Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 11 Dec 2014 14:08:22 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/11/t1418306924iprdn0tot9ob3ah.htm/, Retrieved Fri, 01 Nov 2024 00:17:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=266024, Retrieved Fri, 01 Nov 2024 00:17:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regressi...] [2014-12-11 14:08:22] [1eefdc4bcaacfd1256bab4a2d2265988] [Current]
Feedback Forum

Post a new message
Dataseries X:
2011 1 26 50 4 0 13 12 21 149 12.9
2011 1 57 62 4 1 8 8 22 139 12.2
2011 1 37 54 5 0 14 11 22 148 12.8
2011 1 67 71 4 1 16 13 18 158 7.4
2011 1 43 54 4 1 14 11 23 128 6.7
2011 1 52 65 9 1 13 10 12 224 12.6
2011 1 52 73 8 0 15 7 20 159 14.8
2011 1 43 52 11 1 13 10 22 105 13.3
2011 1 84 84 4 1 20 15 21 159 11.1
2011 1 67 42 4 1 17 12 19 167 8.2
2011 1 49 66 6 1 15 12 22 165 11.4
2011 1 70 65 4 1 16 10 15 159 6.4
2011 1 52 78 8 1 12 10 20 119 10.6
2011 1 58 73 4 0 17 14 19 176 12
2011 1 68 75 4 0 11 6 18 54 6.3
2011 0 62 72 11 0 16 12 15 91 11.3
2011 1 43 66 4 1 16 14 20 163 11.9
2011 1 56 70 4 0 15 11 21 124 9.3
2011 0 56 61 6 1 13 8 21 137 9.6
2011 1 74 81 6 0 14 12 15 121 10
2011 1 65 71 4 1 19 15 16 153 6.4
2011 1 63 69 8 1 16 13 23 148 13.8
2011 1 58 71 5 0 17 11 21 221 10.8
2011 1 57 72 4 1 10 12 18 188 13.8
2011 1 63 68 9 1 15 7 25 149 11.7
2011 1 53 70 4 1 14 11 9 244 10.9
2011 0 57 68 7 1 14 7 30 148 16.1
2011 0 51 61 10 0 16 12 20 92 13.4
2011 1 64 67 4 1 15 12 23 150 9.9
2011 1 53 76 4 0 17 13 16 153 11.5
2011 1 29 70 7 0 14 9 16 94 8.3
2011 1 54 60 12 0 16 11 19 156 11.7
2011 1 58 72 7 1 15 12 25 132 9
2011 1 43 69 5 1 16 15 18 161 9.7
2011 1 51 71 8 1 16 12 23 105 10.8
2011 1 53 62 5 1 10 6 21 97 10.3
2011 1 54 70 4 0 8 5 10 151 10.4
2011 0 56 64 9 1 17 13 14 131 12.7
2011 1 61 58 7 1 14 11 22 166 9.3
2011 1 47 76 4 0 10 6 26 157 11.8
2011 1 39 52 4 1 14 12 23 111 5.9
2011 1 48 59 4 1 12 10 23 145 11.4
2011 1 50 68 4 1 16 6 24 162 13
2011 1 35 76 4 1 16 12 24 163 10.8
2011 0 30 65 7 1 16 11 18 59 12.3
2011 1 68 67 4 0 8 6 23 187 11.3
2011 1 49 59 7 1 16 12 15 109 11.8
2011 0 61 69 4 1 15 12 19 90 7.9
2011 1 67 76 4 0 8 8 16 105 12.7
2011 0 47 63 4 1 13 10 25 83 12.3
2011 0 56 75 4 1 14 11 23 116 11.6
2011 0 50 63 8 1 13 7 17 42 6.7
2011 1 43 60 4 1 16 12 19 148 10.9
2011 0 67 73 4 1 19 13 21 155 12.1
2011 1 62 63 4 1 19 14 18 125 13.3
2011 1 57 70 4 1 14 12 27 116 10.1
2011 0 41 75 7 0 15 6 21 128 5.7
2011 1 54 66 12 1 13 14 13 138 14.3
2011 0 45 63 4 0 10 10 8 49 8
2011 0 48 63 4 1 16 12 29 96 13.3
2011 1 61 64 4 1 15 11 28 164 9.3
2011 1 56 70 5 0 11 10 23 162 12.5
2011 1 41 75 15 0 9 7 21 99 7.6
2011 1 43 61 5 1 16 12 19 202 15.9
2011 1 53 60 10 0 12 7 19 186 9.2
2011 0 44 62 9 1 12 12 20 66 9.1
2011 1 66 73 8 0 14 12 18 183 11.1
2011 1 58 61 4 1 14 10 19 214 13
2011 1 46 66 5 1 13 10 17 188 14.5
2011 0 37 64 4 0 15 12 19 104 12.2
2011 1 51 59 9 0 17 12 25 177 12.3
2011 1 51 64 4 0 14 12 19 126 11.4
2011 0 56 60 10 0 11 8 22 76 8.8
2011 0 66 56 4 1 9 10 23 99 14.6
2011 1 37 78 4 0 7 5 14 139 12.6
2011 1 42 67 7 0 15 10 16 162 13
2011 0 38 59 5 1 12 12 24 108 12.6
2011 1 66 66 4 0 15 11 20 159 13.2
2011 0 34 68 4 0 14 9 12 74 9.9
2011 1 53 71 4 1 16 12 24 110 7.7
2011 0 49 66 4 0 14 11 22 96 10.5
2011 0 55 73 4 0 13 10 12 116 13.4
2011 0 49 72 4 0 16 12 22 87 10.9
2011 0 59 71 6 1 13 10 20 97 4.3
2011 0 40 59 10 0 16 9 10 127 10.3
2011 0 58 64 7 1 16 11 23 106 11.8
2011 0 60 66 4 1 16 12 17 80 11.2
2011 0 63 78 4 0 10 7 22 74 11.4
2011 0 56 68 7 0 12 11 24 91 8.6
2011 0 54 73 4 0 12 12 18 133 13.2
2011 0 52 62 8 1 12 6 21 74 12.6
2011 0 34 65 11 1 12 9 20 114 5.6
2011 0 69 68 6 1 19 15 20 140 9.9
2011 0 32 65 14 0 14 10 22 95 8.8
2011 0 48 60 5 1 13 11 19 98 7.7
2011 0 67 71 4 0 16 12 20 121 9
2011 0 58 65 8 1 15 12 26 126 7.3
2011 0 57 68 9 1 12 12 23 98 11.4
2011 0 42 64 4 1 8 11 24 95 13.6
2011 0 64 74 4 1 10 9 21 110 7.9
2011 0 58 69 5 1 16 11 21 70 10.7
2011 0 66 76 4 0 16 12 19 102 10.3
2011 0 26 68 5 1 10 12 8 86 8.3
2011 0 61 72 4 1 18 14 17 130 9.6
2011 0 52 67 4 1 12 8 20 96 14.2
2011 0 51 63 7 0 16 10 11 102 8.5
2011 0 55 59 10 0 10 9 8 100 13.5
2011 0 50 73 4 0 14 10 15 94 4.9
2011 0 60 66 5 0 12 9 18 52 6.4
2011 0 56 62 4 0 11 10 18 98 9.6
2011 0 63 69 4 0 15 12 19 118 11.6
2011 0 61 66 4 1 7 11 19 99 11.1
2012 1 52 51 6 1 16 9 23 48 4.35
2012 1 16 56 4 1 16 11 22 50 12.7
2012 1 46 67 8 1 16 12 21 150 18.1
2012 1 56 69 5 1 16 12 25 154 17.85
2012 0 52 57 4 0 12 7 30 109 16.6
2012 0 55 56 17 1 15 12 17 68 12.6
2012 1 50 55 4 1 14 12 27 194 17.1
2012 1 59 63 4 0 15 12 23 158 19.1
2012 1 60 67 8 1 16 10 23 159 16.1
2012 1 52 65 4 0 13 15 18 67 13.35
2012 1 44 47 7 0 10 10 18 147 18.4
2012 1 67 76 4 1 17 15 23 39 14.7
2012 1 52 64 4 1 15 10 19 100 10.6
2012 1 55 68 5 1 18 15 15 111 12.6
2012 1 37 64 7 1 16 9 20 138 16.2
2012 1 54 65 4 1 20 15 16 101 13.6
2012 0 72 71 4 1 16 12 24 131 18.9
2012 1 51 63 7 1 17 13 25 101 14.1
2012 1 48 60 11 1 16 12 25 114 14.5
2012 1 60 68 7 0 15 12 19 165 16.15
2012 1 50 72 4 1 13 8 19 114 14.75
2012 1 63 70 4 1 16 9 16 111 14.8
2012 1 33 61 4 1 16 15 19 75 12.45
2012 1 67 61 4 1 16 12 19 82 12.65
2012 1 46 62 4 1 17 12 23 121 17.35
2012 1 54 71 4 1 20 15 21 32 8.6
2012 1 59 71 6 0 14 11 22 150 18.4
2012 1 61 51 8 1 17 12 19 117 16.1
2012 0 33 56 23 1 6 6 20 71 11.6
2012 1 47 70 4 1 16 14 20 165 17.75
2012 1 69 73 8 1 15 12 3 154 15.25
2012 1 52 76 6 1 16 12 23 126 17.65
2012 1 55 68 4 0 16 12 23 149 16.35
2012 1 41 48 7 0 14 11 20 145 17.65
2012 1 73 52 4 1 16 12 15 120 13.6
2012 1 52 60 4 0 16 12 16 109 14.35
2012 1 50 59 4 0 16 12 7 132 14.75
2012 1 51 57 10 1 14 12 24 172 18.25
2012 1 60 79 6 0 14 8 17 169 9.9
2012 1 56 60 5 1 16 8 24 114 16
2012 1 56 60 5 1 16 12 24 156 18.25
2012 1 29 59 4 0 15 12 19 172 16.85
2012 0 66 62 4 1 16 11 25 68 14.6
2012 0 66 59 5 1 16 10 20 89 13.85
2012 1 73 61 5 1 18 11 28 167 18.95
2012 1 55 71 5 0 15 12 23 113 15.6
2012 0 64 57 5 0 16 13 27 115 14.85
2012 0 40 66 4 0 16 12 18 78 11.75
2012 0 46 63 6 0 16 12 28 118 18.45
2012 0 58 69 4 1 17 10 21 87 15.9
2012 1 43 58 4 0 14 10 19 173 17.1
2012 1 61 59 4 1 18 11 23 2 16.1
2012 0 51 48 9 0 9 8 27 162 19.9
2012 0 50 66 18 1 15 12 22 49 10.95
2012 0 52 73 6 0 14 9 28 122 18.45
2012 0 54 67 5 1 15 12 25 96 15.1
2012 0 66 61 4 0 13 9 21 100 15
2012 0 61 68 11 0 16 11 22 82 11.35
2012 0 80 75 4 1 20 15 28 100 15.95
2012 0 51 62 10 0 14 8 20 115 18.1
2012 0 56 69 6 1 12 8 29 141 14.6
2012 1 56 58 8 1 15 11 25 165 15.4
2012 1 56 60 8 1 15 11 25 165 15.4
2012 0 53 74 6 1 15 11 20 110 17.6
2012 1 47 55 8 1 16 13 20 118 13.35
2012 1 25 62 4 0 11 7 16 158 19.1
2012 0 47 63 4 1 16 12 20 146 15.35
2012 1 46 69 9 0 7 8 20 49 7.6
2012 0 50 58 9 0 11 8 23 90 13.4
2012 0 39 58 5 0 9 4 18 121 13.9
2012 1 51 68 4 1 15 11 25 155 19.1
2012 0 58 72 4 0 16 10 18 104 15.25
2012 0 35 62 15 1 14 7 19 147 12.9
2012 0 58 62 10 0 15 12 25 110 16.1
2012 0 60 65 9 0 13 11 25 108 17.35
2012 0 62 69 7 0 13 9 25 113 13.15
2012 0 63 66 9 0 12 10 24 115 12.15
2012 0 53 72 6 1 16 8 19 61 12.6
2012 0 46 62 4 1 14 8 26 60 10.35
2012 0 67 75 7 1 16 11 10 109 15.4
2012 0 59 58 4 1 14 12 17 68 9.6
2012 0 64 66 7 0 15 10 13 111 18.2
2012 0 38 55 4 0 10 10 17 77 13.6
2012 0 50 47 15 1 16 12 30 73 14.85
2012 1 48 72 4 0 14 8 25 151 14.75
2012 0 48 62 9 0 16 11 4 89 14.1
2012 0 47 64 4 0 12 8 16 78 14.9
2012 0 66 64 4 0 16 10 21 110 16.25
2012 1 47 19 28 1 16 14 23 220 19.25
2012 0 63 50 4 1 15 9 22 65 13.6
2012 1 58 68 4 0 14 9 17 141 13.6
2012 0 44 70 4 0 16 10 20 117 15.65
2012 1 51 79 5 1 11 13 20 122 12.75
2012 0 43 69 4 0 15 12 22 63 14.6
2012 1 55 71 4 1 18 13 16 44 9.85
2012 0 38 48 12 1 13 8 23 52 12.65
2012 0 45 73 4 0 7 3 0 131 19.2
2012 0 50 74 6 1 7 8 18 101 16.6
2012 0 54 66 6 1 17 12 25 42 11.2
2012 1 57 71 5 1 18 11 23 152 15.25
2012 1 60 74 4 0 15 9 12 107 11.9
2012 0 55 78 4 0 8 12 18 77 13.2
2012 1 56 75 4 0 13 12 24 154 16.35
2012 1 49 53 10 1 13 12 11 103 12.4
2012 0 37 60 7 1 15 10 18 96 15.85
2012 1 59 70 4 1 18 13 23 175 18.15
2012 0 46 69 7 1 16 9 24 57 11.15
2012 0 51 65 4 0 14 12 29 112 15.65
2012 1 58 78 4 0 15 11 18 143 17.75
2012 0 64 78 12 0 19 14 15 49 7.65
2012 1 53 59 5 1 16 11 29 110 12.35
2012 1 48 72 8 1 12 9 16 131 15.6
2012 1 51 70 6 0 16 12 19 167 19.3
2012 0 47 63 17 0 11 8 22 56 15.2
2012 1 59 63 4 0 16 15 16 137 17.1
2012 0 62 71 5 1 15 12 23 86 15.6
2012 1 62 74 4 1 19 14 23 121 18.4
2012 1 51 67 5 0 15 12 19 149 19.05
2012 1 64 66 5 0 14 9 4 168 18.55
2012 1 52 62 6 0 14 9 20 140 19.1
2012 0 67 80 4 1 17 13 24 88 13.1
2012 1 50 73 4 1 16 13 20 168 12.85
2012 1 54 67 4 1 20 15 4 94 9.5
2012 1 58 61 6 1 16 11 24 51 4.5
2012 0 56 73 8 0 9 7 22 48 11.85
2012 1 63 74 10 1 13 10 16 145 13.6
2012 1 31 32 4 1 15 11 3 66 11.7
2012 0 65 69 5 1 19 14 15 85 12.4
2012 1 71 69 4 0 16 14 24 109 13.35
2012 0 50 84 4 0 17 13 17 63 11.4
2012 0 57 64 4 1 16 12 20 102 14.9
2012 0 47 58 16 0 9 8 27 162 19.9
2012 0 47 59 7 1 11 13 26 86 11.2
2012 0 57 78 4 1 14 9 23 114 14.6
2012 1 43 57 4 0 19 12 17 164 17.6
2012 1 41 60 14 1 13 13 20 119 14.05
2012 1 63 68 5 0 14 11 22 126 16.1
2012 1 63 68 5 1 15 11 19 132 13.35
2012 1 56 73 5 1 15 13 24 142 11.85
2012 1 51 69 5 0 14 12 19 83 11.95
2012 0 50 67 7 1 16 12 23 94 14.75
2012 0 22 60 19 0 17 10 15 81 15.15
2012 1 41 65 16 1 12 9 27 166 13.2
2012 0 59 66 4 0 15 10 26 110 16.85
2012 0 56 74 4 1 17 13 22 64 7.85
2012 1 66 81 7 0 15 13 22 93 7.7
2012 0 53 72 9 0 10 9 18 104 12.6
2012 0 42 55 5 1 16 11 15 105 7.85
2012 0 52 49 14 1 15 12 22 49 10.95
2012 0 54 74 4 0 11 8 27 88 12.35
2012 0 44 53 16 1 16 12 10 95 9.95
2012 0 62 64 10 1 16 12 20 102 14.9
2012 0 53 65 5 0 16 12 17 99 16.65
2012 0 50 57 6 1 14 9 23 63 13.4
2012 0 36 51 4 0 14 12 19 76 13.95
2012 0 76 80 4 0 16 12 13 109 15.7
2012 0 66 67 4 1 16 11 27 117 16.85
2012 0 62 70 5 1 18 12 23 57 10.95
2012 0 59 74 4 0 14 6 16 120 15.35
2012 0 47 75 4 1 20 7 25 73 12.2
2012 0 55 70 5 0 15 10 2 91 15.1
2012 0 58 69 4 0 16 12 26 108 17.75
2012 0 60 65 4 1 16 10 20 105 15.2
2012 1 44 55 5 0 16 12 23 117 14.6
2012 0 57 71 8 0 12 9 22 119 16.65
2012 0 45 65 15 1 8 3 24 31 8.1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time11 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 11 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]11 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time11 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
TOT[t] = -9136.31 + 4.54722Course_id_year[t] -1.19021Course_id_letter[t] -0.00610005AMS.I[t] -0.030387AMS.E[t] -0.0821649AMS.A[t] -0.662983gender[t] -0.067355CONFSTATTOT[t] + 0.0580951CONFSOFTTOT[t] + 0.052977NUMERACYTOT[t] + 0.0447019LFM[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TOT[t] =  -9136.31 +  4.54722Course_id_year[t] -1.19021Course_id_letter[t] -0.00610005AMS.I[t] -0.030387AMS.E[t] -0.0821649AMS.A[t] -0.662983gender[t] -0.067355CONFSTATTOT[t] +  0.0580951CONFSOFTTOT[t] +  0.052977NUMERACYTOT[t] +  0.0447019LFM[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TOT[t] =  -9136.31 +  4.54722Course_id_year[t] -1.19021Course_id_letter[t] -0.00610005AMS.I[t] -0.030387AMS.E[t] -0.0821649AMS.A[t] -0.662983gender[t] -0.067355CONFSTATTOT[t] +  0.0580951CONFSOFTTOT[t] +  0.052977NUMERACYTOT[t] +  0.0447019LFM[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TOT[t] = -9136.31 + 4.54722Course_id_year[t] -1.19021Course_id_letter[t] -0.00610005AMS.I[t] -0.030387AMS.E[t] -0.0821649AMS.A[t] -0.662983gender[t] -0.067355CONFSTATTOT[t] + 0.0580951CONFSOFTTOT[t] + 0.052977NUMERACYTOT[t] + 0.0447019LFM[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-9136.31617.08-14.811.28156e-366.40782e-37
Course_id_year4.547220.30675614.821.1075e-365.53751e-37
Course_id_letter-1.190210.34247-3.4750.0005951740.000297587
AMS.I-0.006100050.0153647-0.3970.6916720.345836
AMS.E-0.0303870.0197018-1.5420.1241740.0620869
AMS.A-0.08216490.0445119-1.8460.06601240.0330062
gender-0.6629830.30688-2.160.03163140.0158157
CONFSTATTOT-0.0673550.0689174-0.97730.3292910.164645
CONFSOFTTOT0.05809510.08067940.72010.4721090.236055
NUMERACYTOT0.0529770.02830121.8720.06231390.031157
LFM0.04470190.0043141710.362.29143e-211.14571e-21

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -9136.31 & 617.08 & -14.81 & 1.28156e-36 & 6.40782e-37 \tabularnewline
Course_id_year & 4.54722 & 0.306756 & 14.82 & 1.1075e-36 & 5.53751e-37 \tabularnewline
Course_id_letter & -1.19021 & 0.34247 & -3.475 & 0.000595174 & 0.000297587 \tabularnewline
AMS.I & -0.00610005 & 0.0153647 & -0.397 & 0.691672 & 0.345836 \tabularnewline
AMS.E & -0.030387 & 0.0197018 & -1.542 & 0.124174 & 0.0620869 \tabularnewline
AMS.A & -0.0821649 & 0.0445119 & -1.846 & 0.0660124 & 0.0330062 \tabularnewline
gender & -0.662983 & 0.30688 & -2.16 & 0.0316314 & 0.0158157 \tabularnewline
CONFSTATTOT & -0.067355 & 0.0689174 & -0.9773 & 0.329291 & 0.164645 \tabularnewline
CONFSOFTTOT & 0.0580951 & 0.0806794 & 0.7201 & 0.472109 & 0.236055 \tabularnewline
NUMERACYTOT & 0.052977 & 0.0283012 & 1.872 & 0.0623139 & 0.031157 \tabularnewline
