Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 10 Dec 2008 06:54:00 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/10/t1228917442ndz061cp7sr0jkt.htm/, Retrieved Thu, 31 Oct 2024 23:04:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=31958, Retrieved Thu, 31 Oct 2024 23:04:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact210
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Regressie Prof ba...] [2008-12-10 13:54:00] [21d7d81e7693ad6dde5aadefb1046611] [Current]
-    D    [Multiple Regression] [Regressie Master ...] [2008-12-12 14:18:23] [bc937651ef42bf891200cf0e0edc7238]
-           [Multiple Regression] [Regressie master ...] [2008-12-12 15:09:34] [bc937651ef42bf891200cf0e0edc7238]
-    D        [Multiple Regression] [Regressie prof ba...] [2008-12-12 15:27:30] [bc937651ef42bf891200cf0e0edc7238]
-    D          [Multiple Regression] [regressie master ...] [2008-12-12 18:24:20] [bc937651ef42bf891200cf0e0edc7238]
-   PD            [Multiple Regression] [Master regressie ...] [2008-12-14 18:44:59] [bc937651ef42bf891200cf0e0edc7238]
-   PD          [Multiple Regression] [Prof bach regress...] [2008-12-14 18:30:08] [bc937651ef42bf891200cf0e0edc7238]
-   PD        [Multiple Regression] [Master regressie ...] [2008-12-14 18:14:53] [bc937651ef42bf891200cf0e0edc7238]
-   P     [Multiple Regression] [Regressie prof ba...] [2008-12-14 15:03:49] [bc937651ef42bf891200cf0e0edc7238]
-    D      [Multiple Regression] [Prof Bach regress...] [2008-12-14 17:08:52] [bc937651ef42bf891200cf0e0edc7238]
-    D      [Multiple Regression] [Prof bach regress...] [2008-12-18 13:48:26] [bc937651ef42bf891200cf0e0edc7238]
- RMPD        [] [Meervoudige Regre...] [-0001-11-30 00:00:00] [7b479c2bada71feddb7d988499871dfc]
- RM D        [Multiple Regression] [Meervoudige Regre...] [2010-12-21 13:52:41] [7b479c2bada71feddb7d988499871dfc]
-  M D        [Multiple Regression] [] [2010-12-22 17:52:52] [94f4aa1c01e87d8321fffb341ed4df07]
-  M D        [Multiple Regression] [Multiple Regression] [2010-12-27 13:12:45] [20c5a34fea7ed3b9b27ff444f2eb4dfe]
- RMPD        [Kendall tau Correlation Matrix] [Kendall tau Corre...] [2010-12-27 13:41:06] [20c5a34fea7ed3b9b27ff444f2eb4dfe]
Feedback Forum

Post a new message
Dataseries X:
13363	0
12530	0
11420	0
10948	0
10173	0
10602	0
16094	0
19631	0
17140	0
14345	0
12632	0
12894	0
11808	0
10673	0
9939	0
9890	0
9283	0
10131	0
15864	0
19283	0
16203	0
13919	0
11937	0
11795	0
11268	0
10522	0
9929	0
9725	0
9372	0
10068	0
16230	0
19115	0
18351	0
16265	0
14103	0
14115	0
13327	0
12618	0
12129	0
11775	0
11493	0
12470	0
20792	0
22337	0
21325	0
18581	0
16475	0
16581	0
15745	0
14453	0
13712	0
13766	0
13336	0
15346	0
24446	0
26178	0
24628	0
21282	0
18850	0
18822	0
18060	0
17536	0
16417	0
15842	0
15188	0
16905	0
25430	0
27962	0
26607	0
23364	0
20827	0
20506	0
19181	0
18016	0
17354	0
16256	0
15770	0
17538	0
26899	0
28915	0
25247	0
22856	0
19980	0
19856	0
16994	0
16839	0
15618	0
15883	0
15513	0
17106	0
25272	0
26731	0
22891	0
19583	0
16939	0
16757	0
15435	0
14786	0
13680	0
13208	0
12707	0
14277	0
22436	1
23229	1
18241	1
16145	1
13994	1
14780	1
13100	1
12329	1
12463	1
11532	1
10784	1
13106	1
19491	1
20418	1
16094	1
14491	1
13067	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Multiple Linear Regression - Estimated Regression Equation
NWWZPB[t] = + 12013.6749808669 -7096.88669095463Dummy[t] -1067.34863116660M1[t] -1948.72976424651M2[t] -2796.31089732643M3[t] -3263.39203040634M4[t] -3867.47316348625M5[t] -2557.95429656616M6[t] + 5608.75323944939M7[t] + 7609.77210636948M8[t] + 4819.09097328957M9[t] + 2146.00984020965M10[t] -140.171292870259M11[t] + 83.481133079912t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
NWWZPB[t] =  +  12013.6749808669 -7096.88669095463Dummy[t] -1067.34863116660M1[t] -1948.72976424651M2[t] -2796.31089732643M3[t] -3263.39203040634M4[t] -3867.47316348625M5[t] -2557.95429656616M6[t] +  5608.75323944939M7[t] +  7609.77210636948M8[t] +  4819.09097328957M9[t] +  2146.00984020965M10[t] -140.171292870259M11[t] +  83.481133079912t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]NWWZPB[t] =  +  12013.6749808669 -7096.88669095463Dummy[t] -1067.34863116660M1[t] -1948.72976424651M2[t] -2796.31089732643M3[t] -3263.39203040634M4[t] -3867.47316348625M5[t] -2557.95429656616M6[t] +  5608.75323944939M7[t] +  7609.77210636948M8[t] +  4819.09097328957M9[t] +  2146.00984020965M10[t] -140.171292870259M11[t] +  83.481133079912t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
NWWZPB[t] = + 12013.6749808669 -7096.88669095463Dummy[t] -1067.34863116660M1[t] -1948.72976424651M2[t] -2796.31089732643M3[t] -3263.39203040634M4[t] -3867.47316348625M5[t] -2557.95429656616M6[t] + 5608.75323944939M7[t] + 7609.77210636948M8[t] + 4819.09097328957M9[t] + 2146.00984020965M10[t] -140.171292870259M11[t] + 83.481133079912t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)12013.6749808669756.17091715.887500
Dummy-7096.88669095463660.983306-10.736900
M1-1067.34863116660915.549309-1.16580.2463360.123168
M2-1948.72976424651915.361475-2.12890.0355990.0178
M3-2796.31089732643915.222563-3.05530.002850.001425
M4-3263.39203040634915.132596-3.5660.0005470.000274
M5-3867.47316348625915.091588-4.22635.1e-052.5e-05
M6-2557.95429656616915.099546-2.79530.0061670.003083
M75608.75323944939916.719756.118300
M87609.77210636948916.5339818.302800
M94819.09097328957916.3970725.25871e-060
M102146.00984020965916.3090452.3420.0210670.010533
M11-140.171292870259916.269916-0.1530.8787070.439354
t83.4811330799126.69395812.471100

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 12013.6749808669 & 756.170917 & 15.8875 & 0 & 0 \tabularnewline
Dummy & -7096.88669095463 & 660.983306 & -10.7369 & 0 & 0 \tabularnewline
M1 & -1067.34863116660 & 915.549309 & -1.1658 & 0.246336 & 0.123168 \tabularnewline
M2 & -1948.72976424651 & 915.361475 & -2.1289 & 0.035599 & 0.0178 \tabularnewline
M3 & -2796.31089732643 & 915.222563 & -3.0553 & 0.00285 & 0.001425 \tabularnewline
M4 & -3263.39203040634 & 915.132596 & -3.566 & 0.000547 & 0.000274 \tabularnewline
M5 & -3867.47316348625 & 915.091588 & -4.2263 & 5.1e-05 & 2.5e-05 \tabularnewline
M6 & -2557.95429656616 & 915.099546 & -2.7953 & 0.006167 & 0.003083 \tabularnewline
M7 & 5608.75323944939 & 916.71975 & 6.1183 & 0 & 0 \tabularnewline
M8 & 7609.77210636948 & 916.533981 & 8.3028 & 0 & 0 \tabularnewline
M9 & 4819.09097328957 & 916.397072 & 5.2587 & 1e-06 & 0 \tabularnewline
M10 & 2146.00984020965 & 916.309045 & 2.342 & 0.021067 & 0.010533 \tabularnewline
M11 & -140.171292870259 & 916.269916 & -0.153 & 0.878707 & 0.439354 \tabularnewline
t & 83.481133079912 & 6.693958 & 12.4711 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]12013.6749808669[/C][C]756.170917[/C][C]15.8875[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Dummy[/C][C]-7096.88669095463[/C][C]660.983306[/C][C]-10.7369[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]-1067.34863116660[/C][C]915.549309[/C][C]-1.1658[/C][C]0.246336[/C][C]0.123168[/C][/ROW]
