Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variancereduction.wasp
Title produced by softwareVariance Reduction Matrix
Date of computationSat, 06 Dec 2008 02:37:34 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/06/t1228556313l2xbclqk0o2lmen.htm/, Retrieved Thu, 31 Oct 2024 22:50:17 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=29446, Retrieved Thu, 31 Oct 2024 22:50:17 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact232
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
F RMP     [Variance Reduction Matrix] [Variance Reductio...] [2008-12-06 09:37:34] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum
2008-12-16 21:23:58 [Anouk Greeve] [reply
De variance reduction matrix is nodig om een tijdreeks stationair te maken. Het Het is de bedoeling hier de differentiatie methode met de kleinste variantie uit te halen, zo kunnen we nl het meest everklaren. We kunnen besluiten dat bij een differentiatie methode d = 1 en D = 1 de kleinste variantie geeft. Het is ook belangrijk dat men rekening houdt met de getrimde variantie, want deze kan verschillen met de gewone variantie door aanwezigheid van outliers. De student maakte dus een correcte berekening en een juiste interpretatie.

Post a new message
Dataseries X:
235.1
280.7
264.6
240.7
201.4
240.8
241.1
223.8
206.1
174.7
203.3
220.5
299.5
347.4
338.3
327.7
351.6
396.6
438.8
395.6
363.5
378.8
357
369
464.8
479.1
431.3
366.5
326.3
355.1
331.6
261.3
249
205.5
235.6
240.9
264.9
253.8
232.3
193.8
177
213.2
207.2
180.6
188.6
175.4
199
179.6
225.8
234
200.2
183.6
178.2
203.2
208.5
191.8
172.8
148
159.4
154.5
213.2
196.4
182.8
176.4
153.6
173.2
171
151.2
161.9
157.2
201.7
236.4
356.1
398.3
403.7
384.6
365.8
368.1
367.9
347
343.3
292.9
311.5
300.9
366.9
356.9
329.7
316.2
269
289.3
266.2
253.6
233.8
228.4
253.6
260.1
306.6
309.2
309.5
271
279.9
317.9
298.4
246.7
227.3
209.1
259.9
266
320.6
308.5
282.2
262.7
263.5
313.1
284.3
252.6
250.3
246.5
312.7
333.2
446.4
511.6
515.5
506.4
483.2
522.3
509.8
460.7
405.8
375
378.5
406.8
467.8
469.8
429.8
355.8
332.7
378
360.5
334.7
319.5
323.1
363.6
352.1
411.9
388.6
416.4
360.7
338
417.2
388.4
371.1
331.5
353.7
396.7
447
533.5
565.4
542.3
488.7
467.1
531.3
496.1
444
403.4
386.3
394.1
404.1
462.1
448.1
432.3
386.3
395.2
421.9
382.9
384.2
345.5
323.4
372.6
376
462.7
487
444.2
399.3
394.9
455.4
414
375.5
347
339.4
385.8
378.8
451.8
446.1
422.5
383.1
352.8
445.3
367.5
355.1
326.2
319.8
331.8
340.9
394.1
417.2
369.9
349.2
321.4
405.7
342.9
316.5
284.2
270.9
288.8
278.8
324.4
310.9
299
273
279.3
359.2
305
282.1
250.3
246.5
257.9
266.5
315.9
318.4
295.4
266.4
245.8
362.8
324.9
294.2
289.5
295.2
290.3
272
307.4
328.7
292.9
249.1
230.4
361.5
321.7
277.2
260.7
251
257.6
241.8
287.5
292.3
274.7
254.2
230
339
318.2
287
295.8
284
271
262.7
340.6
379.4
373.3
355.2
338.4
466.9
451
422
429.2
425.9
460.7
463.6
541.4
544.2
517.5
469.4
439.4
549
533
506.1
484
457
481.5
469.5
544.7
541.2
521.5
469.7
434.4
542.6
517.3
485.7
465.8
447
426.6
411.6
467.5
484.5
451.2
417.4
379.9
484.7
455
420.8
416.5
376.3
405.6
405.8
500.8
514
475.5
430.1
414.4
538
526
488.5
520.2
504.4
568.5
610.6
818
830.9
835.9