LFM & 0.0447019 & 0.00431417 & 10.36 & 2.29143e-21 & 1.14571e-21 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-9136.31[/C][C]617.08[/C][C]-14.81[/C][C]1.28156e-36[/C][C]6.40782e-37[/C][/ROW]
[ROW][C]Course_id_year[/C][C]4.54722[/C][C]0.306756[/C][C]14.82[/C][C]1.1075e-36[/C][C]5.53751e-37[/C][/ROW]
[ROW][C]Course_id_letter[/C][C]-1.19021[/C][C]0.34247[/C][C]-3.475[/C][C]0.000595174[/C][C]0.000297587[/C][/ROW]
[ROW][C]AMS.I[/C][C]-0.00610005[/C][C]0.0153647[/C][C]-0.397[/C][C]0.691672[/C][C]0.345836[/C][/ROW]
[ROW][C]AMS.E[/C][C]-0.030387[/C][C]0.0197018[/C][C]-1.542[/C][C]0.124174[/C][C]0.0620869[/C][/ROW]
[ROW][C]AMS.A[/C][C]-0.0821649[/C][C]0.0445119[/C][C]-1.846[/C][C]0.0660124[/C][C]0.0330062[/C][/ROW]
[ROW][C]gender[/C][C]-0.662983[/C][C]0.30688[/C][C]-2.16[/C][C]0.0316314[/C][C]0.0158157[/C][/ROW]
[ROW][C]CONFSTATTOT[/C][C]-0.067355[/C][C]0.0689174[/C][C]-0.9773[/C][C]0.329291[/C][C]0.164645[/C][/ROW]
[ROW][C]CONFSOFTTOT[/C][C]0.0580951[/C][C]0.0806794[/C][C]0.7201[/C][C]0.472109[/C][C]0.236055[/C][/ROW]
[ROW][C]NUMERACYTOT[/C][C]0.052977[/C][C]0.0283012[/C][C]1.872[/C][C]0.0623139[/C][C]0.031157[/C][/ROW]
[ROW][C]LFM[/C][C]0.0447019[/C][C]0.00431417[/C][C]10.36[/C][C]2.29143e-21[/C][C]1.14571e-21[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-9136.31617.08-14.811.28156e-366.40782e-37
Course_id_year4.547220.30675614.821.1075e-365.53751e-37
Course_id_letter-1.190210.34247-3.4750.0005951740.000297587
AMS.I-0.006100050.0153647-0.3970.6916720.345836
AMS.E-0.0303870.0197018-1.5420.1241740.0620869
AMS.A-0.08216490.0445119-1.8460.06601240.0330062
gender-0.6629830.30688-2.160.03163140.0158157
CONFSTATTOT-0.0673550.0689174-0.97730.3292910.164645
CONFSOFTTOT0.05809510.08067940.72010.4721090.236055
NUMERACYTOT0.0529770.02830121.8720.06231390.031157
LFM0.04470190.0043141710.362.29143e-211.14571e-21







Multiple Linear Regression - Regression Statistics
Multiple R0.73433
R-squared0.539241
Adjusted R-squared0.521984
F-TEST (value)31.2479
F-TEST (DF numerator)10
F-TEST (DF denominator)267
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.34682
Sum Squared Residuals1470.51

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.73433 \tabularnewline
R-squared & 0.539241 \tabularnewline
Adjusted R-squared & 0.521984 \tabularnewline
F-TEST (value) & 31.2479 \tabularnewline
F-TEST (DF numerator) & 10 \tabularnewline
F-TEST (DF denominator) & 267 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 2.34682 \tabularnewline
Sum Squared Residuals & 1470.51 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.73433[/C][/ROW]
[ROW][C]R-squared[/C][C]0.539241[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.521984[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]31.2479[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]10[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]267[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]2.34682[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1470.51[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.73433
R-squared0.539241
Adjusted R-squared0.521984
F-TEST (value)31.2479
F-TEST (DF numerator)10
F-TEST (DF denominator)267
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.34682
Sum Squared Residuals1470.51







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
112.912.5550.345006
212.211.04861.15138
312.812.1670.632995
47.411.1032-3.7032
56.710.7085-4.00853
612.613.6264-1.02644
714.811.33773.46231
813.39.122284.17772
911.110.65490.445131
108.212.3143-4.11427
1111.411.7347-0.334685
126.410.9787-4.57871
1310.69.111041.48896
141212.6087-0.608659
156.36.91964-0.619642
1611.39.16932.1307
1711.911.78910.110907
189.310.4539-1.1539
199.611.6318-2.03183
20109.518990.481007
216.410.7001-4.30006
2213.810.67763.12242
2310.814.5305-3.73052
2413.812.82090.979097
2511.710.49521.20476
2610.914.6051-3.70508
2716.112.17393.92608
2813.49.962413.43759
299.911.1596-1.25958
3011.511.30280.197172
318.38.71733-0.417328
3211.711.36980.330198
33910.0991-1.09907
349.711.4785-1.7785
3510.88.709732.09027
3610.38.809491.49051
3710.411.2132-0.813218
3812.710.67622.02382
399.311.8764-2.57638
4011.812.1128-0.312824
415.910.0919-4.19186
4211.411.36260.0373626
431311.38811.61194
4410.811.6297-0.82974
4512.37.913264.38674
4611.313.575-2.27504
4711.88.923732.87627
487.99.41329-1.51329
4912.79.387453.31255
5012.39.704482.59552
5111.610.64490.955112
526.76.92664-0.226644
5310.911.1317-0.231719
5412.112.05540.0446019
5513.39.757663.54234
5610.19.870510.229488
575.711.2255-5.52552
5814.39.778354.52165
5988.16126-0.161258
6013.310.40552.89446
619.312.1017-2.80165
6212.512.38770.112315
637.68.54385-0.943851
6415.913.43312.46693
659.212.9183-3.71833
669.18.501070.598926
6711.112.577-1.47701
681313.9787-0.978677
6914.512.61691.88307
7012.211.00041.19956
7112.312.9123-0.612326
7211.410.77560.624379
738.89.45741-0.657413
7414.610.683.92001
7512.610.81671.78334
761311.75971.24034
7712.611.04691.55312
7813.212.0261.17396
799.99.078360.821636
807.79.30267-1.60267
8110.510.677-0.17704
8213.410.80132.59874
8310.910.01580.884215
844.39.5848-5.2848
8510.310.9508-0.650795
8611.810.13871.66128
8711.28.890232.30977
8811.49.280592.11941
898.610.3442-1.74422
9013.212.06871.1313
9112.68.596464.00354
925.610.278-4.67799
939.911.4235-1.52349
948.89.88668-1.08668
957.710.1181-2.41814
96911.3503-2.35028
977.311.2046-3.90459
9811.49.828841.57116
9913.610.58293.01709
1007.910.4055-2.50554
10110.78.435892.26411
10210.310.3021-0.00213422
1038.39.15024-0.850237
1049.610.9184-1.31838
10514.29.819844.38016
1068.510.0022-1.50217
10713.59.950523.54948
1084.99.93989-5.03989
1096.48.3675-1.9675
1109.610.7774-1.17735
11111.611.31570.284271
11211.110.38750.712484
1134.3511.3006-6.95062
11412.711.68521.01476
11518.115.31462.78537
11617.8515.83012.01994
11716.616.38670.213286
11812.612.23460.365394
11917.118.403-1.30299
12019.116.87942.22056
12116.115.62130.478691
12213.3512.83760.512394
12318.416.67461.72538
12414.710.49274.20732
12510.613.308-2.70796
12612.613.4542-0.854175
12716.214.77921.42083
12813.613.10480.495151
12918.915.86293.03705
13014.113.50010.599904
13114.513.87130.628718
13216.1516.5759-0.425919
13314.7513.72141.02859
13414.813.26591.53412
13512.4512.6206-0.1706
13612.6512.55180.0981743
13717.3514.53752.81253
1388.610.103-1.50298
13918.416.07072.32932
14016.114.06082.03915
14111.612.4265-0.826478
14217.7516.27981.47023
14315.2514.28460.965417
14417.6514.2023.44802
14516.3516.28220.0677638
14617.6516.46781.18224
14713.614.2755-0.675474
14814.3514.3847-0.0347173
14914.7514.9787-0.228656
15018.2516.70081.54925
1519.916.2317-6.33165
1521614.03011.96989
15318.2516.142.11003
15416.8517.5979-0.747912
15514.613.35171.24831
15613.8513.9764-0.126449
15718.9516.51672.43329
15815.614.5671.033
15914.8516.4198-1.56978
16011.7514.186-2.436
16118.4516.39412.05592
16215.913.69982.20024
16317.117.5388-0.438765
16416.19.092157.00785
16519.918.72591.1741
16610.9511.2946-0.344619
16718.4516.19282.25716
16815.114.56790.532103
1691515.3495-0.349491
17011.3513.7546-2.4046
17115.9514.42361.52639
17218.115.40972.69028
17314.616.6059-2.00594
17415.416.4188-1.01881
17515.416.358-0.958034
17617.614.5823.01803
17713.3514.2478-0.89783
17819.116.72532.37466
17915.3516.7172-1.36717
1807.611.6406-4.04062
18113.414.863-1.46298
18213.916.2819-2.38194
18319.116.02713.07292
18415.2514.93990.310059
18512.915.7529-2.8529
18616.115.57340.526583
18717.3515.53941.81057
18813.1515.6773-2.52733
18912.1515.7599-3.60994
19012.612.15770.442267
19110.3513.1295-2.77948
19215.413.74221.65781
1939.613.2849-3.68493
19418.214.95463.24545
19513.614.7227-1.12272
19614.8513.54781.30223
19714.7516.3011-1.55108
19814.113.53990.560124
19914.914.13520.764836
20016.2515.56140.688621
20119.2518.47510.774914
20213.613.39280.207235
20313.615.5489-1.94888
20415.6515.7732-0.123195
20512.7514.2562-1.50622
20614.613.68530.914723
2079.8510.3869-0.536938
20812.6512.49720.152812
20919.215.44173.75825
21016.614.45662.14345
21111.211.9675-0.767506
21215.2515.375-0.125028
21311.913.5023-1.60226
21413.214.224-1.024
21516.3516.542-0.191978
21612.413.1287-0.728723
21715.8514.23291.61705
21818.1516.61971.53029
21911.1512.3536-1.2036
22015.6516.3866-0.736613
22117.7515.43622.31377
2227.6511.4765-3.82648
22312.3514.3392-1.98916
22415.614.13141.46859
22519.316.67432.62574
22615.212.49922.70082
22717.115.67681.42321
22815.613.84461.75542
22918.414.05674.3433
23019.0516.11032.93969
23118.5516.00912.54086
23219.115.71773.38229
23313.113.6885-0.588523
23412.8516.2463-3.39632
2359.512.0954-2.59544
2364.511.2634-6.76343
23711.8512.5989-0.748894
23813.614.4314-0.831369
23911.712.099-0.399049
24012.413.2653-0.865302
24113.3514.5353-1.18534
24211.412.8453-1.44527
24314.914.65890.241105
24419.917.87132.02872
24511.214.6228-3.42284
24614.614.8893-0.289255
24717.616.84030.759704
24814.0513.88630.163727
24916.115.14680.953235
25013.3514.5257-1.17571
25111.8515.2446-3.39457
25211.9513.1666-1.21656
25314.7514.16530.584745
25415.1513.03732.11272
25513.215.8768-2.67681
25616.8515.87550.974455
2577.8512.7591-4.90915
2587.713.1428-5.44278
25912.614.9057-2.30565
2607.8514.7528-6.90284
26110.9512.1277-1.17766
26212.3514.8857-2.53571
2639.9513.2438-3.29379
26414.914.13540.764595
26516.6514.94071.70931
26613.413.1260.274045
26713.9514.7645-0.814493
26815.714.66191.03814
26916.8515.49611.35389
27010.9512.3765-1.42654
27115.3515.3847-0.0346729
27212.212.7943-0.594272
27315.113.57541.52455
27417.7515.74992.00008
27515.214.62810.571877
27614.615.2317-0.631742
27716.6515.74150.90847
2788.110.8519-2.75195

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 12.9 & 12.555 & 0.345006 \tabularnewline
2 & 12.2 & 11.0486 & 1.15138 \tabularnewline
3 & 12.8 & 12.167 & 0.632995 \tabularnewline
4 & 7.4 & 11.1032 & -3.7032 \tabularnewline
5 & 6.7 & 10.7085 & -4.00853 \tabularnewline
6 & 12.6 & 13.6264 & -1.02644 \tabularnewline
7 & 14.8 & 11.3377 & 3.46231 \tabularnewline
8 & 13.3 & 9.12228 & 4.17772 \tabularnewline
9 & 11.1 & 10.6549 & 0.445131 \tabularnewline
10 & 8.2 & 12.3143 & -4.11427 \tabularnewline
11 & 11.4 & 11.7347 & -0.334685 \tabularnewline
12 & 6.4 & 10.9787 & -4.57871 \tabularnewline
13 & 10.6 & 9.11104 & 1.48896 \tabularnewline
14 & 12 & 12.6087 & -0.608659 \tabularnewline
15 & 6.3 & 6.91964 & -0.619642 \tabularnewline
16 & 11.3 & 9.1693 & 2.1307 \tabularnewline
17 & 11.9 & 11.7891 & 0.110907 \tabularnewline
18 & 9.3 & 10.4539 & -1.1539 \tabularnewline
19 & 9.6 & 11.6318 & -2.03183 \tabularnewline
20 & 10 & 9.51899 & 0.481007 \tabularnewline
21 & 6.4 & 10.7001 & -4.30006 \tabularnewline
22 & 13.8 & 10.6776 & 3.12242 \tabularnewline
23 & 10.8 & 14.5305 & -3.73052 \tabularnewline
24 & 13.8 & 12.8209 & 0.979097 \tabularnewline
25 & 11.7 & 10.4952 & 1.20476 \tabularnewline
26 & 10.9 & 14.6051 & -3.70508 \tabularnewline
27 & 16.1 & 12.1739 & 3.92608 \tabularnewline
28 & 13.4 & 9.96241 & 3.43759 \tabularnewline
29 & 9.9 & 11.1596 & -1.25958 \tabularnewline
30 & 11.5 & 11.3028 & 0.197172 \tabularnewline
31 & 8.3 & 8.71733 & -0.417328 \tabularnewline
32 & 11.7 & 11.3698 & 0.330198 \tabularnewline
33 & 9 & 10.0991 & -1.09907 \tabularnewline
34 & 9.7 & 11.4785 & -1.7785 \tabularnewline
35 & 10.8 & 8.70973 & 2.09027 \tabularnewline
36 & 10.3 & 8.80949 & 1.49051 \tabularnewline
37 & 10.4 & 11.2132 & -0.813218 \tabularnewline
38 & 12.7 & 10.6762 & 2.02382 \tabularnewline
39 & 9.3 & 11.8764 & -2.57638 \tabularnewline
40 & 11.8 & 12.1128 & -0.312824 \tabularnewline
41 & 5.9 & 10.0919 & -4.19186 \tabularnewline
42 & 11.4 & 11.3626 & 0.0373626 \tabularnewline
43 & 13 & 11.3881 & 1.61194 \tabularnewline
44 & 10.8 & 11.6297 & -0.82974 \tabularnewline
45 & 12.3 & 7.91326 & 4.38674 \tabularnewline
46 & 11.3 & 13.575 & -2.27504 \tabularnewline
47 & 11.8 & 8.92373 & 2.87627 \tabularnewline
48 & 7.9 & 9.41329 & -1.51329 \tabularnewline
49 & 12.7 & 9.38745 & 3.31255 \tabularnewline
50 & 12.3 & 9.70448 & 2.59552 \tabularnewline
51 & 11.6 & 10.6449 & 0.955112 \tabularnewline
52 & 6.7 & 6.92664 & -0.226644 \tabularnewline
53 & 10.9 & 11.1317 & -0.231719 \tabularnewline
54 & 12.1 & 12.0554 & 0.0446019 \tabularnewline
55 & 13.3 & 9.75766 & 3.54234 \tabularnewline
56 & 10.1 & 9.87051 & 0.229488 \tabularnewline
57 & 5.7 & 11.2255 & -5.52552 \tabularnewline
58 & 14.3 & 9.77835 & 4.52165 \tabularnewline
59 & 8 & 8.16126 & -0.161258 \tabularnewline
60 & 13.3 & 10.4055 & 2.89446 \tabularnewline
61 & 9.3 & 12.1017 & -2.80165 \tabularnewline
62 & 12.5 & 12.3877 & 0.112315 \tabularnewline
63 & 7.6 & 8.54385 & -0.943851 \tabularnewline
64 & 15.9 & 13.4331 & 2.46693 \tabularnewline
65 & 9.2 & 12.9183 & -3.71833 \tabularnewline
66 & 9.1 & 8.50107 & 0.598926 \tabularnewline
67 & 11.1 & 12.577 & -1.47701 \tabularnewline
68 & 13 & 13.9787 & -0.978677 \tabularnewline
69 & 14.5 & 12.6169 & 1.88307 \tabularnewline
70 & 12.2 & 11.0004 & 1.19956 \tabularnewline
71 & 12.3 & 12.9123 & -0.612326 \tabularnewline
72 & 11.4 & 10.7756 & 0.624379 \tabularnewline
73 & 8.8 & 9.45741 & -0.657413 \tabularnewline
74 & 14.6 & 10.68 & 3.92001 \tabularnewline
