Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 21 Dec 2012 07:51:49 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/21/t1356094403wgcjl6r3uzfob6n.htm/, Retrieved Thu, 31 Oct 2024 23:58:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=203582, Retrieved Thu, 31 Oct 2024 23:58:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact163
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Paper] [2012-12-14 18:07:41] [0883bf8f4217d775edf6393676d58a73]
- RMPD  [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Paper Part 5] [2012-12-21 12:33:48] [0883bf8f4217d775edf6393676d58a73]
- RMPD    [Multiple Regression] [Paper Part 5] [2012-12-21 12:45:06] [0883bf8f4217d775edf6393676d58a73]
- R PD        [Multiple Regression] [Paper Part 5] [2012-12-21 12:51:49] [0ce3a3cc7b36ec2616d0d876d7c7ef2d] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	1	0	0
0	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	0	0	0
0	1	0	0
1	1	0	0
0	0	0	0
0	1	0	0
1	0	0	0
0	1	0	0
0	1	0	0
1	1	0	0
0	1	0	0
1	1	0	0
1	1	1	0
1	1	0	0
0	0	0	0
1	1	1	0
0	1	0	0
0	0	0	0
0	1	0	0
0	1	0	0
1	0	0	0
0	0	0	0
0	1	0	0
0	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	1	0	0
1	1	0	0
0	1	0	0
0	1	0	0
1	0	0	0
0	1	0	0
0	1	0	0
1	0	0	0
0	1	1	0
0	1	0	0
0	1	0	0
1	1	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	1	0	0
1	1	0	0
1	0	1	0
0	0	0	0
0	1	1	0
0	1	0	1
1	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
1	0	1	0
1	0	0	0
0	0	0	0
0	1	0	0
1	1	0	0
0	1	0	0
0	1	0	1
1	1	1	1
0	1	0	0
0		0	
0		0	
0		0	
0		0	
0		0	
0		0	
0		0	
1		0	
0		0	
0		0	
1		1	
1		0
0		0
0		0
0		0
0		1
0		0
0		0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
R Framework error message & 
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=203582&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[ROW][C]R Framework error message[/C][C]
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=203582&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.







Multiple Linear Regression - Estimated Regression Equation
CorrectAnalysis4weken[t] = + 0.0404474960387958 + 0.213885821289672Treatment4weken[t] -0.000403322610073464treatment2weken[t] + 0.156383540596341CorrectAnalysis2weken[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
CorrectAnalysis4weken[t] =  +  0.0404474960387958 +  0.213885821289672Treatment4weken[t] -0.000403322610073464treatment2weken[t] +  0.156383540596341CorrectAnalysis2weken[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203582&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]CorrectAnalysis4weken[t] =  +  0.0404474960387958 +  0.213885821289672Treatment4weken[t] -0.000403322610073464treatment2weken[t] +  0.156383540596341CorrectAnalysis2weken[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203582&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
CorrectAnalysis4weken[t] = + 0.0404474960387958 + 0.213885821289672Treatment4weken[t] -0.000403322610073464treatment2weken[t] + 0.156383540596341CorrectAnalysis2weken[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.04044749603879580.0599350.67490.5016630.250831
Treatment4weken0.2138858212896720.0722152.96180.0040.002
treatment2weken-0.0004033226100734640.068254-0.00590.99530.49765
CorrectAnalysis2weken0.1563835405963410.1518171.03010.3060020.153001

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 0.0404474960387958 & 0.059935 & 0.6749 & 0.501663 & 0.250831 \tabularnewline
Treatment4weken & 0.213885821289672 & 0.072215 & 2.9618 & 0.004 & 0.002 \tabularnewline
treatment2weken & -0.000403322610073464 & 0.068254 & -0.0059 & 0.9953 & 0.49765 \tabularnewline
CorrectAnalysis2weken & 0.156383540596341 & 0.151817 & 1.0301 & 0.306002 & 0.153001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203582&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]0.0404474960387958[/C][C]0.059935[/C][C]0.6749[/C][C]0.501663[/C][C]0.250831[/C][/ROW]
[ROW][C]Treatment4weken[/C][C]0.213885821289672[/C][C]0.072215[/C][C]2.9618[/C][C]0.004[/C][C]0.002[/C][/ROW]
[ROW][C]treatment2weken[/C][C]-0.000403322610073464[/C][C]0.068254[/C][C]-0.0059[/C][C]0.9953[/C][C]0.49765[/C][/ROW]
[ROW][C]CorrectAnalysis2weken[/C][C]0.156383540596341[/C][C]0.151817[/C][C]1.0301[/C][C]0.306002[/C][C]0.153001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203582&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)0.04044749603879580.0599350.67490.5016630.250831
Treatment4weken0.2138858212896720.0722152.96180.0040.002
treatment2weken-0.0004033226100734640.068254-0.00590.99530.49765
CorrectAnalysis2weken0.1563835405963410.1518171.03010.3060020.153001







Multiple Linear Regression - Regression Statistics
Multiple R0.326581656365066
R-squared0.10665557827415
Adjusted R-squared0.073972245771985
F-TEST (value)3.26330181498733
F-TEST (DF numerator)3
F-TEST (DF denominator)82
p-value0.0255129820570561
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.296292003361238
Sum Squared Residuals7.19869400297691

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.326581656365066 \tabularnewline
R-squared & 0.10665557827415 \tabularnewline
Adjusted R-squared & 0.073972245771985 \tabularnewline
F-TEST (value) & 3.26330181498733 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 82 \tabularnewline
p-value & 0.0255129820570561 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 0.296292003361238 \tabularnewline