[ROW][C]M2[/C][C]-1948.72976424651[/C][C]915.361475[/C][C]-2.1289[/C][C]0.035599[/C][C]0.0178[/C][/ROW]
[ROW][C]M3[/C][C]-2796.31089732643[/C][C]915.222563[/C][C]-3.0553[/C][C]0.00285[/C][C]0.001425[/C][/ROW]
[ROW][C]M4[/C][C]-3263.39203040634[/C][C]915.132596[/C][C]-3.566[/C][C]0.000547[/C][C]0.000274[/C][/ROW]
[ROW][C]M5[/C][C]-3867.47316348625[/C][C]915.091588[/C][C]-4.2263[/C][C]5.1e-05[/C][C]2.5e-05[/C][/ROW]
[ROW][C]M6[/C][C]-2557.95429656616[/C][C]915.099546[/C][C]-2.7953[/C][C]0.006167[/C][C]0.003083[/C][/ROW]
[ROW][C]M7[/C][C]5608.75323944939[/C][C]916.71975[/C][C]6.1183[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]7609.77210636948[/C][C]916.533981[/C][C]8.3028[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]4819.09097328957[/C][C]916.397072[/C][C]5.2587[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]M10[/C][C]2146.00984020965[/C][C]916.309045[/C][C]2.342[/C][C]0.021067[/C][C]0.010533[/C][/ROW]
[ROW][C]M11[/C][C]-140.171292870259[/C][C]916.269916[/C][C]-0.153[/C][C]0.878707[/C][C]0.439354[/C][/ROW]
[ROW][C]t[/C][C]83.481133079912[/C][C]6.693958[/C][C]12.4711[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)12013.6749808669756.17091715.887500
Dummy-7096.88669095463660.983306-10.736900
M1-1067.34863116660915.549309-1.16580.2463360.123168
M2-1948.72976424651915.361475-2.12890.0355990.0178
M3-2796.31089732643915.222563-3.05530.002850.001425
M4-3263.39203040634915.132596-3.5660.0005470.000274
M5-3867.47316348625915.091588-4.22635.1e-052.5e-05
M6-2557.95429656616915.099546-2.79530.0061670.003083
M75608.75323944939916.719756.118300
M87609.77210636948916.5339818.302800
M94819.09097328957916.3970725.25871e-060
M102146.00984020965916.3090452.3420.0210670.010533
M11-140.171292870259916.269916-0.1530.8787070.439354
t83.4811330799126.69395812.471100







Multiple Linear Regression - Regression Statistics
Multiple R0.915533895859757
R-squared0.838202314468144
Adjusted R-squared0.818170220068962
F-TEST (value)41.842969475142
F-TEST (DF numerator)13
F-TEST (DF denominator)105
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1991.58481829619
Sum Squared Residuals416473059.289126

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.915533895859757 \tabularnewline
R-squared & 0.838202314468144 \tabularnewline
Adjusted R-squared & 0.818170220068962 \tabularnewline
F-TEST (value) & 41.842969475142 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 105 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1991.58481829619 \tabularnewline
Sum Squared Residuals & 416473059.289126 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.915533895859757[/C][/ROW]
[ROW][C]R-squared[/C][C]0.838202314468144[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.818170220068962[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]41.842969475142[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]105[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1991.58481829619[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]416473059.289126[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.915533895859757
R-squared0.838202314468144
Adjusted R-squared0.818170220068962
F-TEST (value)41.842969475142
F-TEST (DF numerator)13
F-TEST (DF denominator)105
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1991.58481829619
Sum Squared Residuals416473059.289126







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11336311029.80748278022333.19251721979
21253010231.90748278022298.09251721979
3114209467.807482780211952.19251721979
4109489084.207482780211863.79251721979
5101738563.607482780211609.39251721979
6106029956.60748278021645.392517219787
71609418206.7961518757-2112.79615187568
81963120291.2961518757-660.296151875674
91714017584.0961518757-444.096151875674
101434514994.4961518757-649.49615187567
111263212791.7961518757-159.796151875674
121289413015.4485778258-121.448577825846
131180812031.5810797392-223.581079739156
141067311233.6810797392-560.681079739159
15993910469.5810797392-530.581079739157
16989010085.9810797392-195.981079739158
1792839565.38107973916-282.381079739158
181013110958.3810797392-827.381079739157
191586419208.5697488346-3344.56974883462
201928321293.0697488346-2010.06974883462
211620318585.8697488346-2382.86974883462
221391915996.2697488346-2077.26974883462
231193713793.5697488346-1856.56974883462
241179514017.2221747848-2222.22217478479
251126813033.3546766981-1765.35467669810
261052212235.4546766981-1713.4546766981
27992911471.3546766981-1542.3546766981
28972511087.7546766981-1362.75467669810
29937210567.1546766981-1195.15467669810
301006811960.1546766981-1892.15467669810
311623020210.3433457936-3980.34334579356
321911522294.8433457936-3179.84334579356
331835119587.6433457936-1236.64334579357
341626516998.0433457936-733.043345793566
351410314795.3433457936-692.343345793565
361411515018.9957717437-903.995771743737
371332714035.1282736570-708.128273657047
381261813237.2282736570-619.228273657046
391212912473.1282736570-344.128273657047
401177512089.5282736570-314.528273657046
411149311568.9282736570-75.9282736570467
421247012961.9282736570-491.928273657046
432079221212.1169427525-420.11694275251
442233723296.6169427525-959.616942752508
452132520589.4169427525735.58305724749
461858117999.8169427525581.18305724749
471647515797.1169427525677.88305724749
481658116020.7693687027560.230631297319
491574515036.901870616708.098129384009
501445314239.001870616213.998129384010
511371213474.901870616237.098129384009
521376613091.301870616674.69812938401
531333612570.701870616765.298129384009
541534613963.7018706161382.29812938401
552444622213.89053971152232.10946028855
562617824298.39053971151879.60946028854
572462821591.19053971153036.80946028854
582128219001.59053971152280.40946028855
591885016798.89053971152051.10946028855
601882217022.54296566161799.45703433838
611806016038.67546757492021.32453242506
621753615240.77546757492295.22453242507
631641714476.67546757491940.32453242506
641584214093.07546757491748.92453242506
651518813572.47546757491615.52453242506
661690514965.47546757491939.52453242506
672543023215.66413667042214.3358633296
682796225300.16413667042661.8358633296
692660722592.96413667044014.0358633296
702336420003.36413667043360.6358633296
712082717800.66413667043026.3358633296
722050618024.31656262062481.68343737943
731918117040.44906453392140.55093546612
741801616242.54906453391773.45093546612
751735415478.44906453391875.55093546612
761625615094.84906453391161.15093546612
771577014574.24906453391195.75093546612
781753815967.24906453391570.75093546612
792689924217.43773362932681.56226637066
802891526301.93773362932613.06226637065
812524723594.73773362931652.26226637066
822285621005.13773362931850.86226637066
831998018802.43773362931177.56226637066
841985619026.0901595795829.909840420486
851699418042.2226614928-1048.22266149282
