Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationFri, 12 Dec 2014 11:57:28 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/12/t1418385503wac637ujquxd770.htm/, Retrieved Fri, 01 Nov 2024 00:30:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=266567, Retrieved Fri, 01 Nov 2024 00:30:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-12 11:57:28] [aa823bdb4d51626f3fbc68989a46faf3] [Current]
Feedback Forum

Post a new message
Dataseries X:
26	NA
51	NA
NA	57
37	NA
NA	67
NA	43
NA	52
52	NA
NA	43
NA	84
NA	67
NA	49
NA	70
NA	52
58	NA
68	NA
62	NA
NA	43
56	NA
NA	56
74	NA
NA	65
NA	63
58	NA
NA	57
NA	63
NA	53
NA	57
51	NA
NA	64
53	NA
29	NA
54	NA
NA	51
NA	58
NA	43
NA	51
NA	53
54	NA
NA	56
NA	61
47	NA
NA	39
NA	48
NA	50
NA	35
NA	30
68	NA
NA	49
NA	61
67	NA
NA	47
NA	56
NA	50
NA	43
NA	67
NA	62
NA	57
41	NA
NA	54
45	NA
NA	48
NA	61
56	NA
41	NA
NA	43
53	NA
NA	44
66	NA
NA	58
NA	46
37	NA
51	NA
51	NA
56	NA
NA	66
NA	45
37	NA
NA	59
42	NA
NA	38
66	NA
34	NA
NA	53
49	NA
55	NA
49	NA
NA	59
40	NA
NA	58
NA	60
63	NA
56	NA
54	NA
NA	52
NA	34
NA	69
32	NA
NA	48
67	NA
NA	58
NA	57
NA	42
NA	64
NA	58
66	NA
NA	26
NA	61
NA	52
51	NA
55	NA
50	NA
60	NA
56	NA
63	NA
NA	61
NA	52
NA	16
NA	46
NA	56
52	NA
NA	55
NA	50
59	NA
NA	60
52	NA
44	NA
NA	67
NA	52
NA	55
NA	37
NA	54
NA	72
NA	51
NA	48
60	NA
NA	50
NA	63
NA	33
NA	67
NA	46
NA	54
59	NA
NA	61
NA	33
NA	47
NA	69
NA	52
55	NA
55	NA
41	NA
NA	73
51	NA
52	NA
50	NA
NA	51
60	NA
NA	56
NA	56
29	NA
NA	66
NA	66
NA	73
55	NA
64	NA
40	NA
46	NA
NA	58
43	NA
NA	61
51	NA
NA	50
52	NA
NA	54
66	NA
61	NA
NA	80
51	NA
NA	56
NA	56
NA	56
NA	53
NA	47
25	NA
NA	47
46	NA
50	NA
39	NA
NA	51
58	NA
NA	35
58	NA
60	NA
62	NA
63	NA
NA	53
NA	46
NA	67
NA	59
64	NA
38	NA
NA	50
48	NA
48	NA
47	NA
66	NA
NA	47
NA	63
58	NA
44	NA
NA	51
43	NA
NA	55
NA	38
NA	56
45	NA
NA	50
NA	54
NA	57
60	NA
55	NA
56	NA
NA	49
NA	37
43	NA
NA	59
NA	46
51	NA
58	NA
64	NA
NA	53
NA	48
51	NA
47	NA
59	NA
NA	62
NA	62
51	NA
64	NA
52	NA
NA	67
NA	50
NA	54
NA	58
56	NA
NA	63
NA	31
NA	65
71	NA
50	NA
NA	57
47	NA
NA	54
NA	47
NA	57
43	NA
NA	41
63	NA
NA	63
NA	56
51	NA
NA	50
22	NA
NA	41
59	NA
NA	56
66	NA
53	NA
NA	42
NA	52
54	NA
NA	44
NA	62
53	NA
NA	50
36	NA
76	NA
NA	66
NA	62
59	NA
NA	47
55	NA
58	NA
NA	60
44	NA
57	NA
NA	45
NA	58
NA	51
57	NA
NA	30
NA	46
NA	51
NA	56
58	NA
NA	44
14	NA
53	NA
NA	42
49	NA
NA	44
62	NA
30	NA
NA	46
56	NA
NA	50
NA	54
48	NA
55	NA
35	NA
NA	55
41	NA
NA	59
NA	54
NA	66
NA	55
45	NA
NA	51
47	NA
NA	42
53	NA
53	NA
41	NA
55	NA
55	NA
46	NA
NA	63
NA	43
NA	65
59	NA
39	NA
44	NA
60	NA
57	NA
NA	67
NA	52
NA	52
NA	69
46	NA
NA	46
53	NA
NA	40
NA	70
54	NA
NA	77
45	NA
60	NA
47	NA
50	NA
66	NA
60	NA
NA	41
53	NA
34	NA
NA	51
NA	69
NA	60
NA	45
58	NA
NA	39
NA	51
52	NA
49	NA
63	NA
44	NA
NA	51
52	NA
60	NA
53	NA
53	NA
52	NA
31	NA
NA	51
NA	65
NA	51
49	NA
61	NA
NA	58
62	NA
NA	54
NA	52
NA	72
NA	50
NA	65
53	NA
56	NA
63	NA
62	NA
66	NA
NA	50
45	NA
58	NA
NA	52
53	NA
68	NA
NA	59
58	NA
NA	52
NA	45
58	NA
NA	70
69	NA
NA	71
46	NA
NA	58
NA	39
NA	46
64	NA
NA	67
NA	44
54	NA
NA	41
NA	68
NA	63
NA	57
61	NA
NA	39
69	NA
64	NA
NA	38
59	NA
NA	51
NA	59
51	NA
65	NA
NA	47
NA	50
NA	57
NA	21
47	NA
NA	51
NA	37
NA	67
NA	43
58	NA
51	NA
NA	40
41	NA
NA	58
NA	64
64	NA
NA	58
50	NA
NA	59
55	NA
59	NA
NA	58
NA	41
NA	56
NA	63
77	NA
60	NA
NA	58
64	NA
NA	47
46	NA
NA	62
NA	60
NA	50
NA	46
NA	44
NA	58
NA	56
NA	43
54	NA
NA	54
56	NA
65	NA
NA	66
NA	62
NA	58
NA	67
NA	25
NA	56
NA	53
56	NA
NA	59
NA	46
NA	49
56	NA
NA	76
NA	33
NA	49
NA	53
58	NA
NA	72
NA	51
42	NA
69	NA
NA	51
NA	54
NA	52
NA	59
51	NA
NA	67
64	NA
NA	58