75 & 12.6 & 10.8167 & 1.78334 \tabularnewline
76 & 13 & 11.7597 & 1.24034 \tabularnewline
77 & 12.6 & 11.0469 & 1.55312 \tabularnewline
78 & 13.2 & 12.026 & 1.17396 \tabularnewline
79 & 9.9 & 9.07836 & 0.821636 \tabularnewline
80 & 7.7 & 9.30267 & -1.60267 \tabularnewline
81 & 10.5 & 10.677 & -0.17704 \tabularnewline
82 & 13.4 & 10.8013 & 2.59874 \tabularnewline
83 & 10.9 & 10.0158 & 0.884215 \tabularnewline
84 & 4.3 & 9.5848 & -5.2848 \tabularnewline
85 & 10.3 & 10.9508 & -0.650795 \tabularnewline
86 & 11.8 & 10.1387 & 1.66128 \tabularnewline
87 & 11.2 & 8.89023 & 2.30977 \tabularnewline
88 & 11.4 & 9.28059 & 2.11941 \tabularnewline
89 & 8.6 & 10.3442 & -1.74422 \tabularnewline
90 & 13.2 & 12.0687 & 1.1313 \tabularnewline
91 & 12.6 & 8.59646 & 4.00354 \tabularnewline
92 & 5.6 & 10.278 & -4.67799 \tabularnewline
93 & 9.9 & 11.4235 & -1.52349 \tabularnewline
94 & 8.8 & 9.88668 & -1.08668 \tabularnewline
95 & 7.7 & 10.1181 & -2.41814 \tabularnewline
96 & 9 & 11.3503 & -2.35028 \tabularnewline
97 & 7.3 & 11.2046 & -3.90459 \tabularnewline
98 & 11.4 & 9.82884 & 1.57116 \tabularnewline
99 & 13.6 & 10.5829 & 3.01709 \tabularnewline
100 & 7.9 & 10.4055 & -2.50554 \tabularnewline
101 & 10.7 & 8.43589 & 2.26411 \tabularnewline
102 & 10.3 & 10.3021 & -0.00213422 \tabularnewline
103 & 8.3 & 9.15024 & -0.850237 \tabularnewline
104 & 9.6 & 10.9184 & -1.31838 \tabularnewline
105 & 14.2 & 9.81984 & 4.38016 \tabularnewline
106 & 8.5 & 10.0022 & -1.50217 \tabularnewline
107 & 13.5 & 9.95052 & 3.54948 \tabularnewline
108 & 4.9 & 9.93989 & -5.03989 \tabularnewline
109 & 6.4 & 8.3675 & -1.9675 \tabularnewline
110 & 9.6 & 10.7774 & -1.17735 \tabularnewline
111 & 11.6 & 11.3157 & 0.284271 \tabularnewline
112 & 11.1 & 10.3875 & 0.712484 \tabularnewline
113 & 4.35 & 11.3006 & -6.95062 \tabularnewline
114 & 12.7 & 11.6852 & 1.01476 \tabularnewline
115 & 18.1 & 15.3146 & 2.78537 \tabularnewline
116 & 17.85 & 15.8301 & 2.01994 \tabularnewline
117 & 16.6 & 16.3867 & 0.213286 \tabularnewline
118 & 12.6 & 12.2346 & 0.365394 \tabularnewline
119 & 17.1 & 18.403 & -1.30299 \tabularnewline
120 & 19.1 & 16.8794 & 2.22056 \tabularnewline
121 & 16.1 & 15.6213 & 0.478691 \tabularnewline
122 & 13.35 & 12.8376 & 0.512394 \tabularnewline
123 & 18.4 & 16.6746 & 1.72538 \tabularnewline
124 & 14.7 & 10.4927 & 4.20732 \tabularnewline
125 & 10.6 & 13.308 & -2.70796 \tabularnewline
126 & 12.6 & 13.4542 & -0.854175 \tabularnewline
127 & 16.2 & 14.7792 & 1.42083 \tabularnewline
128 & 13.6 & 13.1048 & 0.495151 \tabularnewline
129 & 18.9 & 15.8629 & 3.03705 \tabularnewline
130 & 14.1 & 13.5001 & 0.599904 \tabularnewline
131 & 14.5 & 13.8713 & 0.628718 \tabularnewline
132 & 16.15 & 16.5759 & -0.425919 \tabularnewline
133 & 14.75 & 13.7214 & 1.02859 \tabularnewline
134 & 14.8 & 13.2659 & 1.53412 \tabularnewline
135 & 12.45 & 12.6206 & -0.1706 \tabularnewline
136 & 12.65 & 12.5518 & 0.0981743 \tabularnewline
137 & 17.35 & 14.5375 & 2.81253 \tabularnewline
138 & 8.6 & 10.103 & -1.50298 \tabularnewline
139 & 18.4 & 16.0707 & 2.32932 \tabularnewline
140 & 16.1 & 14.0608 & 2.03915 \tabularnewline
141 & 11.6 & 12.4265 & -0.826478 \tabularnewline
142 & 17.75 & 16.2798 & 1.47023 \tabularnewline
143 & 15.25 & 14.2846 & 0.965417 \tabularnewline
144 & 17.65 & 14.202 & 3.44802 \tabularnewline
145 & 16.35 & 16.2822 & 0.0677638 \tabularnewline
146 & 17.65 & 16.4678 & 1.18224 \tabularnewline
147 & 13.6 & 14.2755 & -0.675474 \tabularnewline
148 & 14.35 & 14.3847 & -0.0347173 \tabularnewline
149 & 14.75 & 14.9787 & -0.228656 \tabularnewline
150 & 18.25 & 16.7008 & 1.54925 \tabularnewline
151 & 9.9 & 16.2317 & -6.33165 \tabularnewline
152 & 16 & 14.0301 & 1.96989 \tabularnewline
153 & 18.25 & 16.14 & 2.11003 \tabularnewline
154 & 16.85 & 17.5979 & -0.747912 \tabularnewline
155 & 14.6 & 13.3517 & 1.24831 \tabularnewline
156 & 13.85 & 13.9764 & -0.126449 \tabularnewline
157 & 18.95 & 16.5167 & 2.43329 \tabularnewline
158 & 15.6 & 14.567 & 1.033 \tabularnewline
159 & 14.85 & 16.4198 & -1.56978 \tabularnewline
160 & 11.75 & 14.186 & -2.436 \tabularnewline
161 & 18.45 & 16.3941 & 2.05592 \tabularnewline
162 & 15.9 & 13.6998 & 2.20024 \tabularnewline
163 & 17.1 & 17.5388 & -0.438765 \tabularnewline
164 & 16.1 & 9.09215 & 7.00785 \tabularnewline
165 & 19.9 & 18.7259 & 1.1741 \tabularnewline
166 & 10.95 & 11.2946 & -0.344619 \tabularnewline
167 & 18.45 & 16.1928 & 2.25716 \tabularnewline
168 & 15.1 & 14.5679 & 0.532103 \tabularnewline
169 & 15 & 15.3495 & -0.349491 \tabularnewline
170 & 11.35 & 13.7546 & -2.4046 \tabularnewline
171 & 15.95 & 14.4236 & 1.52639 \tabularnewline
172 & 18.1 & 15.4097 & 2.69028 \tabularnewline
173 & 14.6 & 16.6059 & -2.00594 \tabularnewline
174 & 15.4 & 16.4188 & -1.01881 \tabularnewline
175 & 15.4 & 16.358 & -0.958034 \tabularnewline
176 & 17.6 & 14.582 & 3.01803 \tabularnewline
177 & 13.35 & 14.2478 & -0.89783 \tabularnewline
178 & 19.1 & 16.7253 & 2.37466 \tabularnewline
179 & 15.35 & 16.7172 & -1.36717 \tabularnewline
180 & 7.6 & 11.6406 & -4.04062 \tabularnewline
181 & 13.4 & 14.863 & -1.46298 \tabularnewline
182 & 13.9 & 16.2819 & -2.38194 \tabularnewline
183 & 19.1 & 16.0271 & 3.07292 \tabularnewline
184 & 15.25 & 14.9399 & 0.310059 \tabularnewline
185 & 12.9 & 15.7529 & -2.8529 \tabularnewline
186 & 16.1 & 15.5734 & 0.526583 \tabularnewline
187 & 17.35 & 15.5394 & 1.81057 \tabularnewline
188 & 13.15 & 15.6773 & -2.52733 \tabularnewline
189 & 12.15 & 15.7599 & -3.60994 \tabularnewline
190 & 12.6 & 12.1577 & 0.442267 \tabularnewline
191 & 10.35 & 13.1295 & -2.77948 \tabularnewline
192 & 15.4 & 13.7422 & 1.65781 \tabularnewline
193 & 9.6 & 13.2849 & -3.68493 \tabularnewline
194 & 18.2 & 14.9546 & 3.24545 \tabularnewline
195 & 13.6 & 14.7227 & -1.12272 \tabularnewline
196 & 14.85 & 13.5478 & 1.30223 \tabularnewline
197 & 14.75 & 16.3011 & -1.55108 \tabularnewline
198 & 14.1 & 13.5399 & 0.560124 \tabularnewline
199 & 14.9 & 14.1352 & 0.764836 \tabularnewline
200 & 16.25 & 15.5614 & 0.688621 \tabularnewline
201 & 19.25 & 18.4751 & 0.774914 \tabularnewline
202 & 13.6 & 13.3928 & 0.207235 \tabularnewline
203 & 13.6 & 15.5489 & -1.94888 \tabularnewline
204 & 15.65 & 15.7732 & -0.123195 \tabularnewline
205 & 12.75 & 14.2562 & -1.50622 \tabularnewline
206 & 14.6 & 13.6853 & 0.914723 \tabularnewline
207 & 9.85 & 10.3869 & -0.536938 \tabularnewline
208 & 12.65 & 12.4972 & 0.152812 \tabularnewline
209 & 19.2 & 15.4417 & 3.75825 \tabularnewline
210 & 16.6 & 14.4566 & 2.14345 \tabularnewline
211 & 11.2 & 11.9675 & -0.767506 \tabularnewline
212 & 15.25 & 15.375 & -0.125028 \tabularnewline
213 & 11.9 & 13.5023 & -1.60226 \tabularnewline
214 & 13.2 & 14.224 & -1.024 \tabularnewline
215 & 16.35 & 16.542 & -0.191978 \tabularnewline
216 & 12.4 & 13.1287 & -0.728723 \tabularnewline
217 & 15.85 & 14.2329 & 1.61705 \tabularnewline
218 & 18.15 & 16.6197 & 1.53029 \tabularnewline
219 & 11.15 & 12.3536 & -1.2036 \tabularnewline
220 & 15.65 & 16.3866 & -0.736613 \tabularnewline
221 & 17.75 & 15.4362 & 2.31377 \tabularnewline
222 & 7.65 & 11.4765 & -3.82648 \tabularnewline
223 & 12.35 & 14.3392 & -1.98916 \tabularnewline
224 & 15.6 & 14.1314 & 1.46859 \tabularnewline
225 & 19.3 & 16.6743 & 2.62574 \tabularnewline
226 & 15.2 & 12.4992 & 2.70082 \tabularnewline
227 & 17.1 & 15.6768 & 1.42321 \tabularnewline
228 & 15.6 & 13.8446 & 1.75542 \tabularnewline
229 & 18.4 & 14.0567 & 4.3433 \tabularnewline
230 & 19.05 & 16.1103 & 2.93969 \tabularnewline
231 & 18.55 & 16.0091 & 2.54086 \tabularnewline
232 & 19.1 & 15.7177 & 3.38229 \tabularnewline
233 & 13.1 & 13.6885 & -0.588523 \tabularnewline
234 & 12.85 & 16.2463 & -3.39632 \tabularnewline
235 & 9.5 & 12.0954 & -2.59544 \tabularnewline
236 & 4.5 & 11.2634 & -6.76343 \tabularnewline
237 & 11.85 & 12.5989 & -0.748894 \tabularnewline
238 & 13.6 & 14.4314 & -0.831369 \tabularnewline
239 & 11.7 & 12.099 & -0.399049 \tabularnewline
240 & 12.4 & 13.2653 & -0.865302 \tabularnewline
241 & 13.35 & 14.5353 & -1.18534 \tabularnewline
242 & 11.4 & 12.8453 & -1.44527 \tabularnewline
243 & 14.9 & 14.6589 & 0.241105 \tabularnewline
244 & 19.9 & 17.8713 & 2.02872 \tabularnewline
245 & 11.2 & 14.6228 & -3.42284 \tabularnewline
246 & 14.6 & 14.8893 & -0.289255 \tabularnewline
247 & 17.6 & 16.8403 & 0.759704 \tabularnewline
248 & 14.05 & 13.8863 & 0.163727 \tabularnewline
249 & 16.1 & 15.1468 & 0.953235 \tabularnewline
250 & 13.35 & 14.5257 & -1.17571 \tabularnewline
251 & 11.85 & 15.2446 & -3.39457 \tabularnewline
252 & 11.95 & 13.1666 & -1.21656 \tabularnewline
253 & 14.75 & 14.1653 & 0.584745 \tabularnewline
254 & 15.15 & 13.0373 & 2.11272 \tabularnewline
255 & 13.2 & 15.8768 & -2.67681 \tabularnewline
256 & 16.85 & 15.8755 & 0.974455 \tabularnewline
257 & 7.85 & 12.7591 & -4.90915 \tabularnewline
258 & 7.7 & 13.1428 & -5.44278 \tabularnewline
259 & 12.6 & 14.9057 & -2.30565 \tabularnewline
260 & 7.85 & 14.7528 & -6.90284 \tabularnewline
261 & 10.95 & 12.1277 & -1.17766 \tabularnewline
262 & 12.35 & 14.8857 & -2.53571 \tabularnewline
263 & 9.95 & 13.2438 & -3.29379 \tabularnewline
264 & 14.9 & 14.1354 & 0.764595 \tabularnewline
265 & 16.65 & 14.9407 & 1.70931 \tabularnewline
266 & 13.4 & 13.126 & 0.274045 \tabularnewline
267 & 13.95 & 14.7645 & -0.814493 \tabularnewline
268 & 15.7 & 14.6619 & 1.03814 \tabularnewline
269 & 16.85 & 15.4961 & 1.35389 \tabularnewline
270 & 10.95 & 12.3765 & -1.42654 \tabularnewline
271 & 15.35 & 15.3847 & -0.0346729 \tabularnewline
272 & 12.2 & 12.7943 & -0.594272 \tabularnewline
273 & 15.1 & 13.5754 & 1.52455 \tabularnewline
274 & 17.75 & 15.7499 & 2.00008 \tabularnewline
275 & 15.2 & 14.6281 & 0.571877 \tabularnewline
276 & 14.6 & 15.2317 & -0.631742 \tabularnewline
277 & 16.65 & 15.7415 & 0.90847 \tabularnewline
278 & 8.1 & 10.8519 & -2.75195 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]12.9[/C][C]12.555[/C][C]0.345006[/C][/ROW]
[ROW][C]2[/C][C]12.2[/C][C]11.0486[/C][C]1.15138[/C][/ROW]
[ROW][C]3[/C][C]12.8[/C][C]12.167[/C][C]0.632995[/C][/ROW]
[ROW][C]4[/C][C]7.4[/C][C]11.1032[/C][C]-3.7032[/C][/ROW]
[ROW][C]5[/C][C]6.7[/C][C]10.7085[/C][C]-4.00853[/C][/ROW]
[ROW][C]6[/C][C]12.6[/C][C]13.6264[/C][C]-1.02644[/C][/ROW]
[ROW][C]7[/C][C]14.8[/C][C]11.3377[/C][C]3.46231[/C][/ROW]
[ROW][C]8[/C][C]13.3[/C][C]9.12228[/C][C]4.17772[/C][/ROW]
[ROW][C]9[/C][C]11.1[/C][C]10.6549[/C][C]0.445131[/C][/ROW]
[ROW][C]10[/C][C]8.2[/C][C]12.3143[/C][C]-4.11427[/C][/ROW]
[ROW][C]11[/C][C]11.4[/C][C]11.7347[/C][C]-0.334685[/C][/ROW]
[ROW][C]12[/C][C]6.4[/C][C]10.9787[/C][C]-4.57871[/C][/ROW]
[ROW][C]13[/C][C]10.6[/C][C]9.11104[/C][C]1.48896[/C][/ROW]
[ROW][C]14[/C][C]12[/C][C]12.6087[/C][C]-0.608659[/C][/ROW]
[ROW][C]15[/C][C]6.3[/C][C]6.91964[/C][C]-0.619642[/C][/ROW]
[ROW][C]16[/C][C]11.3[/C][C]9.1693[/C][C]2.1307[/C][/ROW]
[ROW][C]17[/C][C]11.9[/C][C]11.7891[/C][C]0.110907[/C][/ROW]
[ROW][C]18[/C][C]9.3[/C][C]10.4539[/C][C]-1.1539[/C][/ROW]
[ROW][C]19[/C][C]9.6[/C][C]11.6318[/C][C]-2.03183[/C][/ROW]
[ROW][C]20[/C][C]10[/C][C]9.51899[/C][C]0.481007[/C][/ROW]
[ROW][C]21[/C][C]6.4[/C][C]10.7001[/C][C]-4.30006[/C][/ROW]
[ROW][C]22[/C][C]13.8[/C][C]10.6776[/C][C]3.12242[/C][/ROW]
[ROW][C]23[/C][C]10.8[/C][C]14.5305[/C][C]-3.73052[/C][/ROW]
[ROW][C]24[/C][C]13.8[/C][C]12.8209[/C][C]0.979097[/C][/ROW]
[ROW][C]25[/C][C]11.7[/C][C]10.4952[/C][C]1.20476[/C][/ROW]
[ROW][C]26[/C][C]10.9[/C][C]14.6051[/C][C]-3.70508[/C][/ROW]
[ROW][C]27[/C][C]16.1[/C][C]12.1739[/C][C]3.92608[/C][/ROW]
[ROW][C]28[/C][C]13.4[/C][C]9.96241[/C][C]3.43759[/C][/ROW]
[ROW][C]29[/C][C]9.9[/C][C]11.1596[/C][C]-1.25958[/C][/ROW]
[ROW][C]30[/C][C]11.5[/C][C]11.3028[/C][C]0.197172[/C][/ROW]
[ROW][C]31[/C][C]8.3[/C][C]8.71733[/C][C]-0.417328[/C][/ROW]
[ROW][C]32[/C][C]11.7[/C][C]11.3698[/C][C]0.330198[/C][/ROW]
[ROW][C]33[/C][C]9[/C][C]10.0991[/C][C]-1.09907[/C][/ROW]
[ROW][C]34[/C][C]9.7[/C][C]11.4785[/C][C]-1.7785[/C][/ROW]
[ROW][C]35[/C][C]10.8[/C][C]8.70973[/C][C]2.09027[/C][/ROW]
[ROW][C]36[/C][C]10.3[/C][C]8.80949[/C][C]1.49051[/C][/ROW]
[ROW][C]37[/C][C]10.4[/C][C]11.2132[/C][C]-0.813218[/C][/ROW]
[ROW][C]38[/C][C]12.7[/C][C]10.6762[/C][C]2.02382[/C][/ROW]
[ROW][C]39[/C][C]9.3[/C][C]11.8764[/C][C]-2.57638[/C][/ROW]
[ROW][C]40[/C][C]11.8[/C][C]12.1128[/C][C]-0.312824[/C][/ROW]
[ROW][C]41[/C][C]5.9[/C][C]10.0919[/C][C]-4.19186[/C][/ROW]
[ROW][C]42[/C][C]11.4[/C][C]11.3626[/C][C]0.0373626[/C][/ROW]
[ROW][C]43[/C][C]13[/C][C]11.3881[/C][C]1.61194[/C][/ROW]
[ROW][C]44[/C][C]10.8[/C][C]11.6297[/C][C]-0.82974[/C][/ROW]
[ROW][C]45[/C][C]12.3[/C][C]7.91326[/C][C]4.38674[/C][/ROW]
[ROW][C]46[/C][C]11.3[/C][C]13.575[/C][C]-2.27504[/C][/ROW]
[ROW][C]47[/C][C]11.8[/C][C]8.92373[/C][C]2.87627[/C][/ROW]
[ROW][C]48[/C][C]7.9[/C][C]9.41329[/C][C]-1.51329[/C][/ROW]
[ROW][C]49[/C][C]12.7[/C][C]9.38745[/C][C]3.31255[/C][/ROW]
[ROW][C]50[/C][C]12.3[/C][C]9.70448[/C][C]2.59552[/C][/ROW]
[ROW][C]51[/C][C]11.6[/C][C]10.6449[/C][C]0.955112[/C][/ROW]
[ROW][C]52[/C][C]6.7[/C][C]6.92664[/C][C]-0.226644[/C][/ROW]
[ROW][C]53[/C][C]10.9[/C][C]11.1317[/C][C]-0.231719[/C][/ROW]