861683917244.3226614928-405.322661492825
871561816480.2226614928-862.222661492824
881588316096.6226614928-213.622661492824
891551315576.0226614928-63.0226614928238
901710616969.0226614928136.977338507177
912527225219.211330588352.7886694117137
922673127303.7113305883-572.711330588288
932289124596.5113305883-1705.51133058829
941958322006.9113305883-2423.91133058829
951693919804.2113305883-2865.21133058829
961675720027.8637565385-3270.86375653846
971543519043.9962584518-3608.99625845177
981478618246.0962584518-3460.09625845177
991368017481.9962584518-3801.99625845177
1001320817098.3962584518-3890.39625845177
1011270716577.7962584518-3870.79625845177
1021427717970.7962584518-3693.79625845177
1032243619124.09823659263311.9017634074
1042322921208.59823659262020.4017634074
1051824118501.3982365926-260.398236592601
1061614515911.7982365926233.201763407399
1071399413709.0982365926284.901763407399
1081478013932.7506625428847.249337457228
1091310012948.8831644561151.116835543917
1101232912150.9831644561178.016835543918
1111246311386.88316445611076.11683554392
1121153211003.2831644561528.716835543918
1131078410482.6831644561301.316835543918
1141310611875.68316445611230.31683554392
1151949120125.8718335515-634.871833551547
1162041822210.3718335515-1792.37183355154
1171609419503.1718335515-3409.17183355154
1181449116913.5718335515-2422.57183355155
1191306714710.8718335515-1643.87183355155

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 13363 & 11029.8074827802 & 2333.19251721979 \tabularnewline
2 & 12530 & 10231.9074827802 & 2298.09251721979 \tabularnewline
3 & 11420 & 9467.80748278021 & 1952.19251721979 \tabularnewline
4 & 10948 & 9084.20748278021 & 1863.79251721979 \tabularnewline
5 & 10173 & 8563.60748278021 & 1609.39251721979 \tabularnewline
6 & 10602 & 9956.60748278021 & 645.392517219787 \tabularnewline
7 & 16094 & 18206.7961518757 & -2112.79615187568 \tabularnewline
8 & 19631 & 20291.2961518757 & -660.296151875674 \tabularnewline
9 & 17140 & 17584.0961518757 & -444.096151875674 \tabularnewline
10 & 14345 & 14994.4961518757 & -649.49615187567 \tabularnewline
11 & 12632 & 12791.7961518757 & -159.796151875674 \tabularnewline
12 & 12894 & 13015.4485778258 & -121.448577825846 \tabularnewline
13 & 11808 & 12031.5810797392 & -223.581079739156 \tabularnewline
14 & 10673 & 11233.6810797392 & -560.681079739159 \tabularnewline
15 & 9939 & 10469.5810797392 & -530.581079739157 \tabularnewline
16 & 9890 & 10085.9810797392 & -195.981079739158 \tabularnewline
17 & 9283 & 9565.38107973916 & -282.381079739158 \tabularnewline
18 & 10131 & 10958.3810797392 & -827.381079739157 \tabularnewline
19 & 15864 & 19208.5697488346 & -3344.56974883462 \tabularnewline
20 & 19283 & 21293.0697488346 & -2010.06974883462 \tabularnewline
21 & 16203 & 18585.8697488346 & -2382.86974883462 \tabularnewline
22 & 13919 & 15996.2697488346 & -2077.26974883462 \tabularnewline
23 & 11937 & 13793.5697488346 & -1856.56974883462 \tabularnewline
24 & 11795 & 14017.2221747848 & -2222.22217478479 \tabularnewline
25 & 11268 & 13033.3546766981 & -1765.35467669810 \tabularnewline
26 & 10522 & 12235.4546766981 & -1713.4546766981 \tabularnewline
27 & 9929 & 11471.3546766981 & -1542.3546766981 \tabularnewline
28 & 9725 & 11087.7546766981 & -1362.75467669810 \tabularnewline
29 & 9372 & 10567.1546766981 & -1195.15467669810 \tabularnewline
30 & 10068 & 11960.1546766981 & -1892.15467669810 \tabularnewline
31 & 16230 & 20210.3433457936 & -3980.34334579356 \tabularnewline
32 & 19115 & 22294.8433457936 & -3179.84334579356 \tabularnewline
33 & 18351 & 19587.6433457936 & -1236.64334579357 \tabularnewline
34 & 16265 & 16998.0433457936 & -733.043345793566 \tabularnewline
35 & 14103 & 14795.3433457936 & -692.343345793565 \tabularnewline
36 & 14115 & 15018.9957717437 & -903.995771743737 \tabularnewline
37 & 13327 & 14035.1282736570 & -708.128273657047 \tabularnewline
38 & 12618 & 13237.2282736570 & -619.228273657046 \tabularnewline
39 & 12129 & 12473.1282736570 & -344.128273657047 \tabularnewline
40 & 11775 & 12089.5282736570 & -314.528273657046 \tabularnewline
41 & 11493 & 11568.9282736570 & -75.9282736570467 \tabularnewline
42 & 12470 & 12961.9282736570 & -491.928273657046 \tabularnewline
43 & 20792 & 21212.1169427525 & -420.11694275251 \tabularnewline
44 & 22337 & 23296.6169427525 & -959.616942752508 \tabularnewline
45 & 21325 & 20589.4169427525 & 735.58305724749 \tabularnewline
46 & 18581 & 17999.8169427525 & 581.18305724749 \tabularnewline
47 & 16475 & 15797.1169427525 & 677.88305724749 \tabularnewline
48 & 16581 & 16020.7693687027 & 560.230631297319 \tabularnewline
49 & 15745 & 15036.901870616 & 708.098129384009 \tabularnewline
50 & 14453 & 14239.001870616 & 213.998129384010 \tabularnewline
51 & 13712 & 13474.901870616 & 237.098129384009 \tabularnewline
52 & 13766 & 13091.301870616 & 674.69812938401 \tabularnewline
53 & 13336 & 12570.701870616 & 765.298129384009 \tabularnewline
54 & 15346 & 13963.701870616 & 1382.29812938401 \tabularnewline
55 & 24446 & 22213.8905397115 & 2232.10946028855 \tabularnewline
56 & 26178 & 24298.3905397115 & 1879.60946028854 \tabularnewline
57 & 24628 & 21591.1905397115 & 3036.80946028854 \tabularnewline
58 & 21282 & 19001.5905397115 & 2280.40946028855 \tabularnewline
59 & 18850 & 16798.8905397115 & 2051.10946028855 \tabularnewline
60 & 18822 & 17022.5429656616 & 1799.45703433838 \tabularnewline
61 & 18060 & 16038.6754675749 & 2021.32453242506 \tabularnewline
62 & 17536 & 15240.7754675749 & 2295.22453242507 \tabularnewline
63 & 16417 & 14476.6754675749 & 1940.32453242506 \tabularnewline
64 & 15842 & 14093.0754675749 & 1748.92453242506 \tabularnewline
65 & 15188 & 13572.4754675749 & 1615.52453242506 \tabularnewline
66 & 16905 & 14965.4754675749 & 1939.52453242506 \tabularnewline
67 & 25430 & 23215.6641366704 & 2214.3358633296 \tabularnewline
68 & 27962 & 25300.1641366704 & 2661.8358633296 \tabularnewline
69 & 26607 & 22592.9641366704 & 4014.0358633296 \tabularnewline
70 & 23364 & 20003.3641366704 & 3360.6358633296 \tabularnewline
71 & 20827 & 17800.6641366704 & 3026.3358633296 \tabularnewline
72 & 20506 & 18024.3165626206 & 2481.68343737943 \tabularnewline
73 & 19181 & 17040.4490645339 & 2140.55093546612 \tabularnewline
74 & 18016 & 16242.5490645339 & 1773.45093546612 \tabularnewline
75 & 17354 & 15478.4490645339 & 1875.55093546612 \tabularnewline
76 & 16256 & 15094.8490645339 & 1161.15093546612 \tabularnewline
77 & 15770 & 14574.2490645339 & 1195.75093546612 \tabularnewline
78 & 17538 & 15967.2490645339 & 1570.75093546612 \tabularnewline
79 & 26899 & 24217.4377336293 & 2681.56226637066 \tabularnewline
80 & 28915 & 26301.9377336293 & 2613.06226637065 \tabularnewline
81 & 25247 & 23594.7377336293 & 1652.26226637066 \tabularnewline
82 & 22856 & 21005.1377336293 & 1850.86226637066 \tabularnewline
83 & 19980 & 18802.4377336293 & 1177.56226637066 \tabularnewline
84 & 19856 & 19026.0901595795 & 829.909840420486 \tabularnewline