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266567&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266567&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266567&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Two Sample t-test (unpaired)
Mean of Sample 153.0184331797235
Mean of Sample 253.5535714285714
t-stat-0.584078439102813
df495
p-value0.559433610060538
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-2.33527746344632,1.26500096575046]
F-test to compare two variances
F-stat0.961676197484682
df216
p-value0.765036385723551
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.74913231512732,1.23957950831973]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 53.0184331797235 \tabularnewline
Mean of Sample 2 & 53.5535714285714 \tabularnewline
t-stat & -0.584078439102813 \tabularnewline
df & 495 \tabularnewline
p-value & 0.559433610060538 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-2.33527746344632,1.26500096575046] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 0.961676197484682 \tabularnewline
df & 216 \tabularnewline
p-value & 0.765036385723551 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.74913231512732,1.23957950831973] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266567&T=1

[TABLE]
[ROW][C]Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]53.0184331797235[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]53.5535714285714[/C][/ROW]
[ROW][C]t-stat[/C][C]-0.584078439102813[/C][/ROW]
[ROW][C]df[/C][C]495[/C][/ROW]
[ROW][C]p-value[/C][C]0.559433610060538[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-2.33527746344632,1.26500096575046][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]0.961676197484682[/C][/ROW]
[ROW][C]df[/C][C]216[/C][/ROW]
[ROW][C]p-value[/C][C]0.765036385723551[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.74913231512732,1.23957950831973][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266567&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266567&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (unpaired)
Mean of Sample 153.0184331797235
Mean of Sample 253.5535714285714
t-stat-0.584078439102813
df495
p-value0.559433610060538
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-2.33527746344632,1.26500096575046]
F-test to compare two variances
F-stat0.961676197484682
df216
p-value0.765036385723551
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.74913231512732,1.23957950831973]







Welch Two Sample t-test (unpaired)
Mean of Sample 153.0184331797235
Mean of Sample 253.5535714285714
t-stat-0.585529583897004
df468.740578403639
p-value0.558473465787633
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-2.33106268619296,1.2607861884971]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 53.0184331797235 \tabularnewline
Mean of Sample 2 & 53.5535714285714 \tabularnewline
t-stat & -0.585529583897004 \tabularnewline
df & 468.740578403639 \tabularnewline
p-value & 0.558473465787633 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-2.33106268619296,1.2607861884971] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266567&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]53.0184331797235[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]53.5535714285714[/C][/ROW]
[ROW][C]t-stat[/C][C]-0.585529583897004[/C][/ROW]
[ROW][C]df[/C][C]468.740578403639[/C][/ROW]
[ROW][C]p-value[/C][C]0.558473465787633[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-2.33106268619296,1.2607861884971][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266567&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266567&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (unpaired)
Mean of Sample 153.0184331797235
Mean of Sample 253.5535714285714
t-stat-0.585529583897004
df468.740578403639
p-value0.558473465787633
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-2.33106268619296,1.2607861884971]







Wicoxon rank sum test with continuity correction (unpaired)
W30055
p-value0.837965778421807
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0518433179723503
p-value0.897631187329966
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0917050691244239
p-value0.255327339673436

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (unpaired) \tabularnewline
W & 30055 \tabularnewline
p-value & 0.837965778421807 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.0518433179723503 \tabularnewline
p-value & 0.897631187329966 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.0917050691244239 \tabularnewline
p-value & 0.255327339673436 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266567&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (unpaired)[/C][/ROW]
[ROW][C]W[/C][C]30055[/C][/ROW]
[ROW][C]p-value[/C][C]0.837965778421807[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0518433179723503[/C][/ROW]
[ROW][C]p-value[/C][C]0.897631187329966[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0917050691244239[/C][/ROW]
[ROW][C]p-value[/C][C]0.255327339673436[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266567&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266567&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (unpaired)
W30055
p-value0.837965778421807
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0518433179723503
p-value0.897631187329966
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0917050691244239
p-value0.255327339673436



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
R code (references can be found in the software module):
par6 <- '0.0'
par5 <- 'unpaired'
par4 <- 'two.sided'
par3 <- '0.95'
par2 <- '2'
par1 <- '1'
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')