Sum Squared Residuals & 7.19869400297691 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203582&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.326581656365066[/C][/ROW]
[ROW][C]R-squared[/C][C]0.10665557827415[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.073972245771985[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]3.26330181498733[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]82[/C][/ROW]
[ROW][C]p-value[/C][C]0.0255129820570561[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]0.296292003361238[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]7.19869400297691[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203582&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.326581656365066
R-squared0.10665557827415
Adjusted R-squared0.073972245771985
F-TEST (value)3.26330181498733
F-TEST (DF numerator)3
F-TEST (DF denominator)82
p-value0.0255129820570561
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.296292003361238
Sum Squared Residuals7.19869400297691







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.253929994718394-0.253929994718394
200.0404474960387957-0.0404474960387957
300.0400441734287223-0.0400441734287223
400.0400441734287224-0.0400441734287224
500.0400441734287223-0.0400441734287223
600.0404474960387958-0.0404474960387958
700.0400441734287223-0.0400441734287223
800.253929994718394-0.253929994718394
900.0404474960387958-0.0404474960387958
1000.0400441734287223-0.0400441734287223
1100.254333317328468-0.254333317328468
1200.0400441734287223-0.0400441734287223
1300.0400441734287223-0.0400441734287223
1400.253929994718394-0.253929994718394
1500.0400441734287223-0.0400441734287223
1600.253929994718394-0.253929994718394
1710.2539299947183940.746070005281606
1800.253929994718394-0.253929994718394
1900.0404474960387958-0.0404474960387958
2010.2539299947183940.746070005281606
2100.0400441734287223-0.0400441734287223
2200.0404474960387958-0.0404474960387958
2300.0400441734287223-0.0400441734287223
2400.0400441734287223-0.0400441734287223
2500.254333317328468-0.254333317328468
2600.0404474960387958-0.0404474960387958
2700.0400441734287223-0.0400441734287223
2800.0404474960387958-0.0404474960387958
2900.0400441734287223-0.0400441734287223
3000.0400441734287223-0.0400441734287223
3100.0400441734287223-0.0400441734287223
3200.0400441734287223-0.0400441734287223
3300.0400441734287223-0.0400441734287223
3400.253929994718394-0.253929994718394
3500.0400441734287223-0.0400441734287223
3600.0400441734287223-0.0400441734287223
3700.254333317328468-0.254333317328468
3800.0400441734287223-0.0400441734287223
3900.0400441734287223-0.0400441734287223
4000.254333317328468-0.254333317328468
4110.04004417342872220.959955826571278
4200.0400441734287223-0.0400441734287223
4300.0400441734287223-0.0400441734287223
4400.253929994718394-0.253929994718394
4500.0400441734287223-0.0400441734287223
4600.0400441734287223-0.0400441734287223
4700.0400441734287223-0.0400441734287223
4800.0400441734287223-0.0400441734287223
4900.0400441734287223-0.0400441734287223
5000.0400441734287223-0.0400441734287223
5100.253929994718394-0.253929994718394
5210.2543333173284680.745666682671532
5300.0404474960387958-0.0404474960387958
5410.04004417342872220.959955826571278
5500.196427714025064-0.196427714025064
5600.254333317328468-0.254333317328468
5700.0400441734287223-0.0400441734287223
5800.0400441734287223-0.0400441734287223
5900.0400441734287223-0.0400441734287223
6010.2543333173284680.745666682671532
6100.254333317328468-0.254333317328468
6200.0404474960387958-0.0404474960387958
6300.0400441734287223-0.0400441734287223
6400.253929994718394-0.253929994718394
6500.0400441734287223-0.0400441734287223
6600.196427714025064-0.196427714025064
6710.4103135353147360.589686464685264
6800.0400441734287223-0.0400441734287223
6900.0404474960387958-0.0404474960387958
7000.0404474960387958-0.0404474960387958
7100.0404474960387958-0.0404474960387958
7210.04044749603879580.959552503961204
7300.0404474960387958-0.0404474960387958
7410.2539299947183940.746070005281606
7500.0404474960387958-0.0404474960387958
7600.196831036635137-0.196831036635137
7700.0404474960387958-0.0404474960387958
7800.253929994718394-0.253929994718394
7900.0404474960387958-0.0404474960387958
8000.0400441734287223-0.0400441734287223
8100.0400441734287223-0.0400441734287223
8200.0400441734287223-0.0400441734287223
8300.0404474960387958-0.0404474960387958
8400.0400441734287223-0.0400441734287223
8500.253929994718394-0.253929994718394
8600.0404474960387958-0.0404474960387958

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
2 & 0 & 0.0404474960387957 & -0.0404474960387957 \tabularnewline
3 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
4 & 0 & 0.0400441734287224 & -0.0400441734287224 \tabularnewline
5 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
6 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
7 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
8 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
9 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
10 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
11 & 0 & 0.254333317328468 & -0.254333317328468 \tabularnewline
12 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
13 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
14 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