85 & 16994 & 18042.2226614928 & -1048.22266149282 \tabularnewline
86 & 16839 & 17244.3226614928 & -405.322661492825 \tabularnewline
87 & 15618 & 16480.2226614928 & -862.222661492824 \tabularnewline
88 & 15883 & 16096.6226614928 & -213.622661492824 \tabularnewline
89 & 15513 & 15576.0226614928 & -63.0226614928238 \tabularnewline
90 & 17106 & 16969.0226614928 & 136.977338507177 \tabularnewline
91 & 25272 & 25219.2113305883 & 52.7886694117137 \tabularnewline
92 & 26731 & 27303.7113305883 & -572.711330588288 \tabularnewline
93 & 22891 & 24596.5113305883 & -1705.51133058829 \tabularnewline
94 & 19583 & 22006.9113305883 & -2423.91133058829 \tabularnewline
95 & 16939 & 19804.2113305883 & -2865.21133058829 \tabularnewline
96 & 16757 & 20027.8637565385 & -3270.86375653846 \tabularnewline
97 & 15435 & 19043.9962584518 & -3608.99625845177 \tabularnewline
98 & 14786 & 18246.0962584518 & -3460.09625845177 \tabularnewline
99 & 13680 & 17481.9962584518 & -3801.99625845177 \tabularnewline
100 & 13208 & 17098.3962584518 & -3890.39625845177 \tabularnewline
101 & 12707 & 16577.7962584518 & -3870.79625845177 \tabularnewline
102 & 14277 & 17970.7962584518 & -3693.79625845177 \tabularnewline
103 & 22436 & 19124.0982365926 & 3311.9017634074 \tabularnewline
104 & 23229 & 21208.5982365926 & 2020.4017634074 \tabularnewline
105 & 18241 & 18501.3982365926 & -260.398236592601 \tabularnewline
106 & 16145 & 15911.7982365926 & 233.201763407399 \tabularnewline
107 & 13994 & 13709.0982365926 & 284.901763407399 \tabularnewline
108 & 14780 & 13932.7506625428 & 847.249337457228 \tabularnewline
109 & 13100 & 12948.8831644561 & 151.116835543917 \tabularnewline
110 & 12329 & 12150.9831644561 & 178.016835543918 \tabularnewline
111 & 12463 & 11386.8831644561 & 1076.11683554392 \tabularnewline
112 & 11532 & 11003.2831644561 & 528.716835543918 \tabularnewline
113 & 10784 & 10482.6831644561 & 301.316835543918 \tabularnewline
114 & 13106 & 11875.6831644561 & 1230.31683554392 \tabularnewline
115 & 19491 & 20125.8718335515 & -634.871833551547 \tabularnewline
116 & 20418 & 22210.3718335515 & -1792.37183355154 \tabularnewline
117 & 16094 & 19503.1718335515 & -3409.17183355154 \tabularnewline
118 & 14491 & 16913.5718335515 & -2422.57183355155 \tabularnewline
119 & 13067 & 14710.8718335515 & -1643.87183355155 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]13363[/C][C]11029.8074827802[/C][C]2333.19251721979[/C][/ROW]
[ROW][C]2[/C][C]12530[/C][C]10231.9074827802[/C][C]2298.09251721979[/C][/ROW]
[ROW][C]3[/C][C]11420[/C][C]9467.80748278021[/C][C]1952.19251721979[/C][/ROW]
[ROW][C]4[/C][C]10948[/C][C]9084.20748278021[/C][C]1863.79251721979[/C][/ROW]
[ROW][C]5[/C][C]10173[/C][C]8563.60748278021[/C][C]1609.39251721979[/C][/ROW]
[ROW][C]6[/C][C]10602[/C][C]9956.60748278021[/C][C]645.392517219787[/C][/ROW]
[ROW][C]7[/C][C]16094[/C][C]18206.7961518757[/C][C]-2112.79615187568[/C][/ROW]
[ROW][C]8[/C][C]19631[/C][C]20291.2961518757[/C][C]-660.296151875674[/C][/ROW]
[ROW][C]9[/C][C]17140[/C][C]17584.0961518757[/C][C]-444.096151875674[/C][/ROW]
[ROW][C]10[/C][C]14345[/C][C]14994.4961518757[/C][C]-649.49615187567[/C][/ROW]
[ROW][C]11[/C][C]12632[/C][C]12791.7961518757[/C][C]-159.796151875674[/C][/ROW]
[ROW][C]12[/C][C]12894[/C][C]13015.4485778258[/C][C]-121.448577825846[/C][/ROW]
[ROW][C]13[/C][C]11808[/C][C]12031.5810797392[/C][C]-223.581079739156[/C][/ROW]
[ROW][C]14[/C][C]10673[/C][C]11233.6810797392[/C][C]-560.681079739159[/C][/ROW]
[ROW][C]15[/C][C]9939[/C][C]10469.5810797392[/C][C]-530.581079739157[/C][/ROW]
[ROW][C]16[/C][C]9890[/C][C]10085.9810797392[/C][C]-195.981079739158[/C][/ROW]
[ROW][C]17[/C][C]9283[/C][C]9565.38107973916[/C][C]-282.381079739158[/C][/ROW]
[ROW][C]18[/C][C]10131[/C][C]10958.3810797392[/C][C]-827.381079739157[/C][/ROW]
[ROW][C]19[/C][C]15864[/C][C]19208.5697488346[/C][C]-3344.56974883462[/C][/ROW]
[ROW][C]20[/C][C]19283[/C][C]21293.0697488346[/C][C]-2010.06974883462[/C][/ROW]
[ROW][C]21[/C][C]16203[/C][C]18585.8697488346[/C][C]-2382.86974883462[/C][/ROW]
[ROW][C]22[/C][C]13919[/C][C]15996.2697488346[/C][C]-2077.26974883462[/C][/ROW]
[ROW][C]23[/C][C]11937[/C][C]13793.5697488346[/C][C]-1856.56974883462[/C][/ROW]
[ROW][C]24[/C][C]11795[/C][C]14017.2221747848[/C][C]-2222.22217478479[/C][/ROW]
[ROW][C]25[/C][C]11268[/C][C]13033.3546766981[/C][C]-1765.35467669810[/C][/ROW]
[ROW][C]26[/C][C]10522[/C][C]12235.4546766981[/C][C]-1713.4546766981[/C][/ROW]
[ROW][C]27[/C][C]9929[/C][C]11471.3546766981[/C][C]-1542.3546766981[/C][/ROW]
[ROW][C]28[/C][C]9725[/C][C]11087.7546766981[/C][C]-1362.75467669810[/C][/ROW]
[ROW][C]29[/C][C]9372[/C][C]10567.1546766981[/C][C]-1195.15467669810[/C][/ROW]
[ROW][C]30[/C][C]10068[/C][C]11960.1546766981[/C][C]-1892.15467669810[/C][/ROW]
[ROW][C]31[/C][C]16230[/C][C]20210.3433457936[/C][C]-3980.34334579356[/C][/ROW]
[ROW][C]32[/C][C]19115[/C][C]22294.8433457936[/C][C]-3179.84334579356[/C][/ROW]
[ROW][C]33[/C][C]18351[/C][C]19587.6433457936[/C][C]-1236.64334579357[/C][/ROW]
[ROW][C]34[/C][C]16265[/C][C]16998.0433457936[/C][C]-733.043345793566[/C][/ROW]
[ROW][C]35[/C][C]14103[/C][C]14795.3433457936[/C][C]-692.343345793565[/C][/ROW]
[ROW][C]36[/C][C]14115[/C][C]15018.9957717437[/C][C]-903.995771743737[/C][/ROW]
[ROW][C]37[/C][C]13327[/C][C]14035.1282736570[/C][C]-708.128273657047[/C][/ROW]
[ROW][C]38[/C][C]12618[/C][C]13237.2282736570[/C][C]-619.228273657046[/C][/ROW]
[ROW][C]39[/C][C]12129[/C][C]12473.1282736570[/C][C]-344.128273657047[/C][/ROW]
[ROW][C]40[/C][C]11775[/C][C]12089.5282736570[/C][C]-314.528273657046[/C][/ROW]
[ROW][C]41[/C][C]11493[/C][C]11568.9282736570[/C][C]-75.9282736570467[/C][/ROW]
[ROW][C]42[/C][C]12470[/C][C]12961.9282736570[/C][C]-491.928273657046[/C][/ROW]
[ROW][C]43[/C][C]20792[/C][C]21212.1169427525[/C][C]-420.11694275251[/C][/ROW]
[ROW][C]44[/C][C]22337[/C][C]23296.6169427525[/C][C]-959.616942752508[/C][/ROW]
[ROW][C]45[/C][C]21325[/C][C]20589.4169427525[/C][C]735.58305724749[/C][/ROW]
[ROW][C]46[/C][C]18581[/C][C]17999.8169427525[/C][C]581.18305724749[/C][/ROW]
[ROW][C]47[/C][C]16475[/C][C]15797.1169427525[/C][C]677.88305724749[/C][/ROW]
[ROW][C]48[/C][C]16581[/C][C]16020.7693687027[/C][C]560.230631297319[/C][/ROW]
[ROW][C]49[/C][C]15745[/C][C]15036.901870616[/C][C]708.098129384009[/C][/ROW]
[ROW][C]50[/C][C]14453[/C][C]14239.001870616[/C][C]213.998129384010[/C][/ROW]
[ROW][C]51[/C][C]13712[/C][C]13474.901870616[/C][C]237.098129384009[/C][/ROW]
[ROW][C]52[/C][C]13766[/C][C]13091.301870616[/C][C]674.69812938401[/C][/ROW]
[ROW][C]53[/C][C]13336[/C][C]12570.701870616[/C][C]765.298129384009[/C][/ROW]
[ROW][C]54[/C][C]15346[/C][C]13963.701870616[/C][C]1382.29812938401[/C][/ROW]
[ROW][C]55[/C][C]24446[/C][C]22213.8905397115[/C][C]2232.10946028855[/C][/ROW]
[ROW][C]56[/C][C]26178[/C][C]24298.3905397115[/C][C]1879.60946028854[/C][/ROW]
[ROW][C]57[/C][C]24628[/C][C]21591.1905397115[/C][C]3036.80946028854[/C][/ROW]