[ROW][C]54[/C][C]12.1[/C][C]12.0554[/C][C]0.0446019[/C][/ROW]
[ROW][C]55[/C][C]13.3[/C][C]9.75766[/C][C]3.54234[/C][/ROW]
[ROW][C]56[/C][C]10.1[/C][C]9.87051[/C][C]0.229488[/C][/ROW]
[ROW][C]57[/C][C]5.7[/C][C]11.2255[/C][C]-5.52552[/C][/ROW]
[ROW][C]58[/C][C]14.3[/C][C]9.77835[/C][C]4.52165[/C][/ROW]
[ROW][C]59[/C][C]8[/C][C]8.16126[/C][C]-0.161258[/C][/ROW]
[ROW][C]60[/C][C]13.3[/C][C]10.4055[/C][C]2.89446[/C][/ROW]
[ROW][C]61[/C][C]9.3[/C][C]12.1017[/C][C]-2.80165[/C][/ROW]
[ROW][C]62[/C][C]12.5[/C][C]12.3877[/C][C]0.112315[/C][/ROW]
[ROW][C]63[/C][C]7.6[/C][C]8.54385[/C][C]-0.943851[/C][/ROW]
[ROW][C]64[/C][C]15.9[/C][C]13.4331[/C][C]2.46693[/C][/ROW]
[ROW][C]65[/C][C]9.2[/C][C]12.9183[/C][C]-3.71833[/C][/ROW]
[ROW][C]66[/C][C]9.1[/C][C]8.50107[/C][C]0.598926[/C][/ROW]
[ROW][C]67[/C][C]11.1[/C][C]12.577[/C][C]-1.47701[/C][/ROW]
[ROW][C]68[/C][C]13[/C][C]13.9787[/C][C]-0.978677[/C][/ROW]
[ROW][C]69[/C][C]14.5[/C][C]12.6169[/C][C]1.88307[/C][/ROW]
[ROW][C]70[/C][C]12.2[/C][C]11.0004[/C][C]1.19956[/C][/ROW]
[ROW][C]71[/C][C]12.3[/C][C]12.9123[/C][C]-0.612326[/C][/ROW]
[ROW][C]72[/C][C]11.4[/C][C]10.7756[/C][C]0.624379[/C][/ROW]
[ROW][C]73[/C][C]8.8[/C][C]9.45741[/C][C]-0.657413[/C][/ROW]
[ROW][C]74[/C][C]14.6[/C][C]10.68[/C][C]3.92001[/C][/ROW]
[ROW][C]75[/C][C]12.6[/C][C]10.8167[/C][C]1.78334[/C][/ROW]
[ROW][C]76[/C][C]13[/C][C]11.7597[/C][C]1.24034[/C][/ROW]
[ROW][C]77[/C][C]12.6[/C][C]11.0469[/C][C]1.55312[/C][/ROW]
[ROW][C]78[/C][C]13.2[/C][C]12.026[/C][C]1.17396[/C][/ROW]
[ROW][C]79[/C][C]9.9[/C][C]9.07836[/C][C]0.821636[/C][/ROW]
[ROW][C]80[/C][C]7.7[/C][C]9.30267[/C][C]-1.60267[/C][/ROW]
[ROW][C]81[/C][C]10.5[/C][C]10.677[/C][C]-0.17704[/C][/ROW]
[ROW][C]82[/C][C]13.4[/C][C]10.8013[/C][C]2.59874[/C][/ROW]
[ROW][C]83[/C][C]10.9[/C][C]10.0158[/C][C]0.884215[/C][/ROW]
[ROW][C]84[/C][C]4.3[/C][C]9.5848[/C][C]-5.2848[/C][/ROW]
[ROW][C]85[/C][C]10.3[/C][C]10.9508[/C][C]-0.650795[/C][/ROW]
[ROW][C]86[/C][C]11.8[/C][C]10.1387[/C][C]1.66128[/C][/ROW]
[ROW][C]87[/C][C]11.2[/C][C]8.89023[/C][C]2.30977[/C][/ROW]
[ROW][C]88[/C][C]11.4[/C][C]9.28059[/C][C]2.11941[/C][/ROW]
[ROW][C]89[/C][C]8.6[/C][C]10.3442[/C][C]-1.74422[/C][/ROW]
[ROW][C]90[/C][C]13.2[/C][C]12.0687[/C][C]1.1313[/C][/ROW]
[ROW][C]91[/C][C]12.6[/C][C]8.59646[/C][C]4.00354[/C][/ROW]
[ROW][C]92[/C][C]5.6[/C][C]10.278[/C][C]-4.67799[/C][/ROW]
[ROW][C]93[/C][C]9.9[/C][C]11.4235[/C][C]-1.52349[/C][/ROW]
[ROW][C]94[/C][C]8.8[/C][C]9.88668[/C][C]-1.08668[/C][/ROW]
[ROW][C]95[/C][C]7.7[/C][C]10.1181[/C][C]-2.41814[/C][/ROW]
[ROW][C]96[/C][C]9[/C][C]11.3503[/C][C]-2.35028[/C][/ROW]
[ROW][C]97[/C][C]7.3[/C][C]11.2046[/C][C]-3.90459[/C][/ROW]
[ROW][C]98[/C][C]11.4[/C][C]9.82884[/C][C]1.57116[/C][/ROW]
[ROW][C]99[/C][C]13.6[/C][C]10.5829[/C][C]3.01709[/C][/ROW]
[ROW][C]100[/C][C]7.9[/C][C]10.4055[/C][C]-2.50554[/C][/ROW]
[ROW][C]101[/C][C]10.7[/C][C]8.43589[/C][C]2.26411[/C][/ROW]
[ROW][C]102[/C][C]10.3[/C][C]10.3021[/C][C]-0.00213422[/C][/ROW]
[ROW][C]103[/C][C]8.3[/C][C]9.15024[/C][C]-0.850237[/C][/ROW]
[ROW][C]104[/C][C]9.6[/C][C]10.9184[/C][C]-1.31838[/C][/ROW]
[ROW][C]105[/C][C]14.2[/C][C]9.81984[/C][C]4.38016[/C][/ROW]
[ROW][C]106[/C][C]8.5[/C][C]10.0022[/C][C]-1.50217[/C][/ROW]
[ROW][C]107[/C][C]13.5[/C][C]9.95052[/C][C]3.54948[/C][/ROW]
[ROW][C]108[/C][C]4.9[/C][C]9.93989[/C][C]-5.03989[/C][/ROW]
[ROW][C]109[/C][C]6.4[/C][C]8.3675[/C][C]-1.9675[/C][/ROW]
[ROW][C]110[/C][C]9.6[/C][C]10.7774[/C][C]-1.17735[/C][/ROW]
[ROW][C]111[/C][C]11.6[/C][C]11.3157[/C][C]0.284271[/C][/ROW]
[ROW][C]112[/C][C]11.1[/C][C]10.3875[/C][C]0.712484[/C][/ROW]
[ROW][C]113[/C][C]4.35[/C][C]11.3006[/C][C]-6.95062[/C][/ROW]
[ROW][C]114[/C][C]12.7[/C][C]11.6852[/C][C]1.01476[/C][/ROW]
[ROW][C]115[/C][C]18.1[/C][C]15.3146[/C][C]2.78537[/C][/ROW]
[ROW][C]116[/C][C]17.85[/C][C]15.8301[/C][C]2.01994[/C][/ROW]
[ROW][C]117[/C][C]16.6[/C][C]16.3867[/C][C]0.213286[/C][/ROW]
[ROW][C]118[/C][C]12.6[/C][C]12.2346[/C][C]0.365394[/C][/ROW]
[ROW][C]119[/C][C]17.1[/C][C]18.403[/C][C]-1.30299[/C][/ROW]
[ROW][C]120[/C][C]19.1[/C][C]16.8794[/C][C]2.22056[/C][/ROW]
[ROW][C]121[/C][C]16.1[/C][C]15.6213[/C][C]0.478691[/C][/ROW]
[ROW][C]122[/C][C]13.35[/C][C]12.8376[/C][C]0.512394[/C][/ROW]
[ROW][C]123[/C][C]18.4[/C][C]16.6746[/C][C]1.72538[/C][/ROW]
[ROW][C]124[/C][C]14.7[/C][C]10.4927[/C][C]4.20732[/C][/ROW]
[ROW][C]125[/C][C]10.6[/C][C]13.308[/C][C]-2.70796[/C][/ROW]
[ROW][C]126[/C][C]12.6[/C][C]13.4542[/C][C]-0.854175[/C][/ROW]
[ROW][C]127[/C][C]16.2[/C][C]14.7792[/C][C]1.42083[/C][/ROW]
[ROW][C]128[/C][C]13.6[/C][C]13.1048[/C][C]0.495151[/C][/ROW]
[ROW][C]129[/C][C]18.9[/C][C]15.8629[/C][C]3.03705[/C][/ROW]
[ROW][C]130[/C][C]14.1[/C][C]13.5001[/C][C]0.599904[/C][/ROW]
[ROW][C]131[/C][C]14.5[/C][C]13.8713[/C][C]0.628718[/C][/ROW]
[ROW][C]132[/C][C]16.15[/C][C]16.5759[/C][C]-0.425919[/C][/ROW]
[ROW][C]133[/C][C]14.75[/C][C]13.7214[/C][C]1.02859[/C][/ROW]
[ROW][C]134[/C][C]14.8[/C][C]13.2659[/C][C]1.53412[/C][/ROW]
[ROW][C]135[/C][C]12.45[/C][C]12.6206[/C][C]-0.1706[/C][/ROW]
[ROW][C]136[/C][C]12.65[/C][C]12.5518[/C][C]0.0981743[/C][/ROW]
[ROW][C]137[/C][C]17.35[/C][C]14.5375[/C][C]2.81253[/C][/ROW]
[ROW][C]138[/C][C]8.6[/C][C]10.103[/C][C]-1.50298[/C][/ROW]
[ROW][C]139[/C][C]18.4[/C][C]16.0707[/C][C]2.32932[/C][/ROW]
[ROW][C]140[/C][C]16.1[/C][C]14.0608[/C][C]2.03915[/C][/ROW]
[ROW][C]141[/C][C]11.6[/C][C]12.4265[/C][C]-0.826478[/C][/ROW]
[ROW][C]142[/C][C]17.75[/C][C]16.2798[/C][C]1.47023[/C][/ROW]
[ROW][C]143[/C][C]15.25[/C][C]14.2846[/C][C]0.965417[/C][/ROW]
[ROW][C]144[/C][C]17.65[/C][C]14.202[/C][C]3.44802[/C][/ROW]
[ROW][C]145[/C][C]16.35[/C][C]16.2822[/C][C]0.0677638[/C][/ROW]
[ROW][C]146[/C][C]17.65[/C][C]16.4678[/C][C]1.18224[/C][/ROW]
[ROW][C]147[/C][C]13.6[/C][C]14.2755[/C][C]-0.675474[/C][/ROW]
[ROW][C]148[/C][C]14.35[/C][C]14.3847[/C][C]-0.0347173[/C][/ROW]
[ROW][C]149[/C][C]14.75[/C][C]14.9787[/C][C]-0.228656[/C][/ROW]
[ROW][C]150[/C][C]18.25[/C][C]16.7008[/C][C]1.54925[/C][/ROW]
[ROW][C]151[/C][C]9.9[/C][C]16.2317[/C][C]-6.33165[/C][/ROW]
[ROW][C]152[/C][C]16[/C][C]14.0301[/C][C]1.96989[/C][/ROW]
[ROW][C]153[/C][C]18.25[/C][C]16.14[/C][C]2.11003[/C][/ROW]
[ROW][C]154[/C][C]16.85[/C][C]17.5979[/C][C]-0.747912[/C][/ROW]
[ROW][C]155[/C][C]14.6[/C][C]13.3517[/C][C]1.24831[/C][/ROW]
[ROW][C]156[/C][C]13.85[/C][C]13.9764[/C][C]-0.126449[/C][/ROW]
[ROW][C]157[/C][C]18.95[/C][C]16.5167[/C][C]2.43329[/C][/ROW]
[ROW][C]158[/C][C]15.6[/C][C]14.567[/C][C]1.033[/C][/ROW]
[ROW][C]159[/C][C]14.85[/C][C]16.4198[/C][C]-1.56978[/C][/ROW]
[ROW][C]160[/C][C]11.75[/C][C]14.186[/C][C]-2.436[/C][/ROW]
[ROW][C]161[/C][C]18.45[/C][C]16.3941[/C][C]2.05592[/C][/ROW]
[ROW][C]162[/C][C]15.9[/C][C]13.6998[/C][C]2.20024[/C][/ROW]
[ROW][C]163[/C][C]17.1[/C][C]17.5388[/C][C]-0.438765[/C][/ROW]
[ROW][C]164[/C][C]16.1[/C][C]9.09215[/C][C]7.00785[/C][/ROW]
[ROW][C]165[/C][C]19.9[/C][C]18.7259[/C][C]1.1741[/C][/ROW]
[ROW][C]166[/C][C]10.95[/C][C]11.2946[/C][C]-0.344619[/C][/ROW]
[ROW][C]167[/C][C]18.45[/C][C]16.1928[/C][C]2.25716[/C][/ROW]
[ROW][C]168[/C][C]15.1[/C][C]14.5679[/C][C]0.532103[/C][/ROW]
[ROW][C]169[/C][C]15[/C][C]15.3495[/C][C]-0.349491[/C][/ROW]
[ROW][C]170[/C][C]11.35[/C][C]13.7546[/C][C]-2.4046[/C][/ROW]
[ROW][C]171[/C][C]15.95[/C][C]14.4236[/C][C]1.52639[/C][/ROW]
[ROW][C]172[/C][C]18.1[/C][C]15.4097[/C][C]2.69028[/C][/ROW]
[ROW][C]173[/C][C]14.6[/C][C]16.6059[/C][C]-2.00594[/C][/ROW]
[ROW][C]174[/C][C]15.4[/C][C]16.4188[/C][C]-1.01881[/C][/ROW]
[ROW][C]175[/C][C]15.4[/C][C]16.358[/C][C]-0.958034[/C][/ROW]
[ROW][C]176[/C][C]17.6[/C][C]14.582[/C][C]3.01803[/C][/ROW]
[ROW][C]177[/C][C]13.35[/C][C]14.2478[/C][C]-0.89783[/C][/ROW]
[ROW][C]178[/C][C]19.1[/C][C]16.7253[/C][C]2.37466[/C][/ROW]
[ROW][C]179[/C][C]15.35[/C][C]16.7172[/C][C]-1.36717[/C][/ROW]
[ROW][C]180[/C][C]7.6[/C][C]11.6406[/C][C]-4.04062[/C][/ROW]
[ROW][C]181[/C][C]13.4[/C][C]14.863[/C][C]-1.46298[/C][/ROW]
[ROW][C]182[/C][C]13.9[/C][C]16.2819[/C][C]-2.38194[/C][/ROW]
[ROW][C]183[/C][C]19.1[/C][C]16.0271[/C][C]3.07292[/C][/ROW]
[ROW][C]184[/C][C]15.25[/C][C]14.9399[/C][C]0.310059[/C][/ROW]
[ROW][C]185[/C][C]12.9[/C][C]15.7529[/C][C]-2.8529[/C][/ROW]
[ROW][C]186[/C][C]16.1[/C][C]15.5734[/C][C]0.526583[/C][/ROW]
[ROW][C]187[/C][C]17.35[/C][C]15.5394[/C][C]1.81057[/C][/ROW]
[ROW][C]188[/C][C]13.15[/C][C]15.6773[/C][C]-2.52733[/C][/ROW]
[ROW][C]189[/C][C]12.15[/C][C]15.7599[/C][C]-3.60994[/C][/ROW]
[ROW][C]190[/C][C]12.6[/C][C]12.1577[/C][C]0.442267[/C][/ROW]
[ROW][C]191[/C][C]10.35[/C][C]13.1295[/C][C]-2.77948[/C][/ROW]
[ROW][C]192[/C][C]15.4[/C][C]13.7422[/C][C]1.65781[/C][/ROW]
[ROW][C]193[/C][C]9.6[/C][C]13.2849[/C][C]-3.68493[/C][/ROW]
[ROW][C]194[/C][C]18.2[/C][C]14.9546[/C][C]3.24545[/C][/ROW]
[ROW][C]195[/C][C]13.6[/C][C]14.7227[/C][C]-1.12272[/C][/ROW]
[ROW][C]196[/C][C]14.85[/C][C]13.5478[/C][C]1.30223[/C][/ROW]
[ROW][C]197[/C][C]14.75[/C][C]16.3011[/C][C]-1.55108[/C][/ROW]
[ROW][C]198[/C][C]14.1[/C][C]13.5399[/C][C]0.560124[/C][/ROW]
[ROW][C]199[/C][C]14.9[/C][C]14.1352[/C][C]0.764836[/C][/ROW]
[ROW][C]200[/C][C]16.25[/C][C]15.5614[/C][C]0.688621[/C][/ROW]
[ROW][C]201[/C][C]19.25[/C][C]18.4751[/C][C]0.774914[/C][/ROW]
[ROW][C]202[/C][C]13.6[/C][C]13.3928[/C][C]0.207235[/C][/ROW]
[ROW][C]203[/C][C]13.6[/C][C]15.5489[/C][C]-1.94888[/C][/ROW]
[ROW][C]204[/C][C]15.65[/C][C]15.7732[/C][C]-0.123195[/C][/ROW]
[ROW][C]205[/C][C]12.75[/C][C]14.2562[/C][C]-1.50622[/C][/ROW]
[ROW][C]206[/C][C]14.6[/C][C]13.6853[/C][C]0.914723[/C][/ROW]
[ROW][C]207[/C][C]9.85[/C][C]10.3869[/C][C]-0.536938[/C][/ROW]
[ROW][C]208[/C][C]12.65[/C][C]12.4972[/C][C]0.152812[/C][/ROW]
[ROW][C]209[/C][C]19.2[/C][C]15.4417[/C][C]3.75825[/C][/ROW]
[ROW][C]210[/C][C]16.6[/C][C]14.4566[/C][C]2.14345[/C][/ROW]
[ROW][C]211[/C][C]11.2[/C][C]11.9675[/C][C]-0.767506[/C][/ROW]
[ROW][C]212[/C][C]15.25[/C][C]15.375[/C][C]-0.125028[/C][/ROW]
[ROW][C]213[/C][C]11.9[/C][C]13.5023[/C][C]-1.60226[/C][/ROW]
[ROW][C]214[/C][C]13.2[/C][C]14.224[/C][C]-1.024[/C][/ROW]
[ROW][C]215[/C][C]16.35[/C][C]16.542[/C][C]-0.191978[/C][/ROW]
[ROW][C]216[/C][C]12.4[/C][C]13.1287[/C][C]-0.728723[/C][/ROW]
[ROW][C]217[/C][C]15.85[/C][C]14.2329[/C][C]1.61705[/C][/ROW]
[ROW][C]218[/C][C]18.15[/C][C]16.6197[/C][C]1.53029[/C][/ROW]
[ROW][C]219[/C][C]11.15[/C][C]12.3536[/C][C]-1.2036[/C][/ROW]
[ROW][C]220[/C][C]15.65[/C][C]16.3866[/C][C]-0.736613[/C][/ROW]
[ROW][C]221[/C][C]17.75[/C][C]15.4362[/C][C]2.31377[/C][/ROW]
[ROW][C]222[/C][C]7.65[/C][C]11.4765[/C][C]-3.82648[/C][/ROW]
[ROW][C]223[/C][C]12.35[/C][C]14.3392[/C][C]-1.98916[/C][/ROW]
[ROW][C]224[/C][C]15.6[/C][C]14.1314[/C][C]1.46859[/C][/ROW]
[ROW][C]225[/C][C]19.3[/C][C]16.6743[/C][C]2.62574[/C][/ROW]
[ROW][C]226[/C][C]15.2[/C][C]12.4992[/C][C]2.70082[/C][/ROW]
[ROW][C]227[/C][C]17.1[/C][C]15.6768[/C][C]1.42321[/C][/ROW]
[ROW][C]228[/C][C]15.6[/C][C]13.8446[/C][C]1.75542[/C][/ROW]
[ROW][C]229[/C][C]18.4[/C][C]14.0567[/C][C]4.3433[/C][/ROW]
[ROW][C]230[/C][C]19.05[/C][C]16.1103[/C][C]2.93969[/C][/ROW]
[ROW][C]231[/C][C]18.55[/C][C]16.0091[/C][C]2.54086[/C][/ROW]
[ROW][C]232[/C][C]19.1[/C][C]15.7177[/C][C]3.38229[/C][/ROW]
[ROW][C]233[/C][C]13.1[/C][C]13.6885[/C][C]-0.588523[/C][/ROW]
[ROW][C]234[/C][C]12.85[/C][C]16.2463[/C][C]-3.39632[/C][/ROW]
[ROW][C]235[/C][C]9.5[/C][C]12.0954[/C][C]-2.59544[/C][/ROW]
[ROW][C]236[/C][C]4.5[/C][C]11.2634[/C][C]-6.76343[/C][/ROW]
[ROW][C]237[/C][C]11.85[/C][C]12.5989[/C][C]-0.748894[/C][/ROW]
[ROW][C]238[/C][C]13.6[/C][C]14.4314[/C][C]-0.831369[/C][/ROW]
[ROW][C]239[/C][C]11.7[/C][C]12.099[/C][C]-0.399049[/C][/ROW]
[ROW][C]240[/C][C]12.4[/C][C]13.2653[/C][C]-0.865302[/C][/ROW]
[ROW][C]241[/C][C]13.35[/C][C]14.5353[/C][C]-1.18534[/C][/ROW]
[ROW][C]242[/C][C]11.4[/C][C]12.8453[/C][C]-1.44527[/C][/ROW]
[ROW][C]243[/C][C]14.9[/C][C]14.6589[/C][C]0.241105[/C][/ROW]
[ROW][C]244[/C][C]19.9[/C][C]17.8713[/C][C]2.02872[/C][/ROW]
[ROW][C]245[/C][C]11.2[/C][C]14.6228[/C][C]-3.42284[/C][/ROW]
[ROW][C]246[/C][C]14.6[/C][C]14.8893[/C][C]-0.289255[/C][/ROW]
[ROW][C]247[/C][C]17.6[/C][C]16.8403[/C][C]0.759704[/C][/ROW]
[ROW][C]248[/C][C]14.05[/C][C]13.8863[/C][C]0.163727[/C][/ROW]
[ROW][C]249[/C][C]16.1[/C][C]15.1468[/C][C]0.953235[/C][/ROW]
[ROW][C]250[/C][C]13.35[/C][C]14.5257[/C][C]-1.17571[/C][/ROW]
[ROW][C]251[/C][C]11.85[/C][C]15.2446[/C][C]-3.39457[/C][/ROW]
[ROW][C]252[/C][C]11.95[/C][C]13.1666[/C][C]-1.21656[/C][/ROW]
[ROW][C]253[/C][C]14.75[/C][C]14.1653[/C][C]0.584745[/C][/ROW]
[ROW][C]254[/C][C]15.15[/C][C]13.0373[/C][C]2.11272[/C][/ROW]
[ROW][C]255[/C][C]13.2[/C][C]15.8768[/C][C]-2.67681[/C][/ROW]
[ROW][C]256[/C][C]16.85[/C][C]15.8755[/C][C]0.974455[/C][/ROW]
[ROW][C]257[/C][C]7.85[/C][C]12.7591[/C][C]-4.90915[/C][/ROW]
[ROW][C]258[/C][C]7.7[/C][C]13.1428[/C][C]-5.44278[/C][/ROW]
[ROW][C]259[/C][C]12.6[/C][C]14.9057[/C][C]-2.30565[/C][/ROW]
[ROW][C]260[/C][C]7.85[/C][C]14.7528[/C][C]-6.90284[/C][/ROW]
[ROW][C]261[/C][C]10.95[/C][C]12.1277[/C][C]-1.17766[/C][/ROW]
[ROW][C]262[/C][C]12.35[/C][C]14.8857[/C][C]-2.53571[/C][/ROW]
[ROW][C]263[/C][C]9.95[/C][C]13.2438[/C][C]-3.29379[/C][/ROW]
[ROW][C]264[/C][C]14.9[/C][C]14.1354[/C][C]0.764595[/C][/ROW]
