]0.35[/C][C]0.351602234213817[/C][C]-0.0016022342138175[/C][/ROW]
[ROW][C]20[/C][C]0.35[/C][C]0.351094737088929[/C][C]-0.00109473708892943[/C][/ROW]
[ROW][C]21[/C][C]0.35[/C][C]0.350627112970858[/C][C]-0.000627112970857546[/C][/ROW]
[ROW][C]22[/C][C]0.36[/C][C]0.350163492475087[/C][C]0.00983650752491277[/C][/ROW]
[ROW][C]23[/C][C]0.36[/C][C]0.359112847246203[/C][C]0.000887152753797082[/C][/ROW]
[ROW][C]24[/C][C]0.38[/C][C]0.360011446052961[/C][C]0.0199885539470393[/C][/ROW]
[ROW][C]25[/C][C]0.38[/C][C]0.378444886210174[/C][C]0.00155511378982581[/C][/ROW]
[ROW][C]26[/C][C]0.39[/C][C]0.379620430739015[/C][C]0.0103795692609849[/C][/ROW]
[ROW][C]27[/C][C]0.39[/C][C]0.399025791592951[/C][C]-0.00902579159295053[/C][/ROW]
[ROW][C]28[/C][C]0.39[/C][C]0.390619321611724[/C][C]-0.000619321611724233[/C][/ROW]
[ROW][C]29[/C][C]0.4[/C][C]0.38936476382592[/C][C]0.0106352361740801[/C][/ROW]
[ROW][C]30[/C][C]0.4[/C][C]0.397434446065668[/C][C]0.002565553934332[/C][/ROW]
[ROW][C]31[/C][C]0.4[/C][C]0.401256811654791[/C][C]-0.00125681165479063[/C][/ROW]
[ROW][C]32[/C][C]0.4[/C][C]0.401099584692684[/C][C]-0.00109958469268395[/C][/ROW]
[ROW][C]33[/C][C]0.4[/C][C]0.400664025080995[/C][C]-0.000664025080995001[/C][/ROW]
[ROW][C]34[/C][C]0.4[/C][C]0.400982257698126[/C][C]-0.000982257698125932[/C][/ROW]
[ROW][C]35[/C][C]0.4[/C][C]0.399502046452018[/C][C]0.000497953547981822[/C][/ROW]
[ROW][C]36[/C][C]0.4[/C][C]0.401538420142508[/C][C]-0.00153842014250788[/C][/ROW]
[ROW][C]37[/C][C]0.4[/C][C]0.39917053113587[/C][C]0.000829468864129934[/C][/ROW]
[ROW][C]38[/C][C]0.4[/C][C]0.400380669164427[/C][C]-0.000380669164426917[/C][/ROW]
[ROW][C]39[/C][C]0.4[/C][C]0.408594648380412[/C][C]-0.00859464838041218[/C][/ROW]
[ROW][C]40[/C][C]0.4[/C][C]0.401230848916206[/C][C]-0.00123084891620556[/C][/ROW]
[ROW][C]41[/C][C]0.4[/C][C]0.400302835477587[/C][C]-0.000302835477587471[/C][/ROW]
[ROW][C]42[/C][C]0.4[/C][C]0.397904146438193[/C][C]0.00209585356180697[/C][/ROW]
[ROW][C]43[/C][C]0.4[/C][C]0.401006232550992[/C][C]-0.00100623255099247[/C][/ROW]
[ROW][C]44[/C][C]0.4[/C][C]0.401086671332079[/C][C]-0.00108667133207868[/C][/ROW]
[ROW][C]45[/C][C]0.4[/C][C]0.400696656174455[/C][C]-0.000696656174455412[/C][/ROW]
[ROW][C]46[/C][C]0.4[/C][C]0.400960745581448[/C][C]-0.000960745581448319[/C][/ROW]
[ROW][C]47[/C][C]0.39[/C][C]0.399615186808296[/C][C]-0.00961518680829626[/C][/ROW]
[ROW][C]48[/C][C]0.39[/C][C]0.392395251500536[/C][C]-0.00239525150053549[/C][/ROW]
[ROW][C]49[/C][C]0.4[/C][C]0.389441010631396[/C][C]0.0105589893686042[/C][/ROW]
[ROW][C]50[/C][C]0.4[/C][C]0.399309471286482[/C][C]0.000690528713517824[/C][/ROW]
[ROW][C]51[/C][C]0.4[/C][C]0.407847265978013[/C][C]-0.00784726597801289[/C][/ROW]
[ROW][C]52[/C][C]0.4[/C][C]0.401729404512311[/C][C]-0.00172940451231129[/C][/ROW]
[ROW][C]53[/C][C]0.4[/C][C]0.400425182295652[/C][C]-0.000425182295651971[/C][/ROW]
[ROW][C]54[/C][C]0.4[/C][C]0.398103275980133[/C][C]0.00189672401986657[/C][/ROW]
[ROW][C]55[/C][C]0.4[/C][C]0.400784591446934[/C][C]-0.000784591446933547[/C][/ROW]
[ROW][C]56[/C][C]0.4[/C][C]0.401058150753255[/C][C]-0.00105815075325527[/C][/ROW]
[ROW][C]57[/C][C]0.4[/C][C]0.400724172493147[/C][C]-0.000724172493147379[/C][/ROW]
[ROW][C]58[/C][C]0.4[/C][C]0.400942937354045[/C][C]-0.00094293735404466[/C][/ROW]
[ROW][C]59[/C][C]0.4[/C][C]0.398939264979956[/C][C]0.00106073502004378[/C][/ROW]
[ROW][C]60[/C][C]0.4[/C][C]0.401885682772621[/C][C]-0.00188568277262086[/C][/ROW]
[ROW][C]61[/C][C]0.4[/C][C]0.40039890980174[/C][C]-0.000398909801740011[/C][/ROW]
[ROW][C]62[/C][C]0.4[/C][C]0.399641047510336[/C][C]0.000358952489664499[/C][/ROW]
[ROW][C]63[/C][C]0.41[/C][C]0.407215511740039[/C][C]0.00278448825996069[/C][/ROW]