[ROW][C]58[/C][C]21282[/C][C]19001.5905397115[/C][C]2280.40946028855[/C][/ROW]
[ROW][C]59[/C][C]18850[/C][C]16798.8905397115[/C][C]2051.10946028855[/C][/ROW]
[ROW][C]60[/C][C]18822[/C][C]17022.5429656616[/C][C]1799.45703433838[/C][/ROW]
[ROW][C]61[/C][C]18060[/C][C]16038.6754675749[/C][C]2021.32453242506[/C][/ROW]
[ROW][C]62[/C][C]17536[/C][C]15240.7754675749[/C][C]2295.22453242507[/C][/ROW]
[ROW][C]63[/C][C]16417[/C][C]14476.6754675749[/C][C]1940.32453242506[/C][/ROW]
[ROW][C]64[/C][C]15842[/C][C]14093.0754675749[/C][C]1748.92453242506[/C][/ROW]
[ROW][C]65[/C][C]15188[/C][C]13572.4754675749[/C][C]1615.52453242506[/C][/ROW]
[ROW][C]66[/C][C]16905[/C][C]14965.4754675749[/C][C]1939.52453242506[/C][/ROW]
[ROW][C]67[/C][C]25430[/C][C]23215.6641366704[/C][C]2214.3358633296[/C][/ROW]
[ROW][C]68[/C][C]27962[/C][C]25300.1641366704[/C][C]2661.8358633296[/C][/ROW]
[ROW][C]69[/C][C]26607[/C][C]22592.9641366704[/C][C]4014.0358633296[/C][/ROW]
[ROW][C]70[/C][C]23364[/C][C]20003.3641366704[/C][C]3360.6358633296[/C][/ROW]
[ROW][C]71[/C][C]20827[/C][C]17800.6641366704[/C][C]3026.3358633296[/C][/ROW]
[ROW][C]72[/C][C]20506[/C][C]18024.3165626206[/C][C]2481.68343737943[/C][/ROW]
[ROW][C]73[/C][C]19181[/C][C]17040.4490645339[/C][C]2140.55093546612[/C][/ROW]
[ROW][C]74[/C][C]18016[/C][C]16242.5490645339[/C][C]1773.45093546612[/C][/ROW]
[ROW][C]75[/C][C]17354[/C][C]15478.4490645339[/C][C]1875.55093546612[/C][/ROW]
[ROW][C]76[/C][C]16256[/C][C]15094.8490645339[/C][C]1161.15093546612[/C][/ROW]
[ROW][C]77[/C][C]15770[/C][C]14574.2490645339[/C][C]1195.75093546612[/C][/ROW]
[ROW][C]78[/C][C]17538[/C][C]15967.2490645339[/C][C]1570.75093546612[/C][/ROW]
[ROW][C]79[/C][C]26899[/C][C]24217.4377336293[/C][C]2681.56226637066[/C][/ROW]
[ROW][C]80[/C][C]28915[/C][C]26301.9377336293[/C][C]2613.06226637065[/C][/ROW]
[ROW][C]81[/C][C]25247[/C][C]23594.7377336293[/C][C]1652.26226637066[/C][/ROW]
[ROW][C]82[/C][C]22856[/C][C]21005.1377336293[/C][C]1850.86226637066[/C][/ROW]
[ROW][C]83[/C][C]19980[/C][C]18802.4377336293[/C][C]1177.56226637066[/C][/ROW]
[ROW][C]84[/C][C]19856[/C][C]19026.0901595795[/C][C]829.909840420486[/C][/ROW]
[ROW][C]85[/C][C]16994[/C][C]18042.2226614928[/C][C]-1048.22266149282[/C][/ROW]
[ROW][C]86[/C][C]16839[/C][C]17244.3226614928[/C][C]-405.322661492825[/C][/ROW]
[ROW][C]87[/C][C]15618[/C][C]16480.2226614928[/C][C]-862.222661492824[/C][/ROW]
[ROW][C]88[/C][C]15883[/C][C]16096.6226614928[/C][C]-213.622661492824[/C][/ROW]
[ROW][C]89[/C][C]15513[/C][C]15576.0226614928[/C][C]-63.0226614928238[/C][/ROW]
[ROW][C]90[/C][C]17106[/C][C]16969.0226614928[/C][C]136.977338507177[/C][/ROW]
[ROW][C]91[/C][C]25272[/C][C]25219.2113305883[/C][C]52.7886694117137[/C][/ROW]
[ROW][C]92[/C][C]26731[/C][C]27303.7113305883[/C][C]-572.711330588288[/C][/ROW]
[ROW][C]93[/C][C]22891[/C][C]24596.5113305883[/C][C]-1705.51133058829[/C][/ROW]
[ROW][C]94[/C][C]19583[/C][C]22006.9113305883[/C][C]-2423.91133058829[/C][/ROW]
[ROW][C]95[/C][C]16939[/C][C]19804.2113305883[/C][C]-2865.21133058829[/C][/ROW]
[ROW][C]96[/C][C]16757[/C][C]20027.8637565385[/C][C]-3270.86375653846[/C][/ROW]
[ROW][C]97[/C][C]15435[/C][C]19043.9962584518[/C][C]-3608.99625845177[/C][/ROW]
[ROW][C]98[/C][C]14786[/C][C]18246.0962584518[/C][C]-3460.09625845177[/C][/ROW]
[ROW][C]99[/C][C]13680[/C][C]17481.9962584518[/C][C]-3801.99625845177[/C][/ROW]
[ROW][C]100[/C][C]13208[/C][C]17098.3962584518[/C][C]-3890.39625845177[/C][/ROW]
[ROW][C]101[/C][C]12707[/C][C]16577.7962584518[/C][C]-3870.79625845177[/C][/ROW]
[ROW][C]102[/C][C]14277[/C][C]17970.7962584518[/C][C]-3693.79625845177[/C][/ROW]
[ROW][C]103[/C][C]22436[/C][C]19124.0982365926[/C][C]3311.9017634074[/C][/ROW]
[ROW][C]104[/C][C]23229[/C][C]21208.5982365926[/C][C]2020.4017634074[/C][/ROW]
[ROW][C]105[/C][C]18241[/C][C]18501.3982365926[/C][C]-260.398236592601[/C][/ROW]
[ROW][C]106[/C][C]16145[/C][C]15911.7982365926[/C][C]233.201763407399[/C][/ROW]
[ROW][C]107[/C][C]13994[/C][C]13709.0982365926[/C][C]284.901763407399[/C][/ROW]
[ROW][C]108[/C][C]14780[/C][C]13932.7506625428[/C][C]847.249337457228[/C][/ROW]
[ROW][C]109[/C][C]13100[/C][C]12948.8831644561[/C][C]151.116835543917[/C][/ROW]
[ROW][C]110[/C][C]12329[/C][C]12150.9831644561[/C][C]178.016835543918[/C][/ROW]
[ROW][C]111[/C][C]12463[/C][C]11386.8831644561[/C][C]1076.11683554392[/C][/ROW]
[ROW][C]112[/C][C]11532[/C][C]11003.2831644561[/C][C]528.716835543918[/C][/ROW]
[ROW][C]113[/C][C]10784[/C][C]10482.6831644561[/C][C]301.316835543918[/C][/ROW]
[ROW][C]114[/C][C]13106[/C][C]11875.6831644561[/C][C]1230.31683554392[/C][/ROW]
[ROW][C]115[/C][C]19491[/C][C]20125.8718335515[/C][C]-634.871833551547[/C][/ROW]
[ROW][C]116[/C][C]20418[/C][C]22210.3718335515[/C][C]-1792.37183355154[/C][/ROW]
[ROW][C]117[/C][C]16094[/C][C]19503.1718335515[/C][C]-3409.17183355154[/C][/ROW]
[ROW][C]118[/C][C]14491[/C][C]16913.5718335515[/C][C]-2422.57183355155[/C][/ROW]
[ROW][C]119[/C][C]13067[/C][C]14710.8718335515[/C][C]-1643.87183355155[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11336311029.80748278022333.19251721979
21253010231.90748278022298.09251721979
3114209467.807482780211952.19251721979
4109489084.207482780211863.79251721979
5101738563.607482780211609.39251721979
6106029956.60748278021645.392517219787
71609418206.7961518757-2112.79615187568
81963120291.2961518757-660.296151875674
91714017584.0961518757-444.096151875674
101434514994.4961518757-649.49615187567
111263212791.7961518757-159.796151875674
121289413015.4485778258-121.448577825846
131180812031.5810797392-223.581079739156
141067311233.6810797392-560.681079739159
15993910469.5810797392-530.581079739157
16989010085.9810797392-195.981079739158
1792839565.38107973916-282.381079739158
181013110958.3810797392-827.381079739157
191586419208.5697488346-3344.56974883462
201928321293.0697488346-2010.06974883462
211620318585.8697488346-2382.86974883462
221391915996.2697488346-2077.26974883462
231193713793.5697488346-1856.56974883462
241179514017.2221747848-2222.22217478479
251126813033.3546766981-1765.35467669810
261052212235.4546766981-1713.4546766981
27992911471.3546766981-1542.3546766981
28972511087.7546766981-1362.75467669810
29937210567.1546766981-1195.15467669810
301006811960.1546766981-1892.15467669810
311623020210.3433457936-3980.34334579356
321911522294.8433457936-3179.84334579356
331835119587.6433457936-1236.64334579357
341626516998.0433457936-733.043345793566
351410314795.3433457936-692.343345793565
361411515018.9957717437-903.995771743737
371332714035.1282736570-708.128273657047
381261813237.2282736570-619.228273657046
391212912473.1282736570-344.128273657047
401177512089.5282736570-314.528273657046
411149311568.9282736570-75.9282736570467
421247012961.9282736570-491.928273657046
432079221212.1169427525-420.11694275251
442233723296.6169427525-959.616942752508
452132520589.4169427525735.58305724749
461858117999.8169427525581.18305724749
471647515797.1169427525677.88305724749
481658116020.7693687027560.230631297319
491574515036.901870616708.098129384009