15 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
16 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
17 & 1 & 0.253929994718394 & 0.746070005281606 \tabularnewline
18 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
19 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
20 & 1 & 0.253929994718394 & 0.746070005281606 \tabularnewline
21 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
22 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
23 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
24 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
25 & 0 & 0.254333317328468 & -0.254333317328468 \tabularnewline
26 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
27 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
28 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
29 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
30 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
31 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
32 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
33 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
34 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
35 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
36 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
37 & 0 & 0.254333317328468 & -0.254333317328468 \tabularnewline
38 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
39 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
40 & 0 & 0.254333317328468 & -0.254333317328468 \tabularnewline
41 & 1 & 0.0400441734287222 & 0.959955826571278 \tabularnewline
42 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
43 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
44 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
45 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
46 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
47 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
48 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
49 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
50 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
51 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
52 & 1 & 0.254333317328468 & 0.745666682671532 \tabularnewline
53 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
54 & 1 & 0.0400441734287222 & 0.959955826571278 \tabularnewline
55 & 0 & 0.196427714025064 & -0.196427714025064 \tabularnewline
56 & 0 & 0.254333317328468 & -0.254333317328468 \tabularnewline
57 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
58 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
59 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
60 & 1 & 0.254333317328468 & 0.745666682671532 \tabularnewline
61 & 0 & 0.254333317328468 & -0.254333317328468 \tabularnewline
62 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
63 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
64 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
65 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
66 & 0 & 0.196427714025064 & -0.196427714025064 \tabularnewline
67 & 1 & 0.410313535314736 & 0.589686464685264 \tabularnewline
68 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
69 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
70 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
71 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
72 & 1 & 0.0404474960387958 & 0.959552503961204 \tabularnewline
73 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
74 & 1 & 0.253929994718394 & 0.746070005281606 \tabularnewline
75 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
76 & 0 & 0.196831036635137 & -0.196831036635137 \tabularnewline
77 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
78 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
79 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
80 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
81 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
82 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
83 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
84 & 0 & 0.0400441734287223 & -0.0400441734287223 \tabularnewline
85 & 0 & 0.253929994718394 & -0.253929994718394 \tabularnewline
86 & 0 & 0.0404474960387958 & -0.0404474960387958 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203582&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]2[/C][C]0[/C][C]0.0404474960387957[/C][C]-0.0404474960387957[/C][/ROW]
[ROW][C]3[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]4[/C][C]0[/C][C]0.0400441734287224[/C][C]-0.0400441734287224[/C][/ROW]
[ROW][C]5[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]6[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]7[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]8[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]9[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]10[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]0.254333317328468[/C][C]-0.254333317328468[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]17[/C][C]1[/C][C]0.253929994718394[/C][C]0.746070005281606[/C][/ROW]
[ROW][C]18[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]19[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]20[/C][C]1[/C][C]0.253929994718394[/C][C]0.746070005281606[/C][/ROW]