[ROW][C]265[/C][C]16.65[/C][C]14.9407[/C][C]1.70931[/C][/ROW]
[ROW][C]266[/C][C]13.4[/C][C]13.126[/C][C]0.274045[/C][/ROW]
[ROW][C]267[/C][C]13.95[/C][C]14.7645[/C][C]-0.814493[/C][/ROW]
[ROW][C]268[/C][C]15.7[/C][C]14.6619[/C][C]1.03814[/C][/ROW]
[ROW][C]269[/C][C]16.85[/C][C]15.4961[/C][C]1.35389[/C][/ROW]
[ROW][C]270[/C][C]10.95[/C][C]12.3765[/C][C]-1.42654[/C][/ROW]
[ROW][C]271[/C][C]15.35[/C][C]15.3847[/C][C]-0.0346729[/C][/ROW]
[ROW][C]272[/C][C]12.2[/C][C]12.7943[/C][C]-0.594272[/C][/ROW]
[ROW][C]273[/C][C]15.1[/C][C]13.5754[/C][C]1.52455[/C][/ROW]
[ROW][C]274[/C][C]17.75[/C][C]15.7499[/C][C]2.00008[/C][/ROW]
[ROW][C]275[/C][C]15.2[/C][C]14.6281[/C][C]0.571877[/C][/ROW]
[ROW][C]276[/C][C]14.6[/C][C]15.2317[/C][C]-0.631742[/C][/ROW]
[ROW][C]277[/C][C]16.65[/C][C]15.7415[/C][C]0.90847[/C][/ROW]
[ROW][C]278[/C][C]8.1[/C][C]10.8519[/C][C]-2.75195[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
112.912.5550.345006
212.211.04861.15138
312.812.1670.632995
47.411.1032-3.7032
56.710.7085-4.00853
612.613.6264-1.02644
714.811.33773.46231
813.39.122284.17772
911.110.65490.445131
108.212.3143-4.11427
1111.411.7347-0.334685
126.410.9787-4.57871
1310.69.111041.48896
141212.6087-0.608659
156.36.91964-0.619642
1611.39.16932.1307
1711.911.78910.110907
189.310.4539-1.1539
199.611.6318-2.03183
20109.518990.481007
216.410.7001-4.30006
2213.810.67763.12242
2310.814.5305-3.73052
2413.812.82090.979097
2511.710.49521.20476
2610.914.6051-3.70508
2716.112.17393.92608
2813.49.962413.43759
299.911.1596-1.25958
3011.511.30280.197172
318.38.71733-0.417328
3211.711.36980.330198
33910.0991-1.09907
349.711.4785-1.7785
3510.88.709732.09027
3610.38.809491.49051
3710.411.2132-0.813218
3812.710.67622.02382
399.311.8764-2.57638
4011.812.1128-0.312824
415.910.0919-4.19186
4211.411.36260.0373626
431311.38811.61194
4410.811.6297-0.82974
4512.37.913264.38674
4611.313.575-2.27504
4711.88.923732.87627
487.99.41329-1.51329
4912.79.387453.31255
5012.39.704482.59552
5111.610.64490.955112
526.76.92664-0.226644
5310.911.1317-0.231719
5412.112.05540.0446019
5513.39.757663.54234
5610.19.870510.229488
575.711.2255-5.52552
5814.39.778354.52165
5988.16126-0.161258
6013.310.40552.89446
619.312.1017-2.80165
6212.512.38770.112315
637.68.54385-0.943851
6415.913.43312.46693
659.212.9183-3.71833
669.18.501070.598926
6711.112.577-1.47701
681313.9787-0.978677
6914.512.61691.88307
7012.211.00041.19956
7112.312.9123-0.612326
7211.410.77560.624379
738.89.45741-0.657413
7414.610.683.92001
7512.610.81671.78334
761311.75971.24034
7712.611.04691.55312
7813.212.0261.17396
799.99.078360.821636
807.79.30267-1.60267
8110.510.677-0.17704
8213.410.80132.59874
8310.910.01580.884215
844.39.5848-5.2848
8510.310.9508-0.650795
8611.810.13871.66128
8711.28.890232.30977
8811.49.280592.11941
898.610.3442-1.74422
9013.212.06871.1313
9112.68.596464.00354
925.610.278-4.67799
939.911.4235-1.52349
948.89.88668-1.08668
957.710.1181-2.41814
96911.3503-2.35028
977.311.2046-3.90459
9811.49.828841.57116
9913.610.58293.01709
1007.910.4055-2.50554
10110.78.435892.26411
10210.310.3021-0.00213422
1038.39.15024-0.850237
1049.610.9184-1.31838
10514.29.819844.38016
1068.510.0022-1.50217
10713.59.950523.54948
1084.99.93989-5.03989
1096.48.3675-1.9675
1109.610.7774-1.17735
11111.611.31570.284271
11211.110.38750.712484
1134.3511.3006-6.95062
11412.711.68521.01476
11518.115.31462.78537
11617.8515.83012.01994
11716.616.38670.213286
11812.612.23460.365394
11917.118.403-1.30299
12019.116.87942.22056
12116.115.62130.478691
12213.3512.83760.512394
12318.416.67461.72538
12414.710.49274.20732
12510.613.308-2.70796
12612.613.4542-0.854175
12716.214.77921.42083
12813.613.10480.495151
12918.915.86293.03705
13014.113.50010.599904
13114.513.87130.628718
13216.1516.5759-0.425919
13314.7513.72141.02859
13414.813.26591.53412
13512.4512.6206-0.1706
13612.6512.55180.0981743
13717.3514.53752.81253
1388.610.103-1.50298
13918.416.07072.32932
14016.114.06082.03915
14111.612.4265-0.826478
14217.7516.27981.47023
14315.2514.28460.965417
14417.6514.2023.44802
14516.3516.28220.0677638
14617.6516.46781.18224
14713.614.2755-0.675474
14814.3514.3847-0.0347173
14914.7514.9787-0.228656
15018.2516.70081.54925
1519.916.2317-6.33165
1521614.03011.96989
15318.2516.142.11003
15416.8517.5979-0.747912
15514.613.35171.24831
15613.8513.9764-0.126449
15718.9516.51672.43329
15815.614.5671.033
15914.8516.4198-1.56978
16011.7514.186-2.436
16118.4516.39412.05592
16215.913.69982.20024
16317.117.5388-0.438765
16416.19.092157.00785
16519.918.72591.1741
16610.9511.2946-0.344619
16718.4516.19282.25716
16815.114.56790.532103
1691515.3495-0.349491
17011.3513.7546-2.4046
17115.9514.42361.52639
17218.115.40972.69028
17314.616.6059-2.00594
17415.416.4188-1.01881
17515.416.358-0.958034
17617.614.5823.01803
17713.3514.2478-0.89783
17819.116.72532.37466
17915.3516.7172-1.36717
1807.611.6406-4.04062
18113.414.863-1.46298
18213.916.2819-2.38194
18319.116.02713.07292
18415.2514.93990.310059
18512.915.7529-2.8529
18616.115.57340.526583
18717.3515.53941.81057
18813.1515.6773-2.52733
18912.1515.7599-3.60994
19012.612.15770.442267
19110.3513.1295-2.77948
19215.413.74221.65781
1939.613.2849-3.68493
19418.214.95463.24545
19513.614.7227-1.12272
19614.8513.54781.30223
19714.7516.3011-1.55108
19814.113.53990.560124
19914.914.13520.764836
20016.2515.56140.688621
20119.2518.47510.774914
20213.613.39280.207235
20313.615.5489-1.94888
20415.6515.7732-0.123195
20512.7514.2562-1.50622
20614.613.68530.914723
2079.8510.3869-0.536938
20812.6512.49720.152812
20919.215.44173.75825
21016.614.45662.14345
21111.211.9675-0.767506
21215.2515.375-0.125028
21311.913.5023-1.60226
21413.214.224-1.024
21516.3516.542-0.191978
21612.413.1287-0.728723
21715.8514.23291.61705
21818.1516.61971.53029
21911.1512.3536-1.2036
22015.6516.3866-0.736613
22117.7515.43622.31377
2227.6511.4765-3.82648
22312.3514.3392-1.98916
22415.614.13141.46859
22519.316.67432.62574
22615.212.49922.70082
22717.115.67681.42321
22815.613.84461.75542
22918.414.05674.3433
23019.0516.11032.93969
23118.5516.00912.54086
23219.115.71773.38229
23313.113.6885-0.588523
23412.8516.2463-3.39632
2359.512.0954-2.59544
2364.511.2634-6.76343
23711.8512.5989-0.748894
23813.614.4314-0.831369
23911.712.099-0.399049
24012.413.2653-0.865302
24113.3514.5353-1.18534
24211.412.8453-1.44527
24314.914.65890.241105
24419.917.87132.02872
24511.214.6228-3.42284
24614.614.8893-0.289255
24717.616.84030.759704
24814.0513.88630.163727
24916.115.14680.953235
25013.3514.5257-1.17571
25111.8515.2446-3.39457
25211.9513.1666-1.21656
25314.7514.16530.584745
25415.1513.03732.11272
25513.215.8768-2.67681
25616.8515.87550.974455
2577.8512.7591-4.90915
2587.713.1428-5.44278
25912.614.9057-2.30565
2607.8514.7528-6.90284
26110.9512.1277-1.17766
26212.3514.8857-2.53571
2639.9513.2438-3.29379
26414.914.13540.764595
26516.6514.94071.70931
26613.413.1260.274045
26713.9514.7645-0.814493
26815.714.66191.03814
26916.8515.49611.35389
27010.9512.3765-1.42654
27115.3515.3847-0.0346729
27212.212.7943-0.594272
27315.113.57541.52455
27417.7515.74992.00008
27515.214.62810.571877
27614.615.2317-0.631742
27716.6515.74150.90847
2788.110.8519-2.75195







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
140.2871380.5742750.712862
150.1636460.3272910.836354
160.08092190.1618440.919078
170.2250470.4500930.774953
180.1853560.3707120.814644
190.1171860.2343720.882814
200.07136280.1427260.928637
210.04324320.08648640.956757
220.02450130.04900270.975499
230.1193330.2386660.880667
240.09354170.1870830.906458
250.06612370.1322470.933876
260.05802140.1160430.941979
270.06595450.1319090.934046
280.0482370.09647410.951763
290.03296140.06592280.967039
300.03184660.06369310.968153
310.02215320.04430640.977847
320.03247850.06495710.967521
330.05816410.1163280.941836
340.04449250.08898510.955507
350.0327790.0655580.967221
360.03049950.06099890.969501
370.02192910.04385820.978071
380.02439010.04878020.97561
390.02889190.05778390.971108
400.02855750.0571150.971442
410.04180980.08361950.95819
420.0329130.06582590.967087
430.0507030.1014060.949297
440.04063220.08126430.959368
450.04937520.09875030.950625
460.04470420.08940840.955296
470.07002510.140050.929975
480.06279490.125590.937205
490.08795620.1759120.912044
500.07863350.1572670.921367
510.06189250.1237850.938108
520.07507370.1501470.924926
530.06605860.1321170.933941
540.05530910.1106180.944691
550.1679250.3358490.832075
560.1400190.2800380.859981
570.4222210.8444430.577779
580.4210430.8420870.578957
590.3771160.7542320.622884
600.3791520.7583040.620848
610.3831580.7663160.616842
620.340980.6819590.65902
630.5371490.9257020.462851
640.59870.8025990.4013
650.6406710.7186570.359329
660.6348710.7302570.365129
670.6064320.7871360.393568
680.5826290.8347410.417371
690.5888390.8223220.411161
700.5584320.8831350.441568
710.5193040.9613920.480696
720.4869780.9739550.513022
730.4675680.9351350.532432
740.5184050.9631910.481595
750.5059790.9880430.494021
760.4889450.977890.511055
770.4560690.9121370.543931
780.4555930.9111850.544407
790.4198780.8397550.580122
800.4100320.8200640.589968
810.3739130.7478250.626087
820.3827320.7654630.617268
830.3492660.6985320.650734
840.579340.8413190.42066
850.5445010.9109990.455499
860.5173730.9652540.482627
870.5092420.9815150.490758
880.49320.98640.5068
890.5043140.9913710.495686
900.4733250.946650.526675
910.5230860.9538280.476914
920.7005060.5989870.299494
930.681680.636640.31832
940.6720980.6558040.327902
950.6836620.6326760.316338
960.6798470.6403070.320153
970.7448550.510290.255145
980.7211650.557670.278835
990.7305880.5388240.269412
1000.7416480.5167040.258352
1010.7325920.5348160.267408
1020.7013720.5972550.298628
1030.6858890.6282220.314111
1040.6630080.6739840.336992
1050.7422760.5154480.257724
1060.721160.5576790.27884
1070.767450.46510.23255
1080.8466990.3066020.153301
1090.845760.308480.15424
1100.8295290.3409430.170471
1110.8105990.3788010.189401
1120.7851940.4296110.214806
1130.8484780.3030440.151522
1140.8891530.2216950.110847
1150.9253340.1493330.0746664
1160.9285430.1429150.0714574
1170.9177410.1645190.0822595
1180.9051930.1896140.094807
1190.8945050.2109890.105495
1200.8974190.2051610.102581
1210.8814040.2371920.118596
1220.8667430.2665140.133257
1230.858910.2821810.14109
1240.8976020.2047970.102398
1250.9045530.1908950.0954473
1260.891240.2175190.10876
1270.8793220.2413550.120678
1280.8614750.277050.138525
1290.869780.260440.13022
1300.851790.296420.14821
1310.832410.335180.16759
1320.8117770.3764450.188223
1330.7909740.4180520.209026
1340.774080.451840.22592
1350.7538940.4922120.246106
1360.7255420.5489150.274458
1370.7375710.5248580.262429
1380.7264380.5471250.273562
1390.7187460.5625090.281254
1400.7089290.5821420.291071
1410.7155050.568990.284495
1420.6959710.6080570.304029
1430.6677220.6645560.332278
1440.7042260.5915480.295774
1450.6731230.6537540.326877
1460.6480990.7038030.351901
1470.619820.7603610.38018
1480.5856540.8286920.414346
1490.5524270.8951450.447573
1500.5303410.9393190.469659
1510.7827770.4344460.217223
1520.7711180.4577640.228882
1530.7636790.4726430.236321
1540.7383660.5232680.261634
1550.7179490.5641020.282051
1560.6877340.6245320.312266
1570.6791050.6417910.320895
1580.6534480.6931040.346552
1590.6439350.712130.356065
1600.6485340.7029320.351466
1610.6357760.7284480.364224
1620.6292120.7415770.370788
1630.6002060.7995880.399794
1640.9079570.1840860.0920432
1650.893450.21310.10655
1660.8875540.2248920.112446
1670.8811280.2377430.118872
1680.8672910.2654180.132709
1690.8483370.3033260.151663
1700.8560650.287870.143935
1710.847150.30570.15285
1720.8462790.3074420.153721
1730.846990.3060190.15301
1740.8299710.3400580.170029
1750.8113060.3773880.188694
1760.8324350.335130.167565
1770.8117260.3765490.188274
1780.8078910.3842180.192109
1790.7986150.402770.201385
1800.8294740.3410530.170526
1810.8157650.3684690.184235
1820.8385520.3228950.161448
1830.8637910.2724180.136209
1840.8422230.3155540.157777
1850.8771970.2456060.122803
1860.856770.286460.14323
1870.8469340.3061320.153066
1880.8641760.2716480.135824
1890.9098170.1803660.090183
1900.8973160.2053690.102684
1910.8979550.2040910.102045
1920.887280.2254390.11272
1930.9054320.1891360.0945679
1940.9094020.1811950.0905977
1950.8970620.2058760.102938
1960.896410.207180.10359
1970.8955030.2089930.104497
1980.8767180.2465650.123282
1990.8556090.2887810.144391
2000.8325850.334830.167415
2010.8111430.3777140.188857
2020.7842660.4314690.215734
2030.7979510.4040990.202049
2040.7753770.4492460.224623
2050.7516630.4966730.248337
2060.7352280.5295430.264772
2070.7490320.5019360.250968
2080.7249430.5501150.275057
2090.7246280.5507430.275372
2100.7596160.4807680.240384
2110.7444890.5110230.255511
2120.7087660.5824690.291234
2130.6929610.6140790.307039
2140.6679380.6641240.332062
2150.6275110.7449780.372489
2160.592250.8155010.40775
2170.5960130.8079730.403987
2180.5614060.8771880.438594
2190.5269770.9460470.473023
2200.4896250.9792510.510375
2210.4776410.9552810.522359
2220.5478840.9042330.452116
2230.5139890.9720220.486011