501445314239.001870616213.998129384010
511371213474.901870616237.098129384009
521376613091.301870616674.69812938401
531333612570.701870616765.298129384009
541534613963.7018706161382.29812938401
552444622213.89053971152232.10946028855
562617824298.39053971151879.60946028854
572462821591.19053971153036.80946028854
582128219001.59053971152280.40946028855
591885016798.89053971152051.10946028855
601882217022.54296566161799.45703433838
611806016038.67546757492021.32453242506
621753615240.77546757492295.22453242507
631641714476.67546757491940.32453242506
641584214093.07546757491748.92453242506
651518813572.47546757491615.52453242506
661690514965.47546757491939.52453242506
672543023215.66413667042214.3358633296
682796225300.16413667042661.8358633296
692660722592.96413667044014.0358633296
702336420003.36413667043360.6358633296
712082717800.66413667043026.3358633296
722050618024.31656262062481.68343737943
731918117040.44906453392140.55093546612
741801616242.54906453391773.45093546612
751735415478.44906453391875.55093546612
761625615094.84906453391161.15093546612
771577014574.24906453391195.75093546612
781753815967.24906453391570.75093546612
792689924217.43773362932681.56226637066
802891526301.93773362932613.06226637065
812524723594.73773362931652.26226637066
822285621005.13773362931850.86226637066
831998018802.43773362931177.56226637066
841985619026.0901595795829.909840420486
851699418042.2226614928-1048.22266149282
861683917244.3226614928-405.322661492825
871561816480.2226614928-862.222661492824
881588316096.6226614928-213.622661492824
891551315576.0226614928-63.0226614928238
901710616969.0226614928136.977338507177
912527225219.211330588352.7886694117137
922673127303.7113305883-572.711330588288
932289124596.5113305883-1705.51133058829
941958322006.9113305883-2423.91133058829
951693919804.2113305883-2865.21133058829
961675720027.8637565385-3270.86375653846
971543519043.9962584518-3608.99625845177
981478618246.0962584518-3460.09625845177
991368017481.9962584518-3801.99625845177
1001320817098.3962584518-3890.39625845177
1011270716577.7962584518-3870.79625845177
1021427717970.7962584518-3693.79625845177
1032243619124.09823659263311.9017634074
1042322921208.59823659262020.4017634074
1051824118501.3982365926-260.398236592601
1061614515911.7982365926233.201763407399
1071399413709.0982365926284.901763407399
1081478013932.7506625428847.249337457228
1091310012948.8831644561151.116835543917
1101232912150.9831644561178.016835543918
1111246311386.88316445611076.11683554392
1121153211003.2831644561528.716835543918
1131078410482.6831644561301.316835543918
1141310611875.68316445611230.31683554392
1151949120125.8718335515-634.871833551547
1162041822210.3718335515-1792.37183355154
1171609419503.1718335515-3409.17183355154
1181449116913.5718335515-2422.57183355155
1191306714710.8718335515-1643.87183355155







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.004860968307099920.009721936614199840.9951390316929
180.002564137014603610.005128274029207220.997435862985396
190.001514813703508730.003029627407017460.998485186296491
200.0005338315599754320.001067663119950860.999466168440025
210.0001122536696987070.0002245073393974140.999887746330301
223.28764127045154e-056.57528254090308e-050.999967123587295
236.95596345394575e-061.39119269078915e-050.999993044036546
241.44843737696234e-062.89687475392468e-060.999998551562623
252.66598915131778e-075.33197830263555e-070.999999733401085
265.65845555656118e-081.13169111131224e-070.999999943415444
272.02946688290276e-084.05893376580552e-080.999999979705331
286.89875376882125e-091.37975075376425e-080.999999993101246
294.89490309384618e-099.78980618769237e-090.999999995105097
303.33309108725183e-096.66618217450366e-090.999999996666909
311.91546219744602e-083.83092439489204e-080.999999980845378
321.37144544591753e-082.74289089183506e-080.999999986285546
331.99760676710620e-063.99521353421239e-060.999998002393233
344.78009425052581e-059.56018850105161e-050.999952199057495
350.0001586373779098350.000317274755819670.99984136262209
360.0003453147723888060.0006906295447776120.999654685227611
370.0003599498406300350.0007198996812600690.99964005015937
380.0003963812177860540.0007927624355721090.999603618782214
390.0004921625856771770.0009843251713543540.999507837414323
400.0005057753089332080.001011550617866420.999494224691067
410.0005843695694152360.001168739138830470.999415630430585
420.0009866697114990480.001973339422998100.9990133302885
430.02005695967859330.04011391935718660.979943040321407
440.04761005914030530.09522011828061050.952389940859695
450.09932215811980080.1986443162396020.9006778418802
460.1513861300958550.302772260191710.848613869904145
470.1999965609831090.3999931219662180.800003439016891
480.2635788255327510.5271576510655020.736421174467249
490.2767026051402130.5534052102804270.723297394859787
500.3136122525212610.6272245050425210.68638774747874
510.3687540174108090.7375080348216190.631245982589191
520.4170662256687610.8341324513375230.582933774331239
530.4818687778263150.963737555652630.518131222173685
540.6165815600221370.7668368799557270.383418439977863
550.8844762053268520.2310475893462970.115523794673148
560.9558030814293550.08839383714128910.0441969185706446
570.9717177236746940.05656455265061150.0282822763253057
580.9797119220526260.04057615589474710.0202880779473736
590.9853032817517080.02939343649658430.0146967182482921
600.9908310969952370.01833780600952560.0091689030047628
610.9903228824174830.01935423516503420.00967711758251708
620.9901469460736670.01970610785266590.00985305392633293
630.9918005106112750.01639897877744920.00819948938872459
640.993982280104290.01203543979142160.00601771989571078
650.996913704560230.006172590879539280.00308629543976964
660.9992498905909020.001500218818196310.000750109409098156
670.999944430790180.0001111384196400265.55692098200131e-05
680.999984191004433.16179911409395e-051.58089955704697e-05
690.9999856600131482.86799737031082e-051.43399868515541e-05
700.999977452696244.50946075205582e-052.25473037602791e-05
710.9999615157640227.6968471956443e-053.84842359782215e-05
720.9999401879699570.0001196240600855675.98120300427837e-05
730.9998827564177880.0002344871644233920.000117243582211696
740.9998208945486360.0003582109027273670.000179105451363684
750.9997285790504680.0005428418990635540.000271420949531777
760.9998250979984380.0003498040031231090.000174902001561555
770.99992081041240.0001583791751996047.91895875998022e-05
780.9999868635352362.62729295269546e-051.31364647634773e-05
790.9999800595002263.98809995475258e-051.99404997737629e-05
800.9999606840474777.86319050468587e-053.93159525234294e-05
810.9999604031727947.91936544119184e-053.95968272059592e-05
820.9999655270686176.89458627653212e-053.44729313826606e-05
830.9999388229276560.0001223541446882516.11770723441255e-05
840.9998919699393120.0002160601213757400.000108030060687870
850.9999047899574540.000190420085091889.521004254594e-05