[ROW][C]21[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]22[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]23[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]24[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]25[/C][C]0[/C][C]0.254333317328468[/C][C]-0.254333317328468[/C][/ROW]
[ROW][C]26[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]27[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]28[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]29[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]30[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]31[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]32[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]33[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]34[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]35[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]36[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]37[/C][C]0[/C][C]0.254333317328468[/C][C]-0.254333317328468[/C][/ROW]
[ROW][C]38[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]39[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]40[/C][C]0[/C][C]0.254333317328468[/C][C]-0.254333317328468[/C][/ROW]
[ROW][C]41[/C][C]1[/C][C]0.0400441734287222[/C][C]0.959955826571278[/C][/ROW]
[ROW][C]42[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]43[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]44[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]45[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]46[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]47[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]48[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]49[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]50[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]51[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]52[/C][C]1[/C][C]0.254333317328468[/C][C]0.745666682671532[/C][/ROW]
[ROW][C]53[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]54[/C][C]1[/C][C]0.0400441734287222[/C][C]0.959955826571278[/C][/ROW]
[ROW][C]55[/C][C]0[/C][C]0.196427714025064[/C][C]-0.196427714025064[/C][/ROW]
[ROW][C]56[/C][C]0[/C][C]0.254333317328468[/C][C]-0.254333317328468[/C][/ROW]
[ROW][C]57[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]58[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]59[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]60[/C][C]1[/C][C]0.254333317328468[/C][C]0.745666682671532[/C][/ROW]
[ROW][C]61[/C][C]0[/C][C]0.254333317328468[/C][C]-0.254333317328468[/C][/ROW]
[ROW][C]62[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]63[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]64[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]65[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]66[/C][C]0[/C][C]0.196427714025064[/C][C]-0.196427714025064[/C][/ROW]
[ROW][C]67[/C][C]1[/C][C]0.410313535314736[/C][C]0.589686464685264[/C][/ROW]
[ROW][C]68[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]69[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]70[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]71[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]72[/C][C]1[/C][C]0.0404474960387958[/C][C]0.959552503961204[/C][/ROW]
[ROW][C]73[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]74[/C][C]1[/C][C]0.253929994718394[/C][C]0.746070005281606[/C][/ROW]
[ROW][C]75[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]76[/C][C]0[/C][C]0.196831036635137[/C][C]-0.196831036635137[/C][/ROW]
[ROW][C]77[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]78[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]79[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]80[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]81[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]82[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]83[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[ROW][C]84[/C][C]0[/C][C]0.0400441734287223[/C][C]-0.0400441734287223[/C][/ROW]
[ROW][C]85[/C][C]0[/C][C]0.253929994718394[/C][C]-0.253929994718394[/C][/ROW]
[ROW][C]86[/C][C]0[/C][C]0.0404474960387958[/C][C]-0.0404474960387958[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203582&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
100.253929994718394-0.253929994718394
200.0404474960387957-0.0404474960387957
300.0400441734287223-0.0400441734287223
400.0400441734287224-0.0400441734287224
500.0400441734287223-0.0400441734287223
600.0404474960387958-0.0404474960387958
700.0400441734287223-0.0400441734287223
800.253929994718394-0.253929994718394
900.0404474960387958-0.0404474960387958
1000.0400441734287223-0.0400441734287223
1100.254333317328468-0.254333317328468
1200.0400441734287223-0.0400441734287223
1300.0400441734287223-0.0400441734287223
1400.253929994718394-0.253929994718394
1500.0400441734287223-0.0400441734287223
1600.253929994718394-0.253929994718394
1710.2539299947183940.746070005281606
1800.253929994718394-0.253929994718394
1900.0404474960387958-0.0404474960387958
2010.2539299947183940.746070005281606
2100.0400441734287223-0.0400441734287223
2200.0404474960387958-0.0404474960387958
2300.0400441734287223-0.0400441734287223
2400.0400441734287223-0.0400441734287223
2500.254333317328468-0.254333317328468
2600.0404474960387958-0.0404474960387958
2700.0400441734287223-0.0400441734287223
2800.0404474960387958-0.0404474960387958