[ROW][C]64[/C][C]0.41[/C][C]0.411138425088324[/C][C]-0.00113842508832379[/C][/ROW]
[ROW][C]65[/C][C]0.41[/C][C]0.410467434230957[/C][C]-0.000467434230956576[/C][/ROW]
[ROW][C]66[/C][C]0.41[/C][C]0.408288382292816[/C][C]0.00171161770718381[/C][/ROW]
[ROW][C]67[/C][C]0.41[/C][C]0.410594318015481[/C][C]-0.000594318015480599[/C][/ROW]
[ROW][C]68[/C][C]0.41[/C][C]0.411017736747313[/C][C]-0.0010177367473127[/C][/ROW]
[ROW][C]69[/C][C]0.42[/C][C]0.410746129632331[/C][C]0.00925387036766889[/C][/ROW]
[ROW][C]70[/C][C]0.42[/C][C]0.419924008066898[/C][C]7.59919331022041e-05[/C][/ROW]
[ROW][C]71[/C][C]0.42[/C][C]0.418993030099988[/C][C]0.00100696990001226[/C][/ROW]
[ROW][C]72[/C][C]0.42[/C][C]0.421661571435033[/C][C]-0.00166157143503343[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203307&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203307&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
130.340.3354887820512820.00451121794871812
140.340.3396475560583120.000352443941687763
150.350.350065135811922-6.51358119224676e-05
160.350.3496903980527490.000309601947251159
170.350.3492361042149780.000763895785021562
180.350.348357155537190.00164284446281027
190.350.351602234213817-0.0016022342138175
200.350.351094737088929-0.00109473708892943
210.350.350627112970858-0.000627112970857546
220.360.3501634924750870.00983650752491277
230.360.3591128472462030.000887152753797082
240.380.3600114460529610.0199885539470393
250.380.3784448862101740.00155511378982581
260.390.3796204307390150.0103795692609849
270.390.399025791592951-0.00902579159295053
280.390.390619321611724-0.000619321611724233
290.40.389364763825920.0106352361740801
300.40.3974344460656680.002565553934332
310.40.401256811654791-0.00125681165479063
320.40.401099584692684-0.00109958469268395
330.40.400664025080995-0.000664025080995001
340.40.400982257698126-0.000982257698125932
350.40.3995020464520180.000497953547981822
360.40.401538420142508-0.00153842014250788
370.40.399170531135870.000829468864129934
380.40.400380669164427-0.000380669164426917
390.40.408594648380412-0.00859464838041218
400.40.401230848916206-0.00123084891620556
410.40.400302835477587-0.000302835477587471
420.40.3979041464381930.00209585356180697
430.40.401006232550992-0.00100623255099247
440.40.401086671332079-0.00108667133207868
450.40.400696656174455-0.000696656174455412
460.40.400960745581448-0.000960745581448319
470.390.399615186808296-0.00961518680829626
480.390.392395251500536-0.00239525150053549
490.40.3894410106313960.0105589893686042
500.40.3993094712864820.000690528713517824
510.40.407847265978013-0.00784726597801289
520.40.401729404512311-0.00172940451231129
530.40.400425182295652-0.000425182295651971
540.40.3981032759801330.00189672401986657
550.40.400784591446934-0.000784591446933547
560.40.401058150753255-0.00105815075325527
570.40.400724172493147-0.000724172493147379
580.40.400942937354045-0.00094293735404466
590.40.3989392649799560.00106073502004378
600.40.401885682772621-0.00188568277262086
610.40.40039890980174-0.000398909801740011
620.40.3996410475103360.000358952489664499
630.410.4072155117400390.00278448825996069
640.410.411138425088324-0.00113842508832379
650.410.410467434230957-0.000467434230956576
660.410.4082883822928160.00171161770718381
670.410.410594318015481-0.000594318015480599
680.410.411017736747313-0.0010177367473127
690.420.4107461296323310.00925387036766889
700.420.4199240080668987.59919331022041e-05
710.420.4189930300999880.00100696990001226
720.420.421661571435033-0.00166157143503343







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
730.4204922184264760.4112857440804630.429698692772488
740.4201522450012320.4077687212658270.432535768736637
750.4275927349163040.4126949448007580.442490525031851