2240.5728240.8543520.427176
2250.5545590.8908810.445441
2260.5839140.8321730.416086
2270.5465590.9068830.453441
2280.5944060.8111880.405594
2290.8433920.3132170.156608
2300.8694330.2611340.130567
2310.8465540.3068910.153446
2320.8752140.2495710.124786
2330.8589470.2821060.141053
2340.8449380.3101240.155062
2350.8172250.3655490.182775
2360.9072120.1855770.0927885
2370.8858650.228270.114135
2380.8627020.2745970.137298
2390.8607020.2785960.139298
2400.8254930.3490130.174507
2410.793260.413480.20674
2420.7521710.4956580.247829
2430.7201340.5597320.279866
2440.6673470.6653050.332653
2450.6212880.7574240.378712
2460.598850.80230.40115
2470.5393670.9212650.460633
2480.6759180.6481650.324082
2490.6235150.7529710.376485
2500.5899560.8200870.410044
2510.5527710.8944590.447229
2520.5941310.8117380.405869
2530.6720260.6559480.327974
2540.655780.688440.34422
2550.7458680.5082640.254132
2560.7410480.5179040.258952
2570.673130.653740.32687
2580.6747010.6505990.325299
2590.5776320.8447360.422368
2600.8859740.2280520.114026
2610.8212480.3575050.178752
2620.8912320.2175350.108768
2630.9065830.1868350.0934174
2640.8761450.247710.123855

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
14 & 0.287138 & 0.574275 & 0.712862 \tabularnewline
15 & 0.163646 & 0.327291 & 0.836354 \tabularnewline
16 & 0.0809219 & 0.161844 & 0.919078 \tabularnewline
17 & 0.225047 & 0.450093 & 0.774953 \tabularnewline
18 & 0.185356 & 0.370712 & 0.814644 \tabularnewline
19 & 0.117186 & 0.234372 & 0.882814 \tabularnewline
20 & 0.0713628 & 0.142726 & 0.928637 \tabularnewline
21 & 0.0432432 & 0.0864864 & 0.956757 \tabularnewline
22 & 0.0245013 & 0.0490027 & 0.975499 \tabularnewline
23 & 0.119333 & 0.238666 & 0.880667 \tabularnewline
24 & 0.0935417 & 0.187083 & 0.906458 \tabularnewline
25 & 0.0661237 & 0.132247 & 0.933876 \tabularnewline
26 & 0.0580214 & 0.116043 & 0.941979 \tabularnewline
27 & 0.0659545 & 0.131909 & 0.934046 \tabularnewline
28 & 0.048237 & 0.0964741 & 0.951763 \tabularnewline
29 & 0.0329614 & 0.0659228 & 0.967039 \tabularnewline
30 & 0.0318466 & 0.0636931 & 0.968153 \tabularnewline
31 & 0.0221532 & 0.0443064 & 0.977847 \tabularnewline
32 & 0.0324785 & 0.0649571 & 0.967521 \tabularnewline
33 & 0.0581641 & 0.116328 & 0.941836 \tabularnewline
34 & 0.0444925 & 0.0889851 & 0.955507 \tabularnewline
35 & 0.032779 & 0.065558 & 0.967221 \tabularnewline
36 & 0.0304995 & 0.0609989 & 0.969501 \tabularnewline
37 & 0.0219291 & 0.0438582 & 0.978071 \tabularnewline
38 & 0.0243901 & 0.0487802 & 0.97561 \tabularnewline
39 & 0.0288919 & 0.0577839 & 0.971108 \tabularnewline
40 & 0.0285575 & 0.057115 & 0.971442 \tabularnewline
41 & 0.0418098 & 0.0836195 & 0.95819 \tabularnewline
42 & 0.032913 & 0.0658259 & 0.967087 \tabularnewline
43 & 0.050703 & 0.101406 & 0.949297 \tabularnewline
44 & 0.0406322 & 0.0812643 & 0.959368 \tabularnewline
45 & 0.0493752 & 0.0987503 & 0.950625 \tabularnewline
46 & 0.0447042 & 0.0894084 & 0.955296 \tabularnewline
47 & 0.0700251 & 0.14005 & 0.929975 \tabularnewline
48 & 0.0627949 & 0.12559 & 0.937205 \tabularnewline
49 & 0.0879562 & 0.175912 & 0.912044 \tabularnewline
50 & 0.0786335 & 0.157267 & 0.921367 \tabularnewline
51 & 0.0618925 & 0.123785 & 0.938108 \tabularnewline
52 & 0.0750737 & 0.150147 & 0.924926 \tabularnewline
53 & 0.0660586 & 0.132117 & 0.933941 \tabularnewline
54 & 0.0553091 & 0.110618 & 0.944691 \tabularnewline
55 & 0.167925 & 0.335849 & 0.832075 \tabularnewline
56 & 0.140019 & 0.280038 & 0.859981 \tabularnewline
57 & 0.422221 & 0.844443 & 0.577779 \tabularnewline
58 & 0.421043 & 0.842087 & 0.578957 \tabularnewline
59 & 0.377116 & 0.754232 & 0.622884 \tabularnewline
60 & 0.379152 & 0.758304 & 0.620848 \tabularnewline
61 & 0.383158 & 0.766316 & 0.616842 \tabularnewline
62 & 0.34098 & 0.681959 & 0.65902 \tabularnewline
63 & 0.537149 & 0.925702 & 0.462851 \tabularnewline
64 & 0.5987 & 0.802599 & 0.4013 \tabularnewline
65 & 0.640671 & 0.718657 & 0.359329 \tabularnewline
66 & 0.634871 & 0.730257 & 0.365129 \tabularnewline
67 & 0.606432 & 0.787136 & 0.393568 \tabularnewline
68 & 0.582629 & 0.834741 & 0.417371 \tabularnewline
69 & 0.588839 & 0.822322 & 0.411161 \tabularnewline
70 & 0.558432 & 0.883135 & 0.441568 \tabularnewline
71 & 0.519304 & 0.961392 & 0.480696 \tabularnewline
72 & 0.486978 & 0.973955 & 0.513022 \tabularnewline
73 & 0.467568 & 0.935135 & 0.532432 \tabularnewline
74 & 0.518405 & 0.963191 & 0.481595 \tabularnewline
75 & 0.505979 & 0.988043 & 0.494021 \tabularnewline
76 & 0.488945 & 0.97789 & 0.511055 \tabularnewline
77 & 0.456069 & 0.912137 & 0.543931 \tabularnewline
78 & 0.455593 & 0.911185 & 0.544407 \tabularnewline
79 & 0.419878 & 0.839755 & 0.580122 \tabularnewline
80 & 0.410032 & 0.820064 & 0.589968 \tabularnewline
81 & 0.373913 & 0.747825 & 0.626087 \tabularnewline
82 & 0.382732 & 0.765463 & 0.617268 \tabularnewline
83 & 0.349266 & 0.698532 & 0.650734 \tabularnewline
84 & 0.57934 & 0.841319 & 0.42066 \tabularnewline
85 & 0.544501 & 0.910999 & 0.455499 \tabularnewline
86 & 0.517373 & 0.965254 & 0.482627 \tabularnewline
87 & 0.509242 & 0.981515 & 0.490758 \tabularnewline
88 & 0.4932 & 0.9864 & 0.5068 \tabularnewline
89 & 0.504314 & 0.991371 & 0.495686 \tabularnewline
90 & 0.473325 & 0.94665 & 0.526675 \tabularnewline
91 & 0.523086 & 0.953828 & 0.476914 \tabularnewline
92 & 0.700506 & 0.598987 & 0.299494 \tabularnewline
93 & 0.68168 & 0.63664 & 0.31832 \tabularnewline
94 & 0.672098 & 0.655804 & 0.327902 \tabularnewline
95 & 0.683662 & 0.632676 & 0.316338 \tabularnewline
96 & 0.679847 & 0.640307 & 0.320153 \tabularnewline
97 & 0.744855 & 0.51029 & 0.255145 \tabularnewline
98 & 0.721165 & 0.55767 & 0.278835 \tabularnewline
99 & 0.730588 & 0.538824 & 0.269412 \tabularnewline
100 & 0.741648 & 0.516704 & 0.258352 \tabularnewline
101 & 0.732592 & 0.534816 & 0.267408 \tabularnewline
102 & 0.701372 & 0.597255 & 0.298628 \tabularnewline
103 & 0.685889 & 0.628222 & 0.314111 \tabularnewline
104 & 0.663008 & 0.673984 & 0.336992 \tabularnewline
105 & 0.742276 & 0.515448 & 0.257724 \tabularnewline
106 & 0.72116 & 0.557679 & 0.27884 \tabularnewline
107 & 0.76745 & 0.4651 & 0.23255 \tabularnewline
108 & 0.846699 & 0.306602 & 0.153301 \tabularnewline
109 & 0.84576 & 0.30848 & 0.15424 \tabularnewline
110 & 0.829529 & 0.340943 & 0.170471 \tabularnewline
111 & 0.810599 & 0.378801 & 0.189401 \tabularnewline
112 & 0.785194 & 0.429611 & 0.214806 \tabularnewline
113 & 0.848478 & 0.303044 & 0.151522 \tabularnewline
114 & 0.889153 & 0.221695 & 0.110847 \tabularnewline
115 & 0.925334 & 0.149333 & 0.0746664 \tabularnewline
116 & 0.928543 & 0.142915 & 0.0714574 \tabularnewline
117 & 0.917741 & 0.164519 & 0.0822595 \tabularnewline
118 & 0.905193 & 0.189614 & 0.094807 \tabularnewline
119 & 0.894505 & 0.210989 & 0.105495 \tabularnewline
120 & 0.897419 & 0.205161 & 0.102581 \tabularnewline
121 & 0.881404 & 0.237192 & 0.118596 \tabularnewline
122 & 0.866743 & 0.266514 & 0.133257 \tabularnewline
123 & 0.85891 & 0.282181 & 0.14109 \tabularnewline
124 & 0.897602 & 0.204797 & 0.102398 \tabularnewline
125 & 0.904553 & 0.190895 & 0.0954473 \tabularnewline
126 & 0.89124 & 0.217519 & 0.10876 \tabularnewline
127 & 0.879322 & 0.241355 & 0.120678 \tabularnewline
128 & 0.861475 & 0.27705 & 0.138525 \tabularnewline
129 & 0.86978 & 0.26044 & 0.13022 \tabularnewline
130 & 0.85179 & 0.29642 & 0.14821 \tabularnewline
131 & 0.83241 & 0.33518 & 0.16759 \tabularnewline
132 & 0.811777 & 0.376445 & 0.188223 \tabularnewline
133 & 0.790974 & 0.418052 & 0.209026 \tabularnewline
134 & 0.77408 & 0.45184 & 0.22592 \tabularnewline
135 & 0.753894 & 0.492212 & 0.246106 \tabularnewline
136 & 0.725542 & 0.548915 & 0.274458 \tabularnewline
137 & 0.737571 & 0.524858 & 0.262429 \tabularnewline
138 & 0.726438 & 0.547125 & 0.273562 \tabularnewline
139 & 0.718746 & 0.562509 & 0.281254 \tabularnewline
140 & 0.708929 & 0.582142 & 0.291071 \tabularnewline
141 & 0.715505 & 0.56899 & 0.284495 \tabularnewline
142 & 0.695971 & 0.608057 & 0.304029 \tabularnewline
143 & 0.667722 & 0.664556 & 0.332278 \tabularnewline
144 & 0.704226 & 0.591548 & 0.295774 \tabularnewline
145 & 0.673123 & 0.653754 & 0.326877 \tabularnewline
146 & 0.648099 & 0.703803 & 0.351901 \tabularnewline
147 & 0.61982 & 0.760361 & 0.38018 \tabularnewline
148 & 0.585654 & 0.828692 & 0.414346 \tabularnewline
149 & 0.552427 & 0.895145 & 0.447573 \tabularnewline
150 & 0.530341 & 0.939319 & 0.469659 \tabularnewline
151 & 0.782777 & 0.434446 & 0.217223 \tabularnewline
152 & 0.771118 & 0.457764 & 0.228882 \tabularnewline
153 & 0.763679 & 0.472643 & 0.236321 \tabularnewline
154 & 0.738366 & 0.523268 & 0.261634 \tabularnewline
155 & 0.717949 & 0.564102 & 0.282051 \tabularnewline
156 & 0.687734 & 0.624532 & 0.312266 \tabularnewline
157 & 0.679105 & 0.641791 & 0.320895 \tabularnewline
158 & 0.653448 & 0.693104 & 0.346552 \tabularnewline
159 & 0.643935 & 0.71213 & 0.356065 \tabularnewline
160 & 0.648534 & 0.702932 & 0.351466 \tabularnewline
161 & 0.635776 & 0.728448 & 0.364224 \tabularnewline
162 & 0.629212 & 0.741577 & 0.370788 \tabularnewline
163 & 0.600206 & 0.799588 & 0.399794 \tabularnewline
164 & 0.907957 & 0.184086 & 0.0920432 \tabularnewline
165 & 0.89345 & 0.2131 & 0.10655 \tabularnewline
166 & 0.887554 & 0.224892 & 0.112446 \tabularnewline
167 & 0.881128 & 0.237743 & 0.118872 \tabularnewline
168 & 0.867291 & 0.265418 & 0.132709 \tabularnewline
169 & 0.848337 & 0.303326 & 0.151663 \tabularnewline
170 & 0.856065 & 0.28787 & 0.143935 \tabularnewline
171 & 0.84715 & 0.3057 & 0.15285 \tabularnewline
172 & 0.846279 & 0.307442 & 0.153721 \tabularnewline
173 & 0.84699 & 0.306019 & 0.15301 \tabularnewline
174 & 0.829971 & 0.340058 & 0.170029 \tabularnewline
175 & 0.811306 & 0.377388 & 0.188694 \tabularnewline
176 & 0.832435 & 0.33513 & 0.167565 \tabularnewline
177 & 0.811726 & 0.376549 & 0.188274 \tabularnewline
178 & 0.807891 & 0.384218 & 0.192109 \tabularnewline
179 & 0.798615 & 0.40277 & 0.201385 \tabularnewline
180 & 0.829474 & 0.341053 & 0.170526 \tabularnewline
181 & 0.815765 & 0.368469 & 0.184235 \tabularnewline
182 & 0.838552 & 0.322895 & 0.161448 \tabularnewline
183 & 0.863791 & 0.272418 & 0.136209 \tabularnewline
184 & 0.842223 & 0.315554 & 0.157777 \tabularnewline
185 & 0.877197 & 0.245606 & 0.122803 \tabularnewline
186 & 0.85677 & 0.28646 & 0.14323 \tabularnewline
187 & 0.846934 & 0.306132 & 0.153066 \tabularnewline
188 & 0.864176 & 0.271648 & 0.135824 \tabularnewline
189 & 0.909817 & 0.180366 & 0.090183 \tabularnewline
190 & 0.897316 & 0.205369 & 0.102684 \tabularnewline
191 & 0.897955 & 0.204091 & 0.102045 \tabularnewline
192 & 0.88728 & 0.225439 & 0.11272 \tabularnewline
193 & 0.905432 & 0.189136 & 0.0945679 \tabularnewline
194 & 0.909402 & 0.181195 & 0.0905977 \tabularnewline
195 & 0.897062 & 0.205876 & 0.102938 \tabularnewline
196 & 0.89641 & 0.20718 & 0.10359 \tabularnewline
197 & 0.895503 & 0.208993 & 0.104497 \tabularnewline
198 & 0.876718 & 0.246565 & 0.123282 \tabularnewline
199 & 0.855609 & 0.288781 & 0.144391 \tabularnewline
200 & 0.832585 & 0.33483 & 0.167415 \tabularnewline
201 & 0.811143 & 0.377714 & 0.188857 \tabularnewline
202 & 0.784266 & 0.431469 & 0.215734 \tabularnewline
203 & 0.797951 & 0.404099 & 0.202049 \tabularnewline
204 & 0.775377 & 0.449246 & 0.224623 \tabularnewline
205 & 0.751663 & 0.496673 & 0.248337 \tabularnewline
206 & 0.735228 & 0.529543 & 0.264772 \tabularnewline
207 & 0.749032 & 0.501936 & 0.250968 \tabularnewline
208 & 0.724943 & 0.550115 & 0.275057 \tabularnewline
209 & 0.724628 & 0.550743 & 0.275372 \tabularnewline
210 & 0.759616 & 0.480768 & 0.240384 \tabularnewline
211 & 0.744489 & 0.511023 & 0.255511 \tabularnewline
212 & 0.708766 & 0.582469 & 0.291234 \tabularnewline
213 & 0.692961 & 0.614079 & 0.307039 \tabularnewline
214 & 0.667938 & 0.664124 & 0.332062 \tabularnewline
215 & 0.627511 & 0.744978 & 0.372489 \tabularnewline
216 & 0.59225 & 0.815501 & 0.40775 \tabularnewline
217 & 0.596013 & 0.807973 & 0.403987 \tabularnewline
218 & 0.561406 & 0.877188 & 0.438594 \tabularnewline
219 & 0.526977 & 0.946047 & 0.473023 \tabularnewline
220 & 0.489625 & 0.979251 & 0.510375 \tabularnewline
221 & 0.477641 & 0.955281 & 0.522359 \tabularnewline
222 & 0.547884 & 0.904233 & 0.452116 \tabularnewline
223 & 0.513989 & 0.972022 & 0.486011 \tabularnewline
224 & 0.572824 & 0.854352 & 0.427176 \tabularnewline
225 & 0.554559 & 0.890881 & 0.445441 \tabularnewline
226 & 0.583914 & 0.832173 & 0.416086 \tabularnewline
227 & 0.546559 & 0.906883 & 0.453441 \tabularnewline
228 & 0.594406 & 0.811188 & 0.405594 \tabularnewline
229 & 0.843392 & 0.313217 & 0.156608 \tabularnewline
230 & 0.869433 & 0.261134 & 0.130567 \tabularnewline
231 & 0.846554 & 0.306891 & 0.153446 \tabularnewline
232 & 0.875214 & 0.249571 & 0.124786 \tabularnewline
233 & 0.858947 & 0.282106 & 0.141053 \tabularnewline
234 & 0.844938 & 0.310124 & 0.155062 \tabularnewline
235 & 0.817225 & 0.365549 & 0.182775 \tabularnewline
236 & 0.907212 & 0.185577 & 0.0927885 \tabularnewline
237 & 0.885865 & 0.22827 & 0.114135 \tabularnewline