2900.0400441734287223-0.0400441734287223
3000.0400441734287223-0.0400441734287223
3100.0400441734287223-0.0400441734287223
3200.0400441734287223-0.0400441734287223
3300.0400441734287223-0.0400441734287223
3400.253929994718394-0.253929994718394
3500.0400441734287223-0.0400441734287223
3600.0400441734287223-0.0400441734287223
3700.254333317328468-0.254333317328468
3800.0400441734287223-0.0400441734287223
3900.0400441734287223-0.0400441734287223
4000.254333317328468-0.254333317328468
4110.04004417342872220.959955826571278
4200.0400441734287223-0.0400441734287223
4300.0400441734287223-0.0400441734287223
4400.253929994718394-0.253929994718394
4500.0400441734287223-0.0400441734287223
4600.0400441734287223-0.0400441734287223
4700.0400441734287223-0.0400441734287223
4800.0400441734287223-0.0400441734287223
4900.0400441734287223-0.0400441734287223
5000.0400441734287223-0.0400441734287223
5100.253929994718394-0.253929994718394
5210.2543333173284680.745666682671532
5300.0404474960387958-0.0404474960387958
5410.04004417342872220.959955826571278
5500.196427714025064-0.196427714025064
5600.254333317328468-0.254333317328468
5700.0400441734287223-0.0400441734287223
5800.0400441734287223-0.0400441734287223
5900.0400441734287223-0.0400441734287223
6010.2543333173284680.745666682671532
6100.254333317328468-0.254333317328468
6200.0404474960387958-0.0404474960387958
6300.0400441734287223-0.0400441734287223
6400.253929994718394-0.253929994718394
6500.0400441734287223-0.0400441734287223
6600.196427714025064-0.196427714025064
6710.4103135353147360.589686464685264
6800.0400441734287223-0.0400441734287223
6900.0404474960387958-0.0404474960387958
7000.0404474960387958-0.0404474960387958
7100.0404474960387958-0.0404474960387958
7210.04044749603879580.959552503961204
7300.0404474960387958-0.0404474960387958
7410.2539299947183940.746070005281606
7500.0404474960387958-0.0404474960387958
7600.196831036635137-0.196831036635137
7700.0404474960387958-0.0404474960387958
7800.253929994718394-0.253929994718394
7900.0404474960387958-0.0404474960387958
8000.0400441734287223-0.0400441734287223
8100.0400441734287223-0.0400441734287223
8200.0400441734287223-0.0400441734287223
8300.0404474960387958-0.0404474960387958
8400.0400441734287223-0.0400441734287223
8500.253929994718394-0.253929994718394
8600.0404474960387958-0.0404474960387958







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7001
8001
9001
10001
11001
12001
13001
14001
15001
16001
170.202811893825780.4056237876515590.79718810617422
180.1679142913199340.3358285826398670.832085708680066
190.1187684906250950.237536981250190.881231509374905
200.5441450389424610.9117099221150780.455854961057539
210.4651566369287880.9303132738575760.534843363071212
220.3899383746465440.7798767492930870.610061625353457
230.3184630798849990.6369261597699990.681536920115001
240.2539745912699940.5079491825399870.746025408730006
250.2228883742143170.4457767484286340.777111625785683
260.1733936120268510.3467872240537030.826606387973148
270.1306889044074480.2613778088148960.869311095592552
280.09706079795718770.1941215959143750.902939202042812
290.0698061120076410.1396122240152820.930193887992359
300.0490137842044460.0980275684088920.950986215795554
310.03360059249451030.06720118498902060.96639940750549
320.02249154094582150.0449830818916430.977508459054178
330.01470222712735810.02940445425471610.985297772872642
340.01304357391138410.02608714782276830.986956426088616
350.008305757793962080.01661151558792420.991694242206038
360.005167928074988280.01033585614997660.994832071925012
370.004057162653204480.008114325306408960.995942837346796
380.002443815156611850.00488763031322370.997556184843388
390.001438675284004450.00287735056800890.998561324715996
400.001127483424780240.002254966849560480.99887251657522
410.09462593397202710.1892518679440540.905374066027973
420.07060435690943070.1412087138188610.929395643090569
430.05156258064711120.1031251612942220.948437419352889
440.04810606639918580.09621213279837160.951893933600814
450.03422929810780760.06845859621561510.965770701892192
460.02381862555907210.04763725111814420.976181374440928
470.0162030619527460.0324061239054920.983796938047254
480.01077168832727560.02154337665455120.989228311672724
490.006995591563453030.01399118312690610.993004408436547
500.004436805334553880.008873610669107750.995563194665446
510.004279621813932840.008559243627865680.995720378186067
520.0414641825853010.0829283651706020.958535817414699
530.02907749541224230.05815499082448450.970922504587758
540.337154339967210.674308679934420.66284566003279
550.2893527606810960.5787055213621920.710647239318904
560.3086744743492580.6173489486985170.691325525650742
570.2522399998490430.5044799996980860.747760000150957
580.2014349568012320.4028699136024650.798565043198768
590.1570145863650920.3140291727301840.842985413634908
600.3683125771314460.7366251542628930.631687422868554
610.3840792191704790.7681584383409590.615920780829521
620.3190560616262110.6381121232524210.680943938373789
630.2568632514607230.5137265029214450.743136748539277
640.281008375590020.562016751180040.71899162440998
650.220938676803770.441877353607540.77906132319623
660.1803937829336060.3607875658672130.819606217066394
670.29939065602550.5987813120509990.7006093439745
680.2324370530500670.4648741061001340.767562946949933
690.1782018678967140.3564037357934290.821798132103286
