Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationWed, 10 Dec 2014 14:33:00 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/10/t1418222075wlinmj2srqby9j3.htm/, Retrieved Fri, 01 Nov 2024 00:05:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=265272, Retrieved Fri, 01 Nov 2024 00:05:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact128
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-10-29 12:19:37] [a30ebaf79f34e9d2b1bcdd5006125d11]
-   PD    [Paired and Unpaired Two Samples Tests about the Mean] [2Sample t-test I1] [2014-12-10 14:33:00] [c6591300b2bcdbb2a51e06e1150d5a19] [Current]
-   P       [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-17 15:40:47] [118a39334d200089014f927b57d44a19]
Feedback Forum

Post a new message
Dataseries X:
22 NA
22 NA
21 NA
20 NA
20 NA
14 NA
23 NA
16 NA
18 NA
20 NA
23 NA
13 NA
20 NA
19 NA
20 NA
16 NA
20 NA
23 NA
17 NA
13 NA
20 NA
22 NA
19 NA
21 NA
15 NA
21 NA
24 NA
22 NA
20 NA
21 NA
19 NA
14 NA
25 NA
11 NA
17 NA
22 NA
20 NA
22 NA
15 NA
23 NA
20 NA
22 NA
16 NA
25 NA
18 NA
19 NA
25 NA
21 NA
22 NA
21 NA
22 NA
23 NA
24 NA
22 NA
26 NA
11 NA
24 NA
28 NA
23 NA
19 NA
18 NA
23 NA
17 NA
15 NA
21 NA
20 NA
26 NA
19 NA
28 NA
21 NA
19 NA
20 NA
17 NA
20 NA
17 NA
21 NA
12 NA
23 NA
22 NA
22 NA
21 NA
20 NA
18 NA
21 NA
24 NA
22 NA
20 NA
17 NA
16 NA
19 NA
23 NA
22 NA
15 NA
21 NA
18 NA
23 NA
20 NA
21 NA
21 NA
22 NA
15 NA
19 NA
18 NA
20 NA
18 NA
22 NA
25 NA
23 NA
21 NA
19 NA
21 NA
16 NA
21 NA
22 NA
18 NA
4 NA
22 NA
17 NA
20 NA
18 NA
19 NA
20 NA
15 NA
24 NA
21 NA
19 NA
19 NA
27 NA
23 NA
23 NA
20 NA
17 NA
21 NA
23 NA
22 NA
20 NA
16 NA
NA 11
NA 15
NA 19
NA 16
NA 24
NA 15
NA 17
NA 19
NA 19
NA 28
NA 26
NA 15
NA 26
NA 16
NA 24
NA 25
NA 15
NA 21
NA 27
NA 26
NA 26
NA 22
NA 21
NA 22
NA 20
NA 22
NA 21
NA 8
NA 22
NA 18
NA 20
NA 24
NA 17
NA 20
NA 23
NA 22
NA 19
NA 15
NA 20
NA 22
NA 17
NA 24
NA 17
NA 25
NA 18
NA 24
NA 23
NA 20
NA 22
NA 22
NA 15
NA 17
NA 19
NA 22
NA 21
NA 21
NA 20
NA 21
NA 15
NA 18
NA 16
NA 24
NA 19
NA 20
NA 6
NA 15
NA 18
NA 21
NA 23
NA 20
NA 20
NA 18
NA 25
NA 16
NA 20
NA 14
NA 22
NA 20
NA 17
NA 22
NA 22
NA 20
NA 17
NA 22
NA 17
NA 22
NA 21
NA 25
NA 19
NA 24
NA 17
NA 22
NA 22
NA 17
NA 26
NA 19
NA 20
NA 19
NA 21
NA 24
NA 21
NA 19
NA 13
NA 27
NA 22
NA 21
NA 22
NA 22
NA 21
NA 19
NA 11
NA 19
NA 21
NA 19
NA 8
NA 23
NA 17
NA 25
NA 24
NA 22
NA 23
NA 17
NA 24
NA 22
NA 21
NA 19
NA 19
NA 16
NA 23
NA 23
NA 20
NA 24
NA 25
NA 20
NA 23
NA 21
NA 23
NA 11
NA 27
NA 22
NA 16
NA 18
NA 23
NA 24
NA 20
NA 20
NA 14
NA 23
NA 16




