Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_bidensity.wasp
Title produced by softwareBivariate Kernel Density Estimation
Date of computationMon, 15 Dec 2014 20:47:37 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/15/t1418676533p7hhuwdluieqlax.htm/, Retrieved Thu, 31 Oct 2024 22:48:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=269025, Retrieved Thu, 31 Oct 2024 22:48:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact68
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Bivariate Kernel Density Estimation] [Bivariate Kernel ...] [2014-12-15 20:47:37] [ca907db95fc0b179b22bb0898c34dff4] [Current]
Feedback Forum

Post a new message
Dataseries X:
30
17
24
20
25
20
27
18
28
21
27
22
28
25
21
22
28
20
29
20
20
23
18
18
19
25
25
25
24
19
26
10
17
13
17
30
4
16
21
22
20
22
23
16
0
18
25
18
18
24
29
15
22
23
24
22
15
17
20
27
26
23
23
15
26
22
18
15
22
27
10
20
17
23
19
13
27
23
16
25
2
26
20
22
24
23
22
21
25
27
23
23
18
18
23
19
15
20
16
25
25
19
19
16
19
19
23
21
22
19
20
3
23
14
23
20
15
13
16
7
24
17
24
24
19
28
23
19
23
25
25
20
16
20
25
25
23
17
20
16
23
12
24
11
14
23
18
29
16
19
16
23
19
4
20
20
4
24
16
3
24
23
17
20
22
19
24
19
27
22
23
Dataseries Y:
16.6
12.6
18.9
11.6
14.6
13.85
14.85
11.75
18.45
15.9
19.9
10.95
18.45
15.1
15
11.35
15.95
18.1
14.6
17.6
15.35
13.4
13.9
15.25
12.9
16.1
17.35
13.15
12.15
12.6
10.35
15.4
9.6
18.2
13.6
14.85
14.1
14.9
16.25
13.6
15.65
14.6
12.65
11.9
19.2
16.6
11.2
13.2
15.85
11.15
15.65
7.65
15.2
15.6
13.1
11.85
12.4
11.4
14.9
19.9
11.2
14.6
14.75
15.15
16.85
7.85
12.6
7.85
10.95
12.35
9.95
14.9
16.65
13.4
13.95
15.7
16.85
10.95
15.35
12.2
15.1
17.75
15.2
16.65
8.1
4.35
12.7
18.1
17.85
17.1
19.1
16.1
13.35
18.4
14.7
10.6
12.6
16.2
13.6
14.1
14.5
16.15
14.75
14.8
12.45
12.65
17.35
8.6
18.4
16.1
17.75
15.25
17.65
15.6
16.35
17.65
13.6
11.7
14.35
14.75
18.25
9.9
16
18.25
16.85
18.95
15.6
17.1
16.1
15.4
15.4
13.35
19.1
7.6
19.1
14.75
19.25
13.6
12.75
9.85
15.25
11.9
16.35
12.4
14.35
18.15
17.75
12.35
15.6
19.3
17.1
18.4
19.05
18.55
19.1
12.85
9.5
4.5
13.6
11.7
13.35
17.75
17.6
14.05
16.1
13.35
11.85
11.95
13.2
7.7
14.6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269025&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269025&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269025&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Bandwidth
x axis1.60312902964584
y axis1.06159951126883
Correlation
correlation used in KDE0.112013750398079
correlation(x,y)0.112013750398079

\begin{tabular}{lllllllll}
\hline
Bandwidth \tabularnewline
x axis & 1.60312902964584 \tabularnewline
y axis & 1.06159951126883 \tabularnewline
Correlation \tabularnewline
correlation used in KDE & 0.112013750398079 \tabularnewline
correlation(x,y) & 0.112013750398079 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269025&T=1

[TABLE]
[ROW][C]Bandwidth[/C][/ROW]
[ROW][C]x axis[/C][C]1.60312902964584[/C][/ROW]
[ROW][C]y axis[/C][C]1.06159951126883[/C][/ROW]
[ROW][C]Correlation[/C][/ROW]
[ROW][C]correlation used in KDE[/C][C]0.112013750398079[/C][/ROW]
[ROW][C]correlation(x,y)[/C][C]0.112013750398079[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269025&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269025&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Bandwidth
x axis1.60312902964584
y axis1.06159951126883
Correlation
correlation used in KDE0.112013750398079
correlation(x,y)0.112013750398079



Parameters (Session):
par1 = 50 ; par2 = 50 ; par3 = 0 ; par4 = 0 ; par5 = 0 ; par6 = Y ; par7 = Y ; par8 = terrain.colors ;
Parameters (R input):
par1 = 50 ; par2 = 50 ; par3 = 0 ; par4 = 0 ; par5 = 0 ; par6 = Y ; par7 = Y ; par8 = terrain.colors ;
R code (references can be found in the software module):
par1 <- as(par1,'numeric')
par2 <- as(par2,'numeric')
par3 <- as(par3,'numeric')
par4 <- as(par4,'numeric')
par5 <- as(par5,'numeric')
library('GenKern')
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
if (par3==0) par3 <- dpik(x)
if (par4==0) par4 <- dpik(y)
if (par5==0) par5 <- cor(x,y)
if (par1 > 500) par1 <- 500
if (par2 > 500) par2 <- 500
if (par8 == 'terrain.colors') mycol <- terrain.colors(100)
if (par8 == 'rainbow') mycol <- rainbow(100)
if (par8 == 'heat.colors') mycol <- heat.colors(100)
if (par8 == 'topo.colors') mycol <- topo.colors(100)
if (par8 == 'cm.colors') mycol <- cm.colors(100)
bitmap(file='bidensity.png')
op <- KernSur(x,y, xgridsize=par1, ygridsize=par2, correlation=par5, xbandwidth=par3, ybandwidth=par4)
image(op$xords, op$yords, op$zden, col=mycol, axes=TRUE,main=main,xlab=xlab,ylab=ylab)
if (par6=='Y') contour(op$xords, op$yords, op$zden, add=TRUE)
if (par7=='Y') points(x,y)
(r<-lm(y ~ x))
abline(r)
box()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Bandwidth',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'x axis',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'y axis',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'correlation used in KDE',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'correlation(x,y)',header=TRUE)
a<-table.element(a,cor(x,y))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')