700.1326657119845190.2653314239690380.867334288015481
710.09603439333479650.1920687866695930.903965606665204
720.7157945382956590.5684109234086810.284205461704341
730.6217636623473670.7564726753052670.378236337652633
74100
75100
76100
77100
78100
79100

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 & 0 & 0 & 1 \tabularnewline
8 & 0 & 0 & 1 \tabularnewline
9 & 0 & 0 & 1 \tabularnewline
10 & 0 & 0 & 1 \tabularnewline
11 & 0 & 0 & 1 \tabularnewline
12 & 0 & 0 & 1 \tabularnewline
13 & 0 & 0 & 1 \tabularnewline
14 & 0 & 0 & 1 \tabularnewline
15 & 0 & 0 & 1 \tabularnewline
16 & 0 & 0 & 1 \tabularnewline
17 & 0.20281189382578 & 0.405623787651559 & 0.79718810617422 \tabularnewline
18 & 0.167914291319934 & 0.335828582639867 & 0.832085708680066 \tabularnewline
19 & 0.118768490625095 & 0.23753698125019 & 0.881231509374905 \tabularnewline
20 & 0.544145038942461 & 0.911709922115078 & 0.455854961057539 \tabularnewline
21 & 0.465156636928788 & 0.930313273857576 & 0.534843363071212 \tabularnewline
22 & 0.389938374646544 & 0.779876749293087 & 0.610061625353457 \tabularnewline
23 & 0.318463079884999 & 0.636926159769999 & 0.681536920115001 \tabularnewline
24 & 0.253974591269994 & 0.507949182539987 & 0.746025408730006 \tabularnewline
25 & 0.222888374214317 & 0.445776748428634 & 0.777111625785683 \tabularnewline
26 & 0.173393612026851 & 0.346787224053703 & 0.826606387973148 \tabularnewline
27 & 0.130688904407448 & 0.261377808814896 & 0.869311095592552 \tabularnewline
28 & 0.0970607979571877 & 0.194121595914375 & 0.902939202042812 \tabularnewline
29 & 0.069806112007641 & 0.139612224015282 & 0.930193887992359 \tabularnewline
30 & 0.049013784204446 & 0.098027568408892 & 0.950986215795554 \tabularnewline
31 & 0.0336005924945103 & 0.0672011849890206 & 0.96639940750549 \tabularnewline
32 & 0.0224915409458215 & 0.044983081891643 & 0.977508459054178 \tabularnewline
33 & 0.0147022271273581 & 0.0294044542547161 & 0.985297772872642 \tabularnewline
34 & 0.0130435739113841 & 0.0260871478227683 & 0.986956426088616 \tabularnewline
35 & 0.00830575779396208 & 0.0166115155879242 & 0.991694242206038 \tabularnewline
36 & 0.00516792807498828 & 0.0103358561499766 & 0.994832071925012 \tabularnewline
37 & 0.00405716265320448 & 0.00811432530640896 & 0.995942837346796 \tabularnewline
38 & 0.00244381515661185 & 0.0048876303132237 & 0.997556184843388 \tabularnewline
39 & 0.00143867528400445 & 0.0028773505680089 & 0.998561324715996 \tabularnewline
40 & 0.00112748342478024 & 0.00225496684956048 & 0.99887251657522 \tabularnewline
41 & 0.0946259339720271 & 0.189251867944054 & 0.905374066027973 \tabularnewline
42 & 0.0706043569094307 & 0.141208713818861 & 0.929395643090569 \tabularnewline
43 & 0.0515625806471112 & 0.103125161294222 & 0.948437419352889 \tabularnewline
44 & 0.0481060663991858 & 0.0962121327983716 & 0.951893933600814 \tabularnewline
45 & 0.0342292981078076 & 0.0684585962156151 & 0.965770701892192 \tabularnewline
46 & 0.0238186255590721 & 0.0476372511181442 & 0.976181374440928 \tabularnewline
47 & 0.016203061952746 & 0.032406123905492 & 0.983796938047254 \tabularnewline
48 & 0.0107716883272756 & 0.0215433766545512 & 0.989228311672724 \tabularnewline
49 & 0.00699559156345303 & 0.0139911831269061 & 0.993004408436547 \tabularnewline
50 & 0.00443680533455388 & 0.00887361066910775 & 0.995563194665446 \tabularnewline
51 & 0.00427962181393284 & 0.00855924362786568 & 0.995720378186067 \tabularnewline
52 & 0.041464182585301 & 0.082928365170602 & 0.958535817414699 \tabularnewline
53 & 0.0290774954122423 & 0.0581549908244845 & 0.970922504587758 \tabularnewline
54 & 0.33715433996721 & 0.67430867993442 & 0.66284566003279 \tabularnewline
55 & 0.289352760681096 & 0.578705521362192 & 0.710647239318904 \tabularnewline
56 & 0.308674474349258 & 0.617348948698517 & 0.691325525650742 \tabularnewline
57 & 0.252239999849043 & 0.504479999698086 & 0.747760000150957 \tabularnewline
58 & 0.201434956801232 & 0.402869913602465 & 0.798565043198768 \tabularnewline
59 & 0.157014586365092 & 0.314029172730184 & 0.842985413634908 \tabularnewline
60 & 0.368312577131446 & 0.736625154262893 & 0.631687422868554 \tabularnewline
61 & 0.384079219170479 & 0.768158438340959 & 0.615920780829521 \tabularnewline
62 & 0.319056061626211 & 0.638112123252421 & 0.680943938373789 \tabularnewline
63 & 0.256863251460723 & 0.513726502921445 & 0.743136748539277 \tabularnewline
64 & 0.28100837559002 & 0.56201675118004 & 0.71899162440998 \tabularnewline
65 & 0.22093867680377 & 0.44187735360754 & 0.77906132319623 \tabularnewline
66 & 0.180393782933606 & 0.360787565867213 & 0.819606217066394 \tabularnewline
67 & 0.2993906560255 & 0.598781312050999 & 0.7006093439745 \tabularnewline
68 & 0.232437053050067 & 0.464874106100134 & 0.767562946949933 \tabularnewline
69 & 0.178201867896714 & 0.356403735793429 & 0.821798132103286 \tabularnewline
70 & 0.132665711984519 & 0.265331423969038 & 0.867334288015481 \tabularnewline
71 & 0.0960343933347965 & 0.192068786669593 & 0.903965606665204 \tabularnewline
72 & 0.715794538295659 & 0.568410923408681 & 0.284205461704341 \tabularnewline
73 & 0.621763662347367 & 0.756472675305267 & 0.378236337652633 \tabularnewline
74 & 1 & 0 & 0 \tabularnewline
75 & 1 & 0 & 0 \tabularnewline
76 & 1 & 0 & 0 \tabularnewline
77 & 1 & 0 & 0 \tabularnewline
78 & 1 & 0 & 0 \tabularnewline