860.9998453485616060.0003093028767882670.000154651438394134
870.9998735685168770.0002528629662454340.000126431483122717
880.999756981176810.0004860376463781730.000243018823189087
890.9995050099838630.0009899800322736580.000494990016136829
900.9990272280114660.001945543977068770.000972771988534383
910.9981509831192390.003698033761522430.00184901688076122
920.998225262229110.003549475541778890.00177473777088944
930.999937871513270.0001242569734619286.21284867309642e-05
940.9999741667310895.16665378229629e-052.58332689114814e-05
950.9999508842066139.8231586774798e-054.9115793387399e-05
960.9998648669347580.0002702661304834970.000135133065241749
970.9997245540148140.0005508919703711580.000275445985185579
980.9995668327793320.0008663344413362320.000433167220668116
990.998644638218730.002710723562541510.00135536178127076
1000.995328779539220.009342440921559530.00467122046077977
1010.9866274704651120.02674505906977670.0133725295348884
1020.95348492004330.09303015991339830.0465150799566992

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.00486096830709992 & 0.00972193661419984 & 0.9951390316929 \tabularnewline
18 & 0.00256413701460361 & 0.00512827402920722 & 0.997435862985396 \tabularnewline
19 & 0.00151481370350873 & 0.00302962740701746 & 0.998485186296491 \tabularnewline
20 & 0.000533831559975432 & 0.00106766311995086 & 0.999466168440025 \tabularnewline
21 & 0.000112253669698707 & 0.000224507339397414 & 0.999887746330301 \tabularnewline
22 & 3.28764127045154e-05 & 6.57528254090308e-05 & 0.999967123587295 \tabularnewline
23 & 6.95596345394575e-06 & 1.39119269078915e-05 & 0.999993044036546 \tabularnewline
24 & 1.44843737696234e-06 & 2.89687475392468e-06 & 0.999998551562623 \tabularnewline
25 & 2.66598915131778e-07 & 5.33197830263555e-07 & 0.999999733401085 \tabularnewline
26 & 5.65845555656118e-08 & 1.13169111131224e-07 & 0.999999943415444 \tabularnewline
27 & 2.02946688290276e-08 & 4.05893376580552e-08 & 0.999999979705331 \tabularnewline
28 & 6.89875376882125e-09 & 1.37975075376425e-08 & 0.999999993101246 \tabularnewline
29 & 4.89490309384618e-09 & 9.78980618769237e-09 & 0.999999995105097 \tabularnewline
30 & 3.33309108725183e-09 & 6.66618217450366e-09 & 0.999999996666909 \tabularnewline
31 & 1.91546219744602e-08 & 3.83092439489204e-08 & 0.999999980845378 \tabularnewline
32 & 1.37144544591753e-08 & 2.74289089183506e-08 & 0.999999986285546 \tabularnewline
33 & 1.99760676710620e-06 & 3.99521353421239e-06 & 0.999998002393233 \tabularnewline
34 & 4.78009425052581e-05 & 9.56018850105161e-05 & 0.999952199057495 \tabularnewline
35 & 0.000158637377909835 & 0.00031727475581967 & 0.99984136262209 \tabularnewline
36 & 0.000345314772388806 & 0.000690629544777612 & 0.999654685227611 \tabularnewline
37 & 0.000359949840630035 & 0.000719899681260069 & 0.99964005015937 \tabularnewline
38 & 0.000396381217786054 & 0.000792762435572109 & 0.999603618782214 \tabularnewline
39 & 0.000492162585677177 & 0.000984325171354354 & 0.999507837414323 \tabularnewline
40 & 0.000505775308933208 & 0.00101155061786642 & 0.999494224691067 \tabularnewline
41 & 0.000584369569415236 & 0.00116873913883047 & 0.999415630430585 \tabularnewline
42 & 0.000986669711499048 & 0.00197333942299810 & 0.9990133302885 \tabularnewline
43 & 0.0200569596785933 & 0.0401139193571866 & 0.979943040321407 \tabularnewline
44 & 0.0476100591403053 & 0.0952201182806105 & 0.952389940859695 \tabularnewline
45 & 0.0993221581198008 & 0.198644316239602 & 0.9006778418802 \tabularnewline
46 & 0.151386130095855 & 0.30277226019171 & 0.848613869904145 \tabularnewline
47 & 0.199996560983109 & 0.399993121966218 & 0.800003439016891 \tabularnewline
48 & 0.263578825532751 & 0.527157651065502 & 0.736421174467249 \tabularnewline
49 & 0.276702605140213 & 0.553405210280427 & 0.723297394859787 \tabularnewline
50 & 0.313612252521261 & 0.627224505042521 & 0.68638774747874 \tabularnewline
51 & 0.368754017410809 & 0.737508034821619 & 0.631245982589191 \tabularnewline
52 & 0.417066225668761 & 0.834132451337523 & 0.582933774331239 \tabularnewline
53 & 0.481868777826315 & 0.96373755565263 & 0.518131222173685 \tabularnewline
54 & 0.616581560022137 & 0.766836879955727 & 0.383418439977863 \tabularnewline
55 & 0.884476205326852 & 0.231047589346297 & 0.115523794673148 \tabularnewline
56 & 0.955803081429355 & 0.0883938371412891 & 0.0441969185706446 \tabularnewline
57 & 0.971717723674694 & 0.0565645526506115 & 0.0282822763253057 \tabularnewline
58 & 0.979711922052626 & 0.0405761558947471 & 0.0202880779473736 \tabularnewline
59 & 0.985303281751708 & 0.0293934364965843 & 0.0146967182482921 \tabularnewline
60 & 0.990831096995237 & 0.0183378060095256 & 0.0091689030047628 \tabularnewline
61 & 0.990322882417483 & 0.0193542351650342 & 0.00967711758251708 \tabularnewline
62 & 0.990146946073667 & 0.0197061078526659 & 0.00985305392633293 \tabularnewline
63 & 0.991800510611275 & 0.0163989787774492 & 0.00819948938872459 \tabularnewline
64 & 0.99398228010429 & 0.0120354397914216 & 0.00601771989571078 \tabularnewline
65 & 0.99691370456023 & 0.00617259087953928 & 0.00308629543976964 \tabularnewline
66 & 0.999249890590902 & 0.00150021881819631 & 0.000750109409098156 \tabularnewline
67 & 0.99994443079018 & 0.000111138419640026 & 5.55692098200131e-05 \tabularnewline
68 & 0.99998419100443 & 3.16179911409395e-05 & 1.58089955704697e-05 \tabularnewline
69 & 0.999985660013148 & 2.86799737031082e-05 & 1.43399868515541e-05 \tabularnewline
70 & 0.99997745269624 & 4.50946075205582e-05 & 2.25473037602791e-05 \tabularnewline
71 & 0.999961515764022 & 7.6968471956443e-05 & 3.84842359782215e-05 \tabularnewline
72 & 0.999940187969957 & 0.000119624060085567 & 5.98120300427837e-05 \tabularnewline
73 & 0.999882756417788 & 0.000234487164423392 & 0.000117243582211696 \tabularnewline
74 & 0.999820894548636 & 0.000358210902727367 & 0.000179105451363684 \tabularnewline
75 & 0.999728579050468 & 0.000542841899063554 & 0.000271420949531777 \tabularnewline
76 & 0.999825097998438 & 0.000349804003123109 & 0.000174902001561555 \tabularnewline
77 & 0.9999208104124 & 0.000158379175199604 & 7.91895875998022e-05 \tabularnewline
78 & 0.999986863535236 & 2.62729295269546e-05 & 1.31364647634773e-05 \tabularnewline
79 & 0.999980059500226 & 3.98809995475258e-05 & 1.99404997737629e-05 \tabularnewline
80 & 0.999960684047477 & 7.86319050468587e-05 & 3.93159525234294e-05 \tabularnewline
81 & 0.999960403172794 & 7.91936544119184e-05 & 3.95968272059592e-05 \tabularnewline
82 & 0.999965527068617 & 6.89458627653212e-05 & 3.44729313826606e-05 \tabularnewline
83 & 0.999938822927656 & 0.000122354144688251 & 6.11770723441255e-05 \tabularnewline
84 & 0.999891969939312 & 0.000216060121375740 & 0.000108030060687870 \tabularnewline
85 & 0.999904789957454 & 0.00019042008509188 & 9.521004254594e-05 \tabularnewline
86 & 0.999845348561606 & 0.000309302876788267 & 0.000154651438394134 \tabularnewline