782
762.3
856.9
820.9
769.6
752.2
724.4
723.1
719.5
817.4
803.3
752.5
689
630.4
765.5
757.7
732.2
702.6
683.3
709.5
702.2
784.8
810.9
755.6
656.8
615.1
745.3
694.1
675.7
643.7
622.1
634.6
588
689.7
673.9
647.9
568.8
545.7
632.6
643.8
593.1
579.7
546
562.9
572.5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=29446&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=29446&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=29446&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Variance Reduction Matrix
V(Y[t],d=0,D=0)24040.7319917109Range708.9Trim Var.14891.1423067379
V(Y[t],d=1,D=0)1855.27831616522Range306.2Trim Var.1019.21726473461
V(Y[t],d=2,D=0)3601.51571083278Range388.2Trim Var.1764.07169175190
V(Y[t],d=3,D=0)10155.4683153647Range595.5Trim Var.5250.86267655406
V(Y[t],d=0,D=1)10061.5318845559Range585.7Trim Var.5798.12009737033
V(Y[t],d=1,D=1)795.483036989776Range221.9Trim Var.451.063415764475
V(Y[t],d=2,D=1)1251.20020977106Range223.4Trim Var.751.938251968809
V(Y[t],d=3,D=1)3933.17493248985Range389.7Trim Var.2351.74535475078
V(Y[t],d=0,D=2)23022.65043915Range819Trim Var.13637.4877562041
V(Y[t],d=1,D=2)2352.87163598807Range333.6Trim Var.1332.90434353283
V(Y[t],d=2,D=2)3506.43060400436Range407Trim Var.2059.39114521349
V(Y[t],d=3,D=2)10920.6579647792Range659.1Trim Var.6490.07402051023

\begin{tabular}{lllllllll}
\hline
Variance Reduction Matrix \tabularnewline
V(Y[t],d=0,D=0) & 24040.7319917109 & Range & 708.9 & Trim Var. & 14891.1423067379 \tabularnewline
V(Y[t],d=1,D=0) & 1855.27831616522 & Range & 306.2 & Trim Var. & 1019.21726473461 \tabularnewline
V(Y[t],d=2,D=0) & 3601.51571083278 & Range & 388.2 & Trim Var. & 1764.07169175190 \tabularnewline
V(Y[t],d=3,D=0) & 10155.4683153647 & Range & 595.5 & Trim Var. & 5250.86267655406 \tabularnewline
V(Y[t],d=0,D=1) & 10061.5318845559 & Range & 585.7 & Trim Var. & 5798.12009737033 \tabularnewline
V(Y[t],d=1,D=1) & 795.483036989776 & Range & 221.9 & Trim Var. & 451.063415764475 \tabularnewline
V(Y[t],d=2,D=1) & 1251.20020977106 & Range & 223.4 & Trim Var. & 751.938251968809 \tabularnewline
V(Y[t],d=3,D=1) & 3933.17493248985 & Range & 389.7 & Trim Var. & 2351.74535475078 \tabularnewline
V(Y[t],d=0,D=2) & 23022.65043915 & Range & 819 & Trim Var. & 13637.4877562041 \tabularnewline
V(Y[t],d=1,D=2) & 2352.87163598807 & Range & 333.6 & Trim Var. & 1332.90434353283 \tabularnewline
V(Y[t],d=2,D=2) & 3506.43060400436 & Range & 407 & Trim Var. & 2059.39114521349 \tabularnewline
V(Y[t],d=3,D=2) & 10920.6579647792 & Range & 659.1 & Trim Var. & 6490.07402051023 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=29446&T=1

[TABLE]
[ROW][C]Variance Reduction Matrix[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=0)[/C][C]24040.7319917109[/C][C]Range[/C][C]708.9[/C][C]Trim Var.[/C][C]14891.1423067379[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=0)[/C][C]1855.27831616522[/C][C]Range[/C][C]306.2[/C][C]Trim Var.[/C][C]1019.21726473461[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=0)[/C][C]3601.51571083278[/C][C]Range[/C][C]388.2[/C][C]Trim Var.[/C][C]1764.07169175190[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=0)[/C][C]10155.4683153647[/C][C]Range[/C][C]595.5[/C][C]Trim Var.