79 & 1 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203582&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]8[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]9[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]10[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]11[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]12[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]13[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]14[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]15[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]16[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]17[/C][C]0.20281189382578[/C][C]0.405623787651559[/C][C]0.79718810617422[/C][/ROW]
[ROW][C]18[/C][C]0.167914291319934[/C][C]0.335828582639867[/C][C]0.832085708680066[/C][/ROW]
[ROW][C]19[/C][C]0.118768490625095[/C][C]0.23753698125019[/C][C]0.881231509374905[/C][/ROW]
[ROW][C]20[/C][C]0.544145038942461[/C][C]0.911709922115078[/C][C]0.455854961057539[/C][/ROW]
[ROW][C]21[/C][C]0.465156636928788[/C][C]0.930313273857576[/C][C]0.534843363071212[/C][/ROW]
[ROW][C]22[/C][C]0.389938374646544[/C][C]0.779876749293087[/C][C]0.610061625353457[/C][/ROW]
[ROW][C]23[/C][C]0.318463079884999[/C][C]0.636926159769999[/C][C]0.681536920115001[/C][/ROW]
[ROW][C]24[/C][C]0.253974591269994[/C][C]0.507949182539987[/C][C]0.746025408730006[/C][/ROW]
[ROW][C]25[/C][C]0.222888374214317[/C][C]0.445776748428634[/C][C]0.777111625785683[/C][/ROW]
[ROW][C]26[/C][C]0.173393612026851[/C][C]0.346787224053703[/C][C]0.826606387973148[/C][/ROW]
[ROW][C]27[/C][C]0.130688904407448[/C][C]0.261377808814896[/C][C]0.869311095592552[/C][/ROW]
[ROW][C]28[/C][C]0.0970607979571877[/C][C]0.194121595914375[/C][C]0.902939202042812[/C][/ROW]
[ROW][C]29[/C][C]0.069806112007641[/C][C]0.139612224015282[/C][C]0.930193887992359[/C][/ROW]
[ROW][C]30[/C][C]0.049013784204446[/C][C]0.098027568408892[/C][C]0.950986215795554[/C][/ROW]
[ROW][C]31[/C][C]0.0336005924945103[/C][C]0.0672011849890206[/C][C]0.96639940750549[/C][/ROW]
[ROW][C]32[/C][C]0.0224915409458215[/C][C]0.044983081891643[/C][C]0.977508459054178[/C][/ROW]
[ROW][C]33[/C][C]0.0147022271273581[/C][C]0.0294044542547161[/C][C]0.985297772872642[/C][/ROW]
[ROW][C]34[/C][C]0.0130435739113841[/C][C]0.0260871478227683[/C][C]0.986956426088616[/C][/ROW]
[ROW][C]35[/C][C]0.00830575779396208[/C][C]0.0166115155879242[/C][C]0.991694242206038[/C][/ROW]
[ROW][C]36[/C][C]0.00516792807498828[/C][C]0.0103358561499766[/C][C]0.994832071925012[/C][/ROW]
[ROW][C]37[/C][C]0.00405716265320448[/C][C]0.00811432530640896[/C][C]0.995942837346796[/C][/ROW]
[ROW][C]38[/C][C]0.00244381515661185[/C][C]0.0048876303132237[/C][C]0.997556184843388[/C][/ROW]
[ROW][C]39[/C][C]0.00143867528400445[/C][C]0.0028773505680089[/C][C]0.998561324715996[/C][/ROW]
[ROW][C]40[/C][C]0.00112748342478024[/C][C]0.00225496684956048[/C][C]0.99887251657522[/C][/ROW]
[ROW][C]41[/C][C]0.0946259339720271[/C][C]0.189251867944054[/C][C]0.905374066027973[/C][/ROW]
[ROW][C]42[/C][C]0.0706043569094307[/C][C]0.141208713818861[/C][C]0.929395643090569[/C][/ROW]
[ROW][C]43[/C][C]0.0515625806471112[/C][C]0.103125161294222[/C][C]0.948437419352889[/C][/ROW]
[ROW][C]44[/C][C]0.0481060663991858[/C][C]0.0962121327983716[/C][C]0.951893933600814[/C][/ROW]
[ROW][C]45[/C][C]0.0342292981078076[/C][C]0.0684585962156151[/C][C]0.965770701892192[/C][/ROW]
[ROW][C]46[/C][C]0.0238186255590721[/C][C]0.0476372511181442[/C][C]0.976181374440928[/C][/ROW]
[ROW][C]47[/C][C]0.016203061952746[/C][C]0.032406123905492[/C][C]0.983796938047254[/C][/ROW]
[ROW][C]48[/C][C]0.0107716883272756[/C][C]0.0215433766545512[/C][C]0.989228311672724[/C][/ROW]
[ROW][C]49[/C][C]0.00699559156345303[/C][C]0.0139911831269061[/C][C]0.993004408436547[/C][/ROW]
[ROW][C]50[/C][C]0.00443680533455388[/C][C]0.00887361066910775[/C][C]0.995563194665446[/C][/ROW]
[ROW][C]51[/C][C]0.00427962181393284[/C][C]0.00855924362786568[/C][C]0.995720378186067[/C][/ROW]
[ROW][C]52[/C][C]0.041464182585301[/C][C]0.082928365170602[/C][C]0.958535817414699[/C][/ROW]
[ROW][C]53[/C][C]0.0290774954122423[/C][C]0.0581549908244845[/C][C]0.970922504587758[/C][/ROW]
[ROW][C]54[/C][C]0.33715433996721[/C][C]0.67430867993442[/C][C]0.66284566003279[/C][/ROW]
[ROW][C]55[/C][C]0.289352760681096[/C][C]0.578705521362192[/C][C]0.710647239318904[/C][/ROW]
[ROW][C]56[/C][C]0.308674474349258[/C][C]0.617348948698517[/C][C]0.691325525650742[/C][/ROW]
[ROW][C]57[/C][C]0.252239999849043[/C][C]0.504479999698086[/C][C]0.747760000150957[/C][/ROW]
[ROW][C]58[/C][C]0.201434956801232[/C][C]0.402869913602465[/C][C]0.798565043198768[/C][/ROW]
[ROW][C]59[/C][C]0.157014586365092[/C][C]0.314029172730184[/C][C]0.842985413634908[/C][/ROW]
[ROW][C]60[/C][C]0.368312577131446[/C][C]0.736625154262893[/C][C]0.631687422868554[/C][/ROW]
[ROW][C]61[/C][C]0.384079219170479[/C][C]0.768158438340959[/C][C]0.615920780829521[/C][/ROW]
[ROW][C]62[/C][C]0.319056061626211[/C][C]0.638112123252421[/C][C]0.680943938373789[/C][/ROW]
[ROW][C]63[/C][C]0.256863251460723[/C][C]0.513726502921445[/C][C]0.743136748539277[/C][/ROW]
[ROW][C]64[/C][C]0.28100837559002[/C][C]0.56201675118004[/C][C]0.71899162440998[/C][/ROW]
[ROW][C]65[/C][C]0.22093867680377[/C][C]0.44187735360754[/C][C]0.77906132319623[/C][/ROW]
[ROW][C]66[/C][C]0.180393782933606[/C][C]0.360787565867213[/C][C]0.819606217066394[/C][/ROW]