238 & 0.862702 & 0.274597 & 0.137298 \tabularnewline
239 & 0.860702 & 0.278596 & 0.139298 \tabularnewline
240 & 0.825493 & 0.349013 & 0.174507 \tabularnewline
241 & 0.79326 & 0.41348 & 0.20674 \tabularnewline
242 & 0.752171 & 0.495658 & 0.247829 \tabularnewline
243 & 0.720134 & 0.559732 & 0.279866 \tabularnewline
244 & 0.667347 & 0.665305 & 0.332653 \tabularnewline
245 & 0.621288 & 0.757424 & 0.378712 \tabularnewline
246 & 0.59885 & 0.8023 & 0.40115 \tabularnewline
247 & 0.539367 & 0.921265 & 0.460633 \tabularnewline
248 & 0.675918 & 0.648165 & 0.324082 \tabularnewline
249 & 0.623515 & 0.752971 & 0.376485 \tabularnewline
250 & 0.589956 & 0.820087 & 0.410044 \tabularnewline
251 & 0.552771 & 0.894459 & 0.447229 \tabularnewline
252 & 0.594131 & 0.811738 & 0.405869 \tabularnewline
253 & 0.672026 & 0.655948 & 0.327974 \tabularnewline
254 & 0.65578 & 0.68844 & 0.34422 \tabularnewline
255 & 0.745868 & 0.508264 & 0.254132 \tabularnewline
256 & 0.741048 & 0.517904 & 0.258952 \tabularnewline
257 & 0.67313 & 0.65374 & 0.32687 \tabularnewline
258 & 0.674701 & 0.650599 & 0.325299 \tabularnewline
259 & 0.577632 & 0.844736 & 0.422368 \tabularnewline
260 & 0.885974 & 0.228052 & 0.114026 \tabularnewline
261 & 0.821248 & 0.357505 & 0.178752 \tabularnewline
262 & 0.891232 & 0.217535 & 0.108768 \tabularnewline
263 & 0.906583 & 0.186835 & 0.0934174 \tabularnewline
264 & 0.876145 & 0.24771 & 0.123855 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]14[/C][C]0.287138[/C][C]0.574275[/C][C]0.712862[/C][/ROW]
[ROW][C]15[/C][C]0.163646[/C][C]0.327291[/C][C]0.836354[/C][/ROW]
[ROW][C]16[/C][C]0.0809219[/C][C]0.161844[/C][C]0.919078[/C][/ROW]
[ROW][C]17[/C][C]0.225047[/C][C]0.450093[/C][C]0.774953[/C][/ROW]
[ROW][C]18[/C][C]0.185356[/C][C]0.370712[/C][C]0.814644[/C][/ROW]
[ROW][C]19[/C][C]0.117186[/C][C]0.234372[/C][C]0.882814[/C][/ROW]
[ROW][C]20[/C][C]0.0713628[/C][C]0.142726[/C][C]0.928637[/C][/ROW]
[ROW][C]21[/C][C]0.0432432[/C][C]0.0864864[/C][C]0.956757[/C][/ROW]
[ROW][C]22[/C][C]0.0245013[/C][C]0.0490027[/C][C]0.975499[/C][/ROW]
[ROW][C]23[/C][C]0.119333[/C][C]0.238666[/C][C]0.880667[/C][/ROW]
[ROW][C]24[/C][C]0.0935417[/C][C]0.187083[/C][C]0.906458[/C][/ROW]
[ROW][C]25[/C][C]0.0661237[/C][C]0.132247[/C][C]0.933876[/C][/ROW]
[ROW][C]26[/C][C]0.0580214[/C][C]0.116043[/C][C]0.941979[/C][/ROW]
[ROW][C]27[/C][C]0.0659545[/C][C]0.131909[/C][C]0.934046[/C][/ROW]
[ROW][C]28[/C][C]0.048237[/C][C]0.0964741[/C][C]0.951763[/C][/ROW]
[ROW][C]29[/C][C]0.0329614[/C][C]0.0659228[/C][C]0.967039[/C][/ROW]
[ROW][C]30[/C][C]0.0318466[/C][C]0.0636931[/C][C]0.968153[/C][/ROW]
[ROW][C]31[/C][C]0.0221532[/C][C]0.0443064[/C][C]0.977847[/C][/ROW]
[ROW][C]32[/C][C]0.0324785[/C][C]0.0649571[/C][C]0.967521[/C][/ROW]
[ROW][C]33[/C][C]0.0581641[/C][C]0.116328[/C][C]0.941836[/C][/ROW]
[ROW][C]34[/C][C]0.0444925[/C][C]0.0889851[/C][C]0.955507[/C][/ROW]
[ROW][C]35[/C][C]0.032779[/C][C]0.065558[/C][C]0.967221[/C][/ROW]
[ROW][C]36[/C][C]0.0304995[/C][C]0.0609989[/C][C]0.969501[/C][/ROW]
[ROW][C]37[/C][C]0.0219291[/C][C]0.0438582[/C][C]0.978071[/C][/ROW]
[ROW][C]38[/C][C]0.0243901[/C][C]0.0487802[/C][C]0.97561[/C][/ROW]
[ROW][C]39[/C][C]0.0288919[/C][C]0.0577839[/C][C]0.971108[/C][/ROW]
[ROW][C]40[/C][C]0.0285575[/C][C]0.057115[/C][C]0.971442[/C][/ROW]
[ROW][C]41[/C][C]0.0418098[/C][C]0.0836195[/C][C]0.95819[/C][/ROW]
[ROW][C]42[/C][C]0.032913[/C][C]0.0658259[/C][C]0.967087[/C][/ROW]
[ROW][C]43[/C][C]0.050703[/C][C]0.101406[/C][C]0.949297[/C][/ROW]
[ROW][C]44[/C][C]0.0406322[/C][C]0.0812643[/C][C]0.959368[/C][/ROW]
[ROW][C]45[/C][C]0.0493752[/C][C]0.0987503[/C][C]0.950625[/C][/ROW]
[ROW][C]46[/C][C]0.0447042[/C][C]0.0894084[/C][C]0.955296[/C][/ROW]
[ROW][C]47[/C][C]0.0700251[/C][C]0.14005[/C][C]0.929975[/C][/ROW]
[ROW][C]48[/C][C]0.0627949[/C][C]0.12559[/C][C]0.937205[/C][/ROW]
[ROW][C]49[/C][C]0.0879562[/C][C]0.175912[/C][C]0.912044[/C][/ROW]
[ROW][C]50[/C][C]0.0786335[/C][C]0.157267[/C][C]0.921367[/C][/ROW]
[ROW][C]51[/C][C]0.0618925[/C][C]0.123785[/C][C]0.938108[/C][/ROW]
[ROW][C]52[/C][C]0.0750737[/C][C]0.150147[/C][C]0.924926[/C][/ROW]
[ROW][C]53[/C][C]0.0660586[/C][C]0.132117[/C][C]0.933941[/C][/ROW]
[ROW][C]54[/C][C]0.0553091[/C][C]0.110618[/C][C]0.944691[/C][/ROW]
[ROW][C]55[/C][C]0.167925[/C][C]0.335849[/C][C]0.832075[/C][/ROW]
[ROW][C]56[/C][C]0.140019[/C][C]0.280038[/C][C]0.859981[/C][/ROW]
[ROW][C]57[/C][C]0.422221[/C][C]0.844443[/C][C]0.577779[/C][/ROW]
[ROW][C]58[/C][C]0.421043[/C][C]0.842087[/C][C]0.578957[/C][/ROW]
[ROW][C]59[/C][C]0.377116[/C][C]0.754232[/C][C]0.622884[/C][/ROW]
[ROW][C]60[/C][C]0.379152[/C][C]0.758304[/C][C]0.620848[/C][/ROW]
[ROW][C]61[/C][C]0.383158[/C][C]0.766316[/C][C]0.616842[/C][/ROW]
[ROW][C]62[/C][C]0.34098[/C][C]0.681959[/C][C]0.65902[/C][/ROW]
[ROW][C]63[/C][C]0.537149[/C][C]0.925702[/C][C]0.462851[/C][/ROW]
[ROW][C]64[/C][C]0.5987[/C][C]0.802599[/C][C]0.4013[/C][/ROW]
[ROW][C]65[/C][C]0.640671[/C][C]0.718657[/C][C]0.359329[/C][/ROW]
[ROW][C]66[/C][C]0.634871[/C][C]0.730257[/C][C]0.365129[/C][/ROW]
[ROW][C]67[/C][C]0.606432[/C][C]0.787136[/C][C]0.393568[/C][/ROW]
[ROW][C]68[/C][C]0.582629[/C][C]0.834741[/C][C]0.417371[/C][/ROW]
[ROW][C]69[/C][C]0.588839[/C][C]0.822322[/C][C]0.411161[/C][/ROW]
[ROW][C]70[/C][C]0.558432[/C][C]0.883135[/C][C]0.441568[/C][/ROW]
[ROW][C]71[/C][C]0.519304[/C][C]0.961392[/C][C]0.480696[/C][/ROW]
[ROW][C]72[/C][C]0.486978[/C][C]0.973955[/C][C]0.513022[/C][/ROW]
[ROW][C]73[/C][C]0.467568[/C][C]0.935135[/C][C]0.532432[/C][/ROW]
[ROW][C]74[/C][C]0.518405[/C][C]0.963191[/C][C]0.481595[/C][/ROW]
[ROW][C]75[/C][C]0.505979[/C][C]0.988043[/C][C]0.494021[/C][/ROW]
[ROW][C]76[/C][C]0.488945[/C][C]0.97789[/C][C]0.511055[/C][/ROW]
[ROW][C]77[/C][C]0.456069[/C][C]0.912137[/C][C]0.543931[/C][/ROW]
[ROW][C]78[/C][C]0.455593[/C][C]0.911185[/C][C]0.544407[/C][/ROW]
[ROW][C]79[/C][C]0.419878[/C][C]0.839755[/C][C]0.580122[/C][/ROW]
[ROW][C]80[/C][C]0.410032[/C][C]0.820064[/C][C]0.589968[/C][/ROW]
[ROW][C]81[/C][C]0.373913[/C][C]0.747825[/C][C]0.626087[/C][/ROW]
[ROW][C]82[/C][C]0.382732[/C][C]0.765463[/C][C]0.617268[/C][/ROW]
[ROW][C]83[/C][C]0.349266[/C][C]0.698532[/C][C]0.650734[/C][/ROW]
[ROW][C]84[/C][C]0.57934[/C][C]0.841319[/C][C]0.42066[/C][/ROW]
[ROW][C]85[/C][C]0.544501[/C][C]0.910999[/C][C]0.455499[/C][/ROW]
[ROW][C]86[/C][C]0.517373[/C][C]0.965254[/C][C]0.482627[/C][/ROW]
[ROW][C]87[/C][C]0.509242[/C][C]0.981515[/C][C]0.490758[/C][/ROW]
[ROW][C]88[/C][C]0.4932[/C][C]0.9864[/C][C]0.5068[/C][/ROW]
[ROW][C]89[/C][C]0.504314[/C][C]0.991371[/C][C]0.495686[/C][/ROW]
[ROW][C]90[/C][C]0.473325[/C][C]0.94665[/C][C]0.526675[/C][/ROW]
[ROW][C]91[/C][C]0.523086[/C][C]0.953828[/C][C]0.476914[/C][/ROW]
[ROW][C]92[/C][C]0.700506[/C][C]0.598987[/C][C]0.299494[/C][/ROW]
[ROW][C]93[/C][C]0.68168[/C][C]0.63664[/C][C]0.31832[/C][/ROW]
[ROW][C]94[/C][C]0.672098[/C][C]0.655804[/C][C]0.327902[/C][/ROW]
[ROW][C]95[/C][C]0.683662[/C][C]0.632676[/C][C]0.316338[/C][/ROW]
[ROW][C]96[/C][C]0.679847[/C][C]0.640307[/C][C]0.320153[/C][/ROW]
[ROW][C]97[/C][C]0.744855[/C][C]0.51029[/C][C]0.255145[/C][/ROW]
[ROW][C]98[/C][C]0.721165[/C][C]0.55767[/C][C]0.278835[/C][/ROW]
[ROW][C]99[/C][C]0.730588[/C][C]0.538824[/C][C]0.269412[/C][/ROW]
[ROW][C]100[/C][C]0.741648[/C][C]0.516704[/C][C]0.258352[/C][/ROW]
[ROW][C]101[/C][C]0.732592[/C][C]0.534816[/C][C]0.267408[/C][/ROW]
[ROW][C]102[/C][C]0.701372[/C][C]0.597255[/C][C]0.298628[/C][/ROW]
[ROW][C]103[/C][C]0.685889[/C][C]0.628222[/C][C]0.314111[/C][/ROW]
[ROW][C]104[/C][C]0.663008[/C][C]0.673984[/C][C]0.336992[/C][/ROW]
[ROW][C]105[/C][C]0.742276[/C][C]0.515448[/C][C]0.257724[/C][/ROW]
[ROW][C]106[/C][C]0.72116[/C][C]0.557679[/C][C]0.27884[/C][/ROW]
[ROW][C]107[/C][C]0.76745[/C][C]0.4651[/C][C]0.23255[/C][/ROW]
[ROW][C]108[/C][C]0.846699[/C][C]0.306602[/C][C]0.153301[/C][/ROW]
[ROW][C]109[/C][C]0.84576[/C][C]0.30848[/C][C]0.15424[/C][/ROW]
[ROW][C]110[/C][C]0.829529[/C][C]0.340943[/C][C]0.170471[/C][/ROW]
[ROW][C]111[/C][C]0.810599[/C][C]0.378801[/C][C]0.189401[/C][/ROW]
[ROW][C]112[/C][C]0.785194[/C][C]0.429611[/C][C]0.214806[/C][/ROW]
[ROW][C]113[/C][C]0.848478[/C][C]0.303044[/C][C]0.151522[/C][/ROW]
[ROW][C]114[/C][C]0.889153[/C][C]0.221695[/C][C]0.110847[/C][/ROW]
[ROW][C]115[/C][C]0.925334[/C][C]0.149333[/C][C]0.0746664[/C][/ROW]
[ROW][C]116[/C][C]0.928543[/C][C]0.142915[/C][C]0.0714574[/C][/ROW]
[ROW][C]117[/C][C]0.917741[/C][C]0.164519[/C][C]0.0822595[/C][/ROW]
[ROW][C]118[/C][C]0.905193[/C][C]0.189614[/C][C]0.094807[/C][/ROW]
[ROW][C]119[/C][C]0.894505[/C][C]0.210989[/C][C]0.105495[/C][/ROW]
[ROW][C]120[/C][C]0.897419[/C][C]0.205161[/C][C]0.102581[/C][/ROW]
[ROW][C]121[/C][C]0.881404[/C][C]0.237192[/C][C]0.118596[/C][/ROW]
[ROW][C]122[/C][C]0.866743[/C][C]0.266514[/C][C]0.133257[/C][/ROW]
[ROW][C]123[/C][C]0.85891[/C][C]0.282181[/C][C]0.14109[/C][/ROW]
[ROW][C]124[/C][C]0.897602[/C][C]0.204797[/C][C]0.102398[/C][/ROW]
[ROW][C]125[/C][C]0.904553[/C][C]0.190895[/C][C]0.0954473[/C][/ROW]
[ROW][C]126[/C][C]0.89124[/C][C]0.217519[/C][C]0.10876[/C][/ROW]
[ROW][C]127[/C][C]0.879322[/C][C]0.241355[/C][C]0.120678[/C][/ROW]
[ROW][C]128[/C][C]0.861475[/C][C]0.27705[/C][C]0.138525[/C][/ROW]
[ROW][C]129[/C][C]0.86978[/C][C]0.26044[/C][C]0.13022[/C][/ROW]
[ROW][C]130[/C][C]0.85179[/C][C]0.29642[/C][C]0.14821[/C][/ROW]
[ROW][C]131[/C][C]0.83241[/C][C]0.33518[/C][C]0.16759[/C][/ROW]
[ROW][C]132[/C][C]0.811777[/C][C]0.376445[/C][C]0.188223[/C][/ROW]
[ROW][C]133[/C][C]0.790974[/C][C]0.418052[/C][C]0.209026[/C][/ROW]
[ROW][C]134[/C][C]0.77408[/C][C]0.45184[/C][C]0.22592[/C][/ROW]
[ROW][C]135[/C][C]0.753894[/C][C]0.492212[/C][C]0.246106[/C][/ROW]
[ROW][C]136[/C][C]0.725542[/C][C]0.548915[/C][C]0.274458[/C][/ROW]
[ROW][C]137[/C][C]0.737571[/C][C]0.524858[/C][C]0.262429[/C][/ROW]
[ROW][C]138[/C][C]0.726438[/C][C]0.547125[/C][C]0.273562[/C][/ROW]
[ROW][C]139[/C][C]0.718746[/C][C]0.562509[/C][C]0.281254[/C][/ROW]
[ROW][C]140[/C][C]0.708929[/C][C]0.582142[/C][C]0.291071[/C][/ROW]
[ROW][C]141[/C][C]0.715505[/C][C]0.56899[/C][C]0.284495[/C][/ROW]
[ROW][C]142[/C][C]0.695971[/C][C]0.608057[/C][C]0.304029[/C][/ROW]
[ROW][C]143[/C][C]0.667722[/C][C]0.664556[/C][C]0.332278[/C][/ROW]
[ROW][C]144[/C][C]0.704226[/C][C]0.591548[/C][C]0.295774[/C][/ROW]
[ROW][C]145[/C][C]0.673123[/C][C]0.653754[/C][C]0.326877[/C][/ROW]
[ROW][C]146[/C][C]0.648099[/C][C]0.703803[/C][C]0.351901[/C][/ROW]
[ROW][C]147[/C][C]0.61982[/C][C]0.760361[/C][C]0.38018[/C][/ROW]
[ROW][C]148[/C][C]0.585654[/C][C]0.828692[/C][C]0.414346[/C][/ROW]
[ROW][C]149[/C][C]0.552427[/C][C]0.895145[/C][C]0.447573[/C][/ROW]
[ROW][C]150[/C][C]0.530341[/C][C]0.939319[/C][C]0.469659[/C][/ROW]
[ROW][C]151[/C][C]0.782777[/C][C]0.434446[/C][C]0.217223[/C][/ROW]
[ROW][C]152[/C][C]0.771118[/C][C]0.457764[/C][C]0.228882[/C][/ROW]
[ROW][C]153[/C][C]0.763679[/C][C]0.472643[/C][C]0.236321[/C][/ROW]
[ROW][C]154[/C][C]0.738366[/C][C]0.523268[/C][C]0.261634[/C][/ROW]
[ROW][C]155[/C][C]0.717949[/C][C]0.564102[/C][C]0.282051[/C][/ROW]
[ROW][C]156[/C][C]0.687734[/C][C]0.624532[/C][C]0.312266[/C][/ROW]
[ROW][C]157[/C][C]0.679105[/C][C]0.641791[/C][C]0.320895[/C][/ROW]
[ROW][C]158[/C][C]0.653448[/C][C]0.693104[/C][C]0.346552[/C][/ROW]
[ROW][C]159[/C][C]0.643935[/C][C]0.71213[/C][C]0.356065[/C][/ROW]
[ROW][C]160[/C][C]0.648534[/C][C]0.702932[/C][C]0.351466[/C][/ROW]
[ROW][C]161[/C][C]0.635776[/C][C]0.728448[/C][C]0.364224[/C][/ROW]
[ROW][C]162[/C][C]0.629212[/C][C]0.741577[/C][C]0.370788[/C][/ROW]
[ROW][C]163[/C][C]0.600206[/C][C]0.799588[/C][C]0.399794[/C][/ROW]
[ROW][C]164[/C][C]0.907957[/C][C]0.184086[/C][C]0.0920432[/C][/ROW]
[ROW][C]165[/C][C]0.89345[/C][C]0.2131[/C][C]0.10655[/C][/ROW]
[ROW][C]166[/C][C]0.887554[/C][C]0.224892[/C][C]0.112446[/C][/ROW]
[ROW][C]167[/C][C]0.881128[/C][C]0.237743[/C][C]0.118872[/C][/ROW]
[ROW][C]168[/C][C]0.867291[/C][C]0.265418[/C][C]0.132709[/C][/ROW]
[ROW][C]169[/C][C]0.848337[/C][C]0.303326[/C][C]0.151663[/C][/ROW]
[ROW][C]170[/C][C]0.856065[/C][C]0.28787[/C][C]0.143935[/C][/ROW]
[ROW][C]171[/C][C]0.84715[/C][C]0.3057[/C][C]0.15285[/C][/ROW]
[ROW][C]172[/C][C]0.846279[/C][C]0.307442[/C][C]0.153721[/C][/ROW]
[ROW][C]173[/C][C]0.84699[/C][C]0.306019[/C][C]0.15301[/C][/ROW]
[ROW][C]174[/C][C]0.829971[/C][C]0.340058[/C][C]0.170029[/C][/ROW]
[ROW][C]175[/C][C]0.811306[/C][C]0.377388[/C][C]0.188694[/C][/ROW]
[ROW][C]176[/C][C]0.832435[/C][C]0.33513[/C][C]0.167565[/C][/ROW]
[ROW][C]177[/C][C]0.811726[/C][C]0.376549[/C][C]0.188274[/C][/ROW]
[ROW][C]178[/C][C]0.807891[/C][C]0.384218[/C][C]0.192109[/C][/ROW]
[ROW][C]179[/C][C]0.798615[/C][C]0.40277[/C][C]0.201385[/C][/ROW]
[ROW][C]180[/C][C]0.829474[/C][C]0.341053[/C][C]0.170526[/C][/ROW]
[ROW][C]181[/C][C]0.815765[/C][C]0.368469[/C][C]0.184235[/C][/ROW]
[ROW][C]182[/C][C]0.838552[/C][C]0.322895[/C][C]0.161448[/C][/ROW]
[ROW][C]183[/C][C]0.863791[/C][C]0.272418[/C][C]0.136209[/C][/ROW]
[ROW][C]184[/C][C]0.842223[/C][C]0.315554[/C][C]0.157777[/C][/ROW]
[ROW][C]185[/C][C]0.877197[/C][C]0.245606[/C][C]0.122803[/C][/ROW]
[ROW][C]186[/C][C]0.85677[/C][C]0.28646[/C][C]0.14323[/C][/ROW]