[/C][C]5250.86267655406[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=1)[/C][C]10061.5318845559[/C][C]Range[/C][C]585.7[/C][C]Trim Var.[/C][C]5798.12009737033[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=1)[/C][C]795.483036989776[/C][C]Range[/C][C]221.9[/C][C]Trim Var.[/C][C]451.063415764475[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=1)[/C][C]1251.20020977106[/C][C]Range[/C][C]223.4[/C][C]Trim Var.[/C][C]751.938251968809[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=1)[/C][C]3933.17493248985[/C][C]Range[/C][C]389.7[/C][C]Trim Var.[/C][C]2351.74535475078[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=2)[/C][C]23022.65043915[/C][C]Range[/C][C]819[/C][C]Trim Var.[/C][C]13637.4877562041[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=2)[/C][C]2352.87163598807[/C][C]Range[/C][C]333.6[/C][C]Trim Var.[/C][C]1332.90434353283[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=2)[/C][C]3506.43060400436[/C][C]Range[/C][C]407[/C][C]Trim Var.[/C][C]2059.39114521349[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=2)[/C][C]10920.6579647792[/C][C]Range[/C][C]659.1[/C][C]Trim Var.[/C][C]6490.07402051023[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=29446&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=29446&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Reduction Matrix
V(Y[t],d=0,D=0)24040.7319917109Range708.9Trim Var.14891.1423067379
V(Y[t],d=1,D=0)1855.27831616522Range306.2Trim Var.1019.21726473461
V(Y[t],d=2,D=0)3601.51571083278Range388.2Trim Var.1764.07169175190
V(Y[t],d=3,D=0)10155.4683153647Range595.5Trim Var.5250.86267655406
V(Y[t],d=0,D=1)10061.5318845559Range585.7Trim Var.5798.12009737033
V(Y[t],d=1,D=1)795.483036989776Range221.9Trim Var.451.063415764475
V(Y[t],d=2,D=1)1251.20020977106Range223.4Trim Var.751.938251968809
V(Y[t],d=3,D=1)3933.17493248985Range389.7Trim Var.2351.74535475078
V(Y[t],d=0,D=2)23022.65043915Range819Trim Var.13637.4877562041
V(Y[t],d=1,D=2)2352.87163598807Range333.6Trim Var.1332.90434353283
V(Y[t],d=2,D=2)3506.43060400436Range407Trim Var.2059.39114521349
V(Y[t],d=3,D=2)10920.6579647792Range659.1Trim Var.6490.07402051023



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
n <- length(x)
sx <- sort(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Reduction Matrix',6,TRUE)
a<-table.row.end(a)
for (bigd in 0:2) {
for (smalld in 0:3) {
mylabel <- 'V(Y[t],d='
mylabel <- paste(mylabel,as.character(smalld),sep='')
mylabel <- paste(mylabel,',D=',sep='')
mylabel <- paste(mylabel,as.character(bigd),sep='')
mylabel <- paste(mylabel,')',sep='')
a<-table.row.start(a)
a<-table.element(a,mylabel,header=TRUE)
myx <- x
if (smalld > 0) myx <- diff(x,lag=1,differences=smalld)
if (bigd > 0) myx <- diff(myx,lag=par1,differences=bigd)
a<-table.element(a,var(myx))
a<-table.element(a,'Range',header=TRUE)
a<-table.element(a,max(myx)-min(myx))
a<-table.element(a,'Trim Var.',header=TRUE)
smyx <- sort(myx)
sn <- length(smyx)
a<-table.element(a,var(smyx[smyx>quantile(smyx,0.05) & smyxa<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable.tab')