[ROW][C]67[/C][C]0.2993906560255[/C][C]0.598781312050999[/C][C]0.7006093439745[/C][/ROW]
[ROW][C]68[/C][C]0.232437053050067[/C][C]0.464874106100134[/C][C]0.767562946949933[/C][/ROW]
[ROW][C]69[/C][C]0.178201867896714[/C][C]0.356403735793429[/C][C]0.821798132103286[/C][/ROW]
[ROW][C]70[/C][C]0.132665711984519[/C][C]0.265331423969038[/C][C]0.867334288015481[/C][/ROW]
[ROW][C]71[/C][C]0.0960343933347965[/C][C]0.192068786669593[/C][C]0.903965606665204[/C][/ROW]
[ROW][C]72[/C][C]0.715794538295659[/C][C]0.568410923408681[/C][C]0.284205461704341[/C][/ROW]
[ROW][C]73[/C][C]0.621763662347367[/C][C]0.756472675305267[/C][C]0.378236337652633[/C][/ROW]
[ROW][C]74[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]75[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]76[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]77[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]78[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]79[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203582&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7001
8001
9001
10001
11001
12001
13001
14001
15001
16001
170.202811893825780.4056237876515590.79718810617422
180.1679142913199340.3358285826398670.832085708680066
190.1187684906250950.237536981250190.881231509374905
200.5441450389424610.9117099221150780.455854961057539
210.4651566369287880.9303132738575760.534843363071212
220.3899383746465440.7798767492930870.610061625353457
230.3184630798849990.6369261597699990.681536920115001
240.2539745912699940.5079491825399870.746025408730006
250.2228883742143170.4457767484286340.777111625785683
260.1733936120268510.3467872240537030.826606387973148
270.1306889044074480.2613778088148960.869311095592552
280.09706079795718770.1941215959143750.902939202042812
290.0698061120076410.1396122240152820.930193887992359
300.0490137842044460.0980275684088920.950986215795554
310.03360059249451030.06720118498902060.96639940750549
320.02249154094582150.0449830818916430.977508459054178
330.01470222712735810.02940445425471610.985297772872642
340.01304357391138410.02608714782276830.986956426088616
350.008305757793962080.01661151558792420.991694242206038
360.005167928074988280.01033585614997660.994832071925012
370.004057162653204480.008114325306408960.995942837346796
380.002443815156611850.00488763031322370.997556184843388
390.001438675284004450.00287735056800890.998561324715996
400.001127483424780240.002254966849560480.99887251657522
410.09462593397202710.1892518679440540.905374066027973
420.07060435690943070.1412087138188610.929395643090569
430.05156258064711120.1031251612942220.948437419352889
440.04810606639918580.09621213279837160.951893933600814
450.03422929810780760.06845859621561510.965770701892192
460.02381862555907210.04763725111814420.976181374440928
470.0162030619527460.0324061239054920.983796938047254
480.01077168832727560.02154337665455120.989228311672724
490.006995591563453030.01399118312690610.993004408436547
500.004436805334553880.008873610669107750.995563194665446
510.004279621813932840.008559243627865680.995720378186067
520.0414641825853010.0829283651706020.958535817414699
530.02907749541224230.05815499082448450.970922504587758
540.337154339967210.674308679934420.66284566003279
550.2893527606810960.5787055213621920.710647239318904
560.3086744743492580.6173489486985170.691325525650742
570.2522399998490430.5044799996980860.747760000150957
580.2014349568012320.4028699136024650.798565043198768
590.1570145863650920.3140291727301840.842985413634908
600.3683125771314460.7366251542628930.631687422868554
610.3840792191704790.7681584383409590.615920780829521
620.3190560616262110.6381121232524210.680943938373789
630.2568632514607230.5137265029214450.743136748539277
640.281008375590020.562016751180040.71899162440998
650.220938676803770.441877353607540.77906132319623
660.1803937829336060.3607875658672130.819606217066394
670.29939065602550.5987813120509990.7006093439745
680.2324370530500670.4648741061001340.767562946949933
690.1782018678967140.3564037357934290.821798132103286
700.1326657119845190.2653314239690380.867334288015481
710.09603439333479650.1920687866695930.903965606665204
720.7157945382956590.5684109234086810.284205461704341
730.6217636623473670.7564726753052670.378236337652633
74100
75100
76100
77100
78100
79100







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level220.301369863013699NOK
5% type I error level310.424657534246575NOK
10% type I error level370.506849315068493NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 22 & 0.301369863013699 & NOK \tabularnewline
5% type I error level & 31 & 0.424657534246575 & NOK \tabularnewline
10% type I error level & 37 & 0.506849315068493 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=203582&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]22[/C][C]0.301369863013699[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]31[/C][C]0.424657534246575[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]37[/C][C]0.506849315068493[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=203582&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=203582&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level220.301369863013699NOK
5% type I error level310.424657534246575NOK
10% type I error level370.506849315068493NOK



Parameters (Session):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}