760.4287051751036240.4116600397111310.445750310496118
770.4291105673467230.4101598647009110.448061269992534
780.4275217511246430.4068403193320530.448203182917232
790.4281083117428180.4058302034027220.450386420082914
800.4290333914031670.4052656274899460.452801155316388
810.430477432868820.4053080250161080.455646840721532
820.430615709336220.4041186985259860.457112720146455
830.4296888878362930.4019276905980750.457450085074512
840.4312437036554310.4022734333370380.460213973973825

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
73 & 0.420492218426476 & 0.411285744080463 & 0.429698692772488 \tabularnewline
74 & 0.420152245001232 & 0.407768721265827 & 0.432535768736637 \tabularnewline
75 & 0.427592734916304 & 0.412694944800758 & 0.442490525031851 \tabularnewline
76 & 0.428705175103624 & 0.411660039711131 & 0.445750310496118 \tabularnewline
77 & 0.429110567346723 & 0.410159864700911 & 0.448061269992534 \tabularnewline
78 & 0.427521751124643 & 0.406840319332053 & 0.448203182917232 \tabularnewline
79 & 0.428108311742818 & 0.405830203402722 & 0.450386420082914 \tabularnewline
80 & 0.429033391403167 & 0.405265627489946 & 0.452801155316388 \tabularnewline
81 & 0.43047743286882 & 0.405308025016108 & 0.455646840721532 \tabularnewline
82 & 0.43061570933622 & 0.404118698525986 & 0.457112720146455 \tabularnewline
83 & 0.429688887836293 & 0.401927690598075 & 0.457450085074512 \tabularnewline
84 & 0.431243703655431 & 0.402273433337038 & 0.460213973973825 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203307&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]73[/C][C]0.420492218426476[/C][C]0.411285744080463[/C][C]0.429698692772488[/C][/ROW]
[ROW][C]74[/C][C]0.420152245001232[/C][C]0.407768721265827[/C][C]0.432535768736637[/C][/ROW]
[ROW][C]75[/C][C]0.427592734916304[/C][C]0.412694944800758[/C][C]0.442490525031851[/C][/ROW]
[ROW][C]76[/C][C]0.428705175103624[/C][C]0.411660039711131[/C][C]0.445750310496118[/C][/ROW]
[ROW][C]77[/C][C]0.429110567346723[/C][C]0.410159864700911[/C][C]0.448061269992534[/C][/ROW]
[ROW][C]78[/C][C]0.427521751124643[/C][C]0.406840319332053[/C][C]0.448203182917232[/C][/ROW]
[ROW][C]79[/C][C]0.428108311742818[/C][C]0.405830203402722[/C][C]0.450386420082914[/C][/ROW]
[ROW][C]80[/C][C]0.429033391403167[/C][C]0.405265627489946[/C][C]0.452801155316388[/C][/ROW]
[ROW][C]81[/C][C]0.43047743286882[/C][C]0.405308025016108[/C][C]0.455646840721532[/C][/ROW]
[ROW][C]82[/C][C]0.43061570933622[/C][C]0.404118698525986[/C][C]0.457112720146455[/C][/ROW]
[ROW][C]83[/C][C]0.429688887836293[/C][C]0.401927690598075[/C][C]0.457450085074512[/C][/ROW]
[ROW][C]84[/C][C]0.431243703655431[/C][C]0.402273433337038[/C][C]0.460213973973825[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203307&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203307&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
730.4204922184264760.4112857440804630.429698692772488
740.4201522450012320.4077687212658270.432535768736637
750.4275927349163040.4126949448007580.442490525031851
760.4287051751036240.4116600397111310.445750310496118
770.4291105673467230.4101598647009110.448061269992534
780.4275217511246430.4068403193320530.448203182917232
790.4281083117428180.4058302034027220.450386420082914
800.4290333914031670.4052656274899460.452801155316388
810.430477432868820.4053080250161080.455646840721532
820.430615709336220.4041186985259860.457112720146455
830.4296888878362930.4019276905980750.457450085074512
840.4312437036554310.4022734333370380.460213973973825



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = additive ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = additive ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')