[ROW][C]187[/C][C]0.846934[/C][C]0.306132[/C][C]0.153066[/C][/ROW]
[ROW][C]188[/C][C]0.864176[/C][C]0.271648[/C][C]0.135824[/C][/ROW]
[ROW][C]189[/C][C]0.909817[/C][C]0.180366[/C][C]0.090183[/C][/ROW]
[ROW][C]190[/C][C]0.897316[/C][C]0.205369[/C][C]0.102684[/C][/ROW]
[ROW][C]191[/C][C]0.897955[/C][C]0.204091[/C][C]0.102045[/C][/ROW]
[ROW][C]192[/C][C]0.88728[/C][C]0.225439[/C][C]0.11272[/C][/ROW]
[ROW][C]193[/C][C]0.905432[/C][C]0.189136[/C][C]0.0945679[/C][/ROW]
[ROW][C]194[/C][C]0.909402[/C][C]0.181195[/C][C]0.0905977[/C][/ROW]
[ROW][C]195[/C][C]0.897062[/C][C]0.205876[/C][C]0.102938[/C][/ROW]
[ROW][C]196[/C][C]0.89641[/C][C]0.20718[/C][C]0.10359[/C][/ROW]
[ROW][C]197[/C][C]0.895503[/C][C]0.208993[/C][C]0.104497[/C][/ROW]
[ROW][C]198[/C][C]0.876718[/C][C]0.246565[/C][C]0.123282[/C][/ROW]
[ROW][C]199[/C][C]0.855609[/C][C]0.288781[/C][C]0.144391[/C][/ROW]
[ROW][C]200[/C][C]0.832585[/C][C]0.33483[/C][C]0.167415[/C][/ROW]
[ROW][C]201[/C][C]0.811143[/C][C]0.377714[/C][C]0.188857[/C][/ROW]
[ROW][C]202[/C][C]0.784266[/C][C]0.431469[/C][C]0.215734[/C][/ROW]
[ROW][C]203[/C][C]0.797951[/C][C]0.404099[/C][C]0.202049[/C][/ROW]
[ROW][C]204[/C][C]0.775377[/C][C]0.449246[/C][C]0.224623[/C][/ROW]
[ROW][C]205[/C][C]0.751663[/C][C]0.496673[/C][C]0.248337[/C][/ROW]
[ROW][C]206[/C][C]0.735228[/C][C]0.529543[/C][C]0.264772[/C][/ROW]
[ROW][C]207[/C][C]0.749032[/C][C]0.501936[/C][C]0.250968[/C][/ROW]
[ROW][C]208[/C][C]0.724943[/C][C]0.550115[/C][C]0.275057[/C][/ROW]
[ROW][C]209[/C][C]0.724628[/C][C]0.550743[/C][C]0.275372[/C][/ROW]
[ROW][C]210[/C][C]0.759616[/C][C]0.480768[/C][C]0.240384[/C][/ROW]
[ROW][C]211[/C][C]0.744489[/C][C]0.511023[/C][C]0.255511[/C][/ROW]
[ROW][C]212[/C][C]0.708766[/C][C]0.582469[/C][C]0.291234[/C][/ROW]
[ROW][C]213[/C][C]0.692961[/C][C]0.614079[/C][C]0.307039[/C][/ROW]
[ROW][C]214[/C][C]0.667938[/C][C]0.664124[/C][C]0.332062[/C][/ROW]
[ROW][C]215[/C][C]0.627511[/C][C]0.744978[/C][C]0.372489[/C][/ROW]
[ROW][C]216[/C][C]0.59225[/C][C]0.815501[/C][C]0.40775[/C][/ROW]
[ROW][C]217[/C][C]0.596013[/C][C]0.807973[/C][C]0.403987[/C][/ROW]
[ROW][C]218[/C][C]0.561406[/C][C]0.877188[/C][C]0.438594[/C][/ROW]
[ROW][C]219[/C][C]0.526977[/C][C]0.946047[/C][C]0.473023[/C][/ROW]
[ROW][C]220[/C][C]0.489625[/C][C]0.979251[/C][C]0.510375[/C][/ROW]
[ROW][C]221[/C][C]0.477641[/C][C]0.955281[/C][C]0.522359[/C][/ROW]
[ROW][C]222[/C][C]0.547884[/C][C]0.904233[/C][C]0.452116[/C][/ROW]
[ROW][C]223[/C][C]0.513989[/C][C]0.972022[/C][C]0.486011[/C][/ROW]
[ROW][C]224[/C][C]0.572824[/C][C]0.854352[/C][C]0.427176[/C][/ROW]
[ROW][C]225[/C][C]0.554559[/C][C]0.890881[/C][C]0.445441[/C][/ROW]
[ROW][C]226[/C][C]0.583914[/C][C]0.832173[/C][C]0.416086[/C][/ROW]
[ROW][C]227[/C][C]0.546559[/C][C]0.906883[/C][C]0.453441[/C][/ROW]
[ROW][C]228[/C][C]0.594406[/C][C]0.811188[/C][C]0.405594[/C][/ROW]
[ROW][C]229[/C][C]0.843392[/C][C]0.313217[/C][C]0.156608[/C][/ROW]
[ROW][C]230[/C][C]0.869433[/C][C]0.261134[/C][C]0.130567[/C][/ROW]
[ROW][C]231[/C][C]0.846554[/C][C]0.306891[/C][C]0.153446[/C][/ROW]
[ROW][C]232[/C][C]0.875214[/C][C]0.249571[/C][C]0.124786[/C][/ROW]
[ROW][C]233[/C][C]0.858947[/C][C]0.282106[/C][C]0.141053[/C][/ROW]
[ROW][C]234[/C][C]0.844938[/C][C]0.310124[/C][C]0.155062[/C][/ROW]
[ROW][C]235[/C][C]0.817225[/C][C]0.365549[/C][C]0.182775[/C][/ROW]
[ROW][C]236[/C][C]0.907212[/C][C]0.185577[/C][C]0.0927885[/C][/ROW]
[ROW][C]237[/C][C]0.885865[/C][C]0.22827[/C][C]0.114135[/C][/ROW]
[ROW][C]238[/C][C]0.862702[/C][C]0.274597[/C][C]0.137298[/C][/ROW]
[ROW][C]239[/C][C]0.860702[/C][C]0.278596[/C][C]0.139298[/C][/ROW]
[ROW][C]240[/C][C]0.825493[/C][C]0.349013[/C][C]0.174507[/C][/ROW]
[ROW][C]241[/C][C]0.79326[/C][C]0.41348[/C][C]0.20674[/C][/ROW]
[ROW][C]242[/C][C]0.752171[/C][C]0.495658[/C][C]0.247829[/C][/ROW]
[ROW][C]243[/C][C]0.720134[/C][C]0.559732[/C][C]0.279866[/C][/ROW]
[ROW][C]244[/C][C]0.667347[/C][C]0.665305[/C][C]0.332653[/C][/ROW]
[ROW][C]245[/C][C]0.621288[/C][C]0.757424[/C][C]0.378712[/C][/ROW]
[ROW][C]246[/C][C]0.59885[/C][C]0.8023[/C][C]0.40115[/C][/ROW]
[ROW][C]247[/C][C]0.539367[/C][C]0.921265[/C][C]0.460633[/C][/ROW]
[ROW][C]248[/C][C]0.675918[/C][C]0.648165[/C][C]0.324082[/C][/ROW]
[ROW][C]249[/C][C]0.623515[/C][C]0.752971[/C][C]0.376485[/C][/ROW]
[ROW][C]250[/C][C]0.589956[/C][C]0.820087[/C][C]0.410044[/C][/ROW]
[ROW][C]251[/C][C]0.552771[/C][C]0.894459[/C][C]0.447229[/C][/ROW]
[ROW][C]252[/C][C]0.594131[/C][C]0.811738[/C][C]0.405869[/C][/ROW]
[ROW][C]253[/C][C]0.672026[/C][C]0.655948[/C][C]0.327974[/C][/ROW]
[ROW][C]254[/C][C]0.65578[/C][C]0.68844[/C][C]0.34422[/C][/ROW]
[ROW][C]255[/C][C]0.745868[/C][C]0.508264[/C][C]0.254132[/C][/ROW]
[ROW][C]256[/C][C]0.741048[/C][C]0.517904[/C][C]0.258952[/C][/ROW]
[ROW][C]257[/C][C]0.67313[/C][C]0.65374[/C][C]0.32687[/C][/ROW]
[ROW][C]258[/C][C]0.674701[/C][C]0.650599[/C][C]0.325299[/C][/ROW]
[ROW][C]259[/C][C]0.577632[/C][C]0.844736[/C][C]0.422368[/C][/ROW]
[ROW][C]260[/C][C]0.885974[/C][C]0.228052[/C][C]0.114026[/C][/ROW]
[ROW][C]261[/C][C]0.821248[/C][C]0.357505[/C][C]0.178752[/C][/ROW]
[ROW][C]262[/C][C]0.891232[/C][C]0.217535[/C][C]0.108768[/C][/ROW]
[ROW][C]263[/C][C]0.906583[/C][C]0.186835[/C][C]0.0934174[/C][/ROW]
[ROW][C]264[/C][C]0.876145[/C][C]0.24771[/C][C]0.123855[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
140.2871380.5742750.712862
150.1636460.3272910.836354
160.08092190.1618440.919078
170.2250470.4500930.774953
180.1853560.3707120.814644
190.1171860.2343720.882814
200.07136280.1427260.928637
210.04324320.08648640.956757
220.02450130.04900270.975499
230.1193330.2386660.880667
240.09354170.1870830.906458
250.06612370.1322470.933876
260.05802140.1160430.941979
270.06595450.1319090.934046
280.0482370.09647410.951763
290.03296140.06592280.967039
300.03184660.06369310.968153
310.02215320.04430640.977847
320.03247850.06495710.967521
330.05816410.1163280.941836
340.04449250.08898510.955507
350.0327790.0655580.967221
360.03049950.06099890.969501
370.02192910.04385820.978071
380.02439010.04878020.97561
390.02889190.05778390.971108
400.02855750.0571150.971442
410.04180980.08361950.95819
420.0329130.06582590.967087
430.0507030.1014060.949297
440.04063220.08126430.959368
450.04937520.09875030.950625
460.04470420.08940840.955296
470.07002510.140050.929975
480.06279490.125590.937205
490.08795620.1759120.912044
500.07863350.1572670.921367
510.06189250.1237850.938108
520.07507370.1501470.924926
530.06605860.1321170.933941
540.05530910.1106180.944691
550.1679250.3358490.832075
560.1400190.2800380.859981
570.4222210.8444430.577779
580.4210430.8420870.578957
590.3771160.7542320.622884
600.3791520.7583040.620848
610.3831580.7663160.616842
620.340980.6819590.65902
630.5371490.9257020.462851
640.59870.8025990.4013
650.6406710.7186570.359329
660.6348710.7302570.365129
670.6064320.7871360.393568
680.5826290.8347410.417371
690.5888390.8223220.411161
700.5584320.8831350.441568
710.5193040.9613920.480696
720.4869780.9739550.513022
730.4675680.9351350.532432
740.5184050.9631910.481595
750.5059790.9880430.494021
760.4889450.977890.511055
770.4560690.9121370.543931
780.4555930.9111850.544407
790.4198780.8397550.580122
800.4100320.8200640.589968
810.3739130.7478250.626087
820.3827320.7654630.617268
830.3492660.6985320.650734
840.579340.8413190.42066
850.5445010.9109990.455499
860.5173730.9652540.482627
870.5092420.9815150.490758
880.49320.98640.5068
890.5043140.9913710.495686
900.4733250.946650.526675
910.5230860.9538280.476914
920.7005060.5989870.299494
930.681680.636640.31832
940.6720980.6558040.327902
950.6836620.6326760.316338
960.6798470.6403070.320153
970.7448550.510290.255145
980.7211650.557670.278835
990.7305880.5388240.269412
1000.7416480.5167040.258352
1010.7325920.5348160.267408
1020.7013720.5972550.298628
1030.6858890.6282220.314111
1040.6630080.6739840.336992
1050.7422760.5154480.257724
1060.721160.5576790.27884
1070.767450.46510.23255
1080.8466990.3066020.153301
1090.845760.308480.15424
1100.8295290.3409430.170471
1110.8105990.3788010.189401
1120.7851940.4296110.214806
1130.8484780.3030440.151522
1140.8891530.2216950.110847
1150.9253340.1493330.0746664
1160.9285430.1429150.0714574
1170.9177410.1645190.0822595
1180.9051930.1896140.094807
1190.8945050.2109890.105495
1200.8974190.2051610.102581
1210.8814040.2371920.118596
1220.8667430.2665140.133257
1230.858910.2821810.14109
1240.8976020.2047970.102398
1250.9045530.1908950.0954473
1260.891240.2175190.10876
1270.8793220.2413550.120678
1280.8614750.277050.138525
1290.869780.260440.13022
1300.851790.296420.14821
1310.832410.335180.16759
1320.8117770.3764450.188223
1330.7909740.4180520.209026
1340.774080.451840.22592
1350.7538940.4922120.246106
1360.7255420.5489150.274458
1370.7375710.5248580.262429
1380.7264380.5471250.273562
1390.7187460.5625090.281254
1400.7089290.5821420.291071
1410.7155050.568990.284495
1420.6959710.6080570.304029
1430.6677220.6645560.332278
1440.7042260.5915480.295774
1450.6731230.6537540.326877
1460.6480990.7038030.351901
1470.619820.7603610.38018
1480.5856540.8286920.414346
1490.5524270.8951450.447573
1500.5303410.9393190.469659
1510.7827770.4344460.217223
1520.7711180.4577640.228882
1530.7636790.4726430.236321
1540.7383660.5232680.261634
1550.7179490.5641020.282051
1560.6877340.6245320.312266
1570.6791050.6417910.320895
1580.6534480.6931040.346552
1590.6439350.712130.356065
1600.6485340.7029320.351466
1610.6357760.7284480.364224
1620.6292120.7415770.370788
1630.6002060.7995880.399794
1640.9079570.1840860.0920432
1650.893450.21310.10655
1660.8875540.2248920.112446
1670.8811280.2377430.118872
1680.8672910.2654180.132709
1690.8483370.3033260.151663
1700.8560650.287870.143935
1710.847150.30570.15285
1720.8462790.3074420.153721
1730.846990.3060190.15301
1740.8299710.3400580.170029
1750.8113060.3773880.188694
1760.8324350.335130.167565
1770.8117260.3765490.188274
1780.8078910.3842180.192109
1790.7986150.402770.201385
1800.8294740.3410530.170526
1810.8157650.3684690.184235
1820.8385520.3228950.161448
1830.8637910.2724180.136209
1840.8422230.3155540.157777
1850.8771970.2456060.122803
1860.856770.286460.14323
1870.8469340.3061320.153066
1880.8641760.2716480.135824
1890.9098170.1803660.090183
1900.8973160.2053690.102684
1910.8979550.2040910.102045
1920.887280.2254390.11272
1930.9054320.1891360.0945679
1940.9094020.1811950.0905977
1950.8970620.2058760.102938
1960.896410.207180.10359
1970.8955030.2089930.104497
1980.8767180.2465650.123282
1990.8556090.2887810.144391
2000.8325850.334830.167415
2010.8111430.3777140.188857
2020.7842660.4314690.215734
2030.7979510.4040990.202049
2040.7753770.4492460.224623
2050.7516630.4966730.248337
2060.7352280.5295430.264772
2070.7490320.5019360.250968
2080.7249430.5501150.275057
2090.7246280.5507430.275372
2100.7596160.4807680.240384
2110.7444890.5110230.255511
2120.7087660.5824690.291234
2130.6929610.6140790.307039
2140.6679380.6641240.332062
2150.6275110.7449780.372489
2160.592250.8155010.40775
2170.5960130.8079730.403987
2180.5614060.8771880.438594
2190.5269770.9460470.473023
2200.4896250.9792510.510375
2210.4776410.9552810.522359
2220.5478840.9042330.452116
2230.5139890.9720220.486011
2240.5728240.8543520.427176
2250.5545590.8908810.445441
2260.5839140.8321730.416086
2270.5465590.9068830.453441
2280.5944060.8111880.405594
2290.8433920.3132170.156608
2300.8694330.2611340.130567
2310.8465540.3068910.153446
2320.8752140.2495710.124786
2330.8589470.2821060.141053
2340.8449380.3101240.155062
2350.8172250.3655490.182775
2360.9072120.1855770.0927885
2370.8858650.228270.114135
2380.8627020.2745970.137298
2390.8607020.2785960.139298
2400.8254930.3490130.174507
2410.793260.413480.20674
2420.7521710.4956580.247829
2430.7201340.5597320.279866
2440.6673470.6653050.332653
2450.6212880.7574240.378712
2460.598850.80230.40115
2470.5393670.9212650.460633
2480.6759180.6481650.324082
2490.6235150.7529710.376485
2500.5899560.8200870.410044
2510.5527710.8944590.447229
2520.5941310.8117380.405869
2530.6720260.6559480.327974
2540.655780.688440.34422
2550.7458680.5082640.254132
2560.7410480.5179040.258952
2570.673130.653740.32687
2580.6747010.6505990.325299
2590.5776320.8447360.422368
2600.8859740.2280520.114026
2610.8212480.3575050.178752
2620.8912320.2175350.108768
2630.9065830.1868350.0934174
2640.8761450.247710.123855







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.0159363OK
10% type I error level190.0756972OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 4 & 0.0159363 & OK \tabularnewline
10% type I error level & 19 & 0.0756972 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266024&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]4[/C][C]0.0159363[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]19[/C][C]0.0756972[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266024&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266024&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.0159363OK
10% type I error level190.0756972OK



Parameters (Session):
par1 = 11 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 11 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}