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265272&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265272&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265272&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Two Sample t-test (unpaired)
Mean of Sample 119.978102189781
Mean of Sample 220.0939597315436
t-stat-0.263807215320015
df284
p-value0.792119791215556
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.980308660408089,0.748593576882887]
F-test to compare two variances
F-stat0.810552830750147
df136
p-value0.213946285212047
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.583070855332051,1.12942297772332]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 19.978102189781 \tabularnewline
Mean of Sample 2 & 20.0939597315436 \tabularnewline
t-stat & -0.263807215320015 \tabularnewline
df & 284 \tabularnewline
p-value & 0.792119791215556 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.980308660408089,0.748593576882887] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 0.810552830750147 \tabularnewline
df & 136 \tabularnewline
p-value & 0.213946285212047 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.583070855332051,1.12942297772332] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265272&T=1

[TABLE]
[ROW][C]Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]19.978102189781[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]20.0939597315436[/C][/ROW]
[ROW][C]t-stat[/C][C]-0.263807215320015[/C][/ROW]
[ROW][C]df[/C][C]284[/C][/ROW]
[ROW][C]p-value[/C][C]0.792119791215556[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.980308660408089,0.748593576882887][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]0.810552830750147[/C][/ROW]
[ROW][C]df[/C][C]136[/C][/ROW]
[ROW][C]p-value[/C][C]0.213946285212047[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.583070855332051,1.12942297772332][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265272&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265272&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (unpaired)
Mean of Sample 119.978102189781
Mean of Sample 220.0939597315436
t-stat-0.263807215320015
df284
p-value0.792119791215556
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.980308660408089,0.748593576882887]
F-test to compare two variances
F-stat0.810552830750147
df136
p-value0.213946285212047
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.583070855332051,1.12942297772332]







Welch Two Sample t-test (unpaired)
Mean of Sample 119.978102189781
Mean of Sample 220.0939597315436
t-stat-0.264972034341048
df283.878145789997
p-value0.791223300758741
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.976510107861594,0.744795024336392]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 19.978102189781 \tabularnewline
Mean of Sample 2 & 20.0939597315436 \tabularnewline
t-stat & -0.264972034341048 \tabularnewline
df & 283.878145789997 \tabularnewline
p-value & 0.791223300758741 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.976510107861594,0.744795024336392] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265272&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]19.978102189781[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]20.0939597315436[/C][/ROW]
[ROW][C]t-stat[/C][C]-0.264972034341048[/C][/ROW]
[ROW][C]df[/C][C]283.878145789997[/C][/ROW]
[ROW][C]p-value[/C][C]0.791223300758741[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.976510107861594,0.744795024336392][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265272&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265272&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (unpaired)
Mean of Sample 119.978102189781
Mean of Sample 220.0939597315436
t-stat-0.264972034341048
df283.878145789997
p-value0.791223300758741
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.976510107861594,0.744795024336392]







Wicoxon rank sum test with continuity correction (unpaired)
W9851
p-value0.609691845839683
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0790182726693773
p-value0.764314676331667
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.131680791652378
p-value0.168186921799515

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (unpaired) \tabularnewline
W & 9851 \tabularnewline
p-value & 0.609691845839683 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.0790182726693773 \tabularnewline
p-value & 0.764314676331667 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.131680791652378 \tabularnewline
p-value & 0.168186921799515 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=265272&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (unpaired)[/C][/ROW]
[ROW][C]W[/C][C]9851[/C][/ROW]
[ROW][C]p-value[/C][C]0.609691845839683[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0790182726693773[/C][/ROW]
[ROW][C]p-value[/C][C]0.764314676331667[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.131680791652378[/C][/ROW]
[ROW][C]p-value[/C][C]0.168186921799515[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=265272&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=265272&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (unpaired)
W9851
p-value0.609691845839683
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0790182726693773
p-value0.764314676331667
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.131680791652378
p-value0.168186921799515



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')