87 & 0.999873568516877 & 0.000252862966245434 & 0.000126431483122717 \tabularnewline
88 & 0.99975698117681 & 0.000486037646378173 & 0.000243018823189087 \tabularnewline
89 & 0.999505009983863 & 0.000989980032273658 & 0.000494990016136829 \tabularnewline
90 & 0.999027228011466 & 0.00194554397706877 & 0.000972771988534383 \tabularnewline
91 & 0.998150983119239 & 0.00369803376152243 & 0.00184901688076122 \tabularnewline
92 & 0.99822526222911 & 0.00354947554177889 & 0.00177473777088944 \tabularnewline
93 & 0.99993787151327 & 0.000124256973461928 & 6.21284867309642e-05 \tabularnewline
94 & 0.999974166731089 & 5.16665378229629e-05 & 2.58332689114814e-05 \tabularnewline
95 & 0.999950884206613 & 9.8231586774798e-05 & 4.9115793387399e-05 \tabularnewline
96 & 0.999864866934758 & 0.000270266130483497 & 0.000135133065241749 \tabularnewline
97 & 0.999724554014814 & 0.000550891970371158 & 0.000275445985185579 \tabularnewline
98 & 0.999566832779332 & 0.000866334441336232 & 0.000433167220668116 \tabularnewline
99 & 0.99864463821873 & 0.00271072356254151 & 0.00135536178127076 \tabularnewline
100 & 0.99532877953922 & 0.00934244092155953 & 0.00467122046077977 \tabularnewline
101 & 0.986627470465112 & 0.0267450590697767 & 0.0133725295348884 \tabularnewline
102 & 0.9534849200433 & 0.0930301599133983 & 0.0465150799566992 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.00486096830709992[/C][C]0.00972193661419984[/C][C]0.9951390316929[/C][/ROW]
[ROW][C]18[/C][C]0.00256413701460361[/C][C]0.00512827402920722[/C][C]0.997435862985396[/C][/ROW]
[ROW][C]19[/C][C]0.00151481370350873[/C][C]0.00302962740701746[/C][C]0.998485186296491[/C][/ROW]
[ROW][C]20[/C][C]0.000533831559975432[/C][C]0.00106766311995086[/C][C]0.999466168440025[/C][/ROW]
[ROW][C]21[/C][C]0.000112253669698707[/C][C]0.000224507339397414[/C][C]0.999887746330301[/C][/ROW]
[ROW][C]22[/C][C]3.28764127045154e-05[/C][C]6.57528254090308e-05[/C][C]0.999967123587295[/C][/ROW]
[ROW][C]23[/C][C]6.95596345394575e-06[/C][C]1.39119269078915e-05[/C][C]0.999993044036546[/C][/ROW]
[ROW][C]24[/C][C]1.44843737696234e-06[/C][C]2.89687475392468e-06[/C][C]0.999998551562623[/C][/ROW]
[ROW][C]25[/C][C]2.66598915131778e-07[/C][C]5.33197830263555e-07[/C][C]0.999999733401085[/C][/ROW]
[ROW][C]26[/C][C]5.65845555656118e-08[/C][C]1.13169111131224e-07[/C][C]0.999999943415444[/C][/ROW]
[ROW][C]27[/C][C]2.02946688290276e-08[/C][C]4.05893376580552e-08[/C][C]0.999999979705331[/C][/ROW]
[ROW][C]28[/C][C]6.89875376882125e-09[/C][C]1.37975075376425e-08[/C][C]0.999999993101246[/C][/ROW]
[ROW][C]29[/C][C]4.89490309384618e-09[/C][C]9.78980618769237e-09[/C][C]0.999999995105097[/C][/ROW]
[ROW][C]30[/C][C]3.33309108725183e-09[/C][C]6.66618217450366e-09[/C][C]0.999999996666909[/C][/ROW]
[ROW][C]31[/C][C]1.91546219744602e-08[/C][C]3.83092439489204e-08[/C][C]0.999999980845378[/C][/ROW]
[ROW][C]32[/C][C]1.37144544591753e-08[/C][C]2.74289089183506e-08[/C][C]0.999999986285546[/C][/ROW]
[ROW][C]33[/C][C]1.99760676710620e-06[/C][C]3.99521353421239e-06[/C][C]0.999998002393233[/C][/ROW]
[ROW][C]34[/C][C]4.78009425052581e-05[/C][C]9.56018850105161e-05[/C][C]0.999952199057495[/C][/ROW]
[ROW][C]35[/C][C]0.000158637377909835[/C][C]0.00031727475581967[/C][C]0.99984136262209[/C][/ROW]
[ROW][C]36[/C][C]0.000345314772388806[/C][C]0.000690629544777612[/C][C]0.999654685227611[/C][/ROW]
[ROW][C]37[/C][C]0.000359949840630035[/C][C]0.000719899681260069[/C][C]0.99964005015937[/C][/ROW]
[ROW][C]38[/C][C]0.000396381217786054[/C][C]0.000792762435572109[/C][C]0.999603618782214[/C][/ROW]
[ROW][C]39[/C][C]0.000492162585677177[/C][C]0.000984325171354354[/C][C]0.999507837414323[/C][/ROW]
[ROW][C]40[/C][C]0.000505775308933208[/C][C]0.00101155061786642[/C][C]0.999494224691067[/C][/ROW]
[ROW][C]41[/C][C]0.000584369569415236[/C][C]0.00116873913883047[/C][C]0.999415630430585[/C][/ROW]
[ROW][C]42[/C][C]0.000986669711499048[/C][C]0.00197333942299810[/C][C]0.9990133302885[/C][/ROW]
[ROW][C]43[/C][C]0.0200569596785933[/C][C]0.0401139193571866[/C][C]0.979943040321407[/C][/ROW]
[ROW][C]44[/C][C]0.0476100591403053[/C][C]0.0952201182806105[/C][C]0.952389940859695[/C][/ROW]
[ROW][C]45[/C][C]0.0993221581198008[/C][C]0.198644316239602[/C][C]0.9006778418802[/C][/ROW]
[ROW][C]46[/C][C]0.151386130095855[/C][C]0.30277226019171[/C][C]0.848613869904145[/C][/ROW]
[ROW][C]47[/C][C]0.199996560983109[/C][C]0.399993121966218[/C][C]0.800003439016891[/C][/ROW]
[ROW][C]48[/C][C]0.263578825532751[/C][C]0.527157651065502[/C][C]0.736421174467249[/C][/ROW]
[ROW][C]49[/C][C]0.276702605140213[/C][C]0.553405210280427[/C][C]0.723297394859787[/C][/ROW]
[ROW][C]50[/C][C]0.313612252521261[/C][C]0.627224505042521[/C][C]0.68638774747874[/C][/ROW]
[ROW][C]51[/C][C]0.368754017410809[/C][C]0.737508034821619[/C][C]0.631245982589191[/C][/ROW]
[ROW][C]52[/C][C]0.417066225668761[/C][C]0.834132451337523[/C][C]0.582933774331239[/C][/ROW]
[ROW][C]53[/C][C]0.481868777826315[/C][C]0.96373755565263[/C][C]0.518131222173685[/C][/ROW]
[ROW][C]54[/C][C]0.616581560022137[/C][C]0.766836879955727[/C][C]0.383418439977863[/C][/ROW]
[ROW][C]55[/C][C]0.884476205326852[/C][C]0.231047589346297[/C][C]0.115523794673148[/C][/ROW]
[ROW][C]56[/C][C]0.955803081429355[/C][C]0.0883938371412891[/C][C]0.0441969185706446[/C][/ROW]
[ROW][C]57[/C][C]0.971717723674694[/C][C]0.0565645526506115[/C][C]0.0282822763253057[/C][/ROW]
[ROW][C]58[/C][C]0.979711922052626[/C][C]0.0405761558947471[/C][C]0.0202880779473736[/C][/ROW]
[ROW][C]59[/C][C]0.985303281751708[/C][C]0.0293934364965843[/C][C]0.0146967182482921[/C][/ROW]
[ROW][C]60[/C][C]0.990831096995237[/C][C]0.0183378060095256[/C][C]0.0091689030047628[/C][/ROW]
[ROW][C]61[/C][C]0.990322882417483[/C][C]0.0193542351650342[/C][C]0.00967711758251708[/C][/ROW]
[ROW][C]62[/C][C]0.990146946073667[/C][C]0.0197061078526659[/C][C]0.00985305392633293[/C][/ROW]
[ROW][C]63[/C][C]0.991800510611275[/C][C]0.0163989787774492[/C][C]0.00819948938872459[/C][/ROW]
[ROW][C]64[/C][C]0.99398228010429[/C][C]0.0120354397914216[/C][C]0.00601771989571078[/C][/ROW]
[ROW][C]65[/C][C]0.99691370456023[/C][C]0.00617259087953928[/C][C]0.00308629543976964[/C][/ROW]
[ROW][C]66[/C][C]0.999249890590902[/C][C]0.00150021881819631[/C][C]0.000750109409098156[/C][/ROW]
[ROW][C]67[/C][C]0.99994443079018[/C][C]0.000111138419640026[/C][C]5.55692098200131e-05[/C][/ROW]
[ROW][C]68[/C][C]0.99998419100443[/C][C]3.16179911409395e-05[/C][C]1.58089955704697e-05[/C][/ROW]
[ROW][C]69[/C][C]0.999985660013148[/C][C]2.86799737031082e-05[/C][C]1.43399868515541e-05[/C][/ROW]
[ROW][C]70[/C][C]0.99997745269624[/C][C]4.50946075205582e-05[/C][C]2.25473037602791e-05[/C][/ROW]
[ROW][C]71[/C][C]0.999961515764022[/C][C]7.6968471956443e-05[/C][C]3.84842359782215e-05[/C][/ROW]
[ROW][C]72[/C][C]0.999940187969957[/C][C]0.000119624060085567[/C][C]5.98120300427837e-05[/C][/ROW]
[ROW][C]73[/C][C]0.999882756417788[/C][C]0.000234487164423392[/C][C]0.000117243582211696[/C][/ROW]
[ROW][C]74[/C][C]0.999820894548636[/C][C]0.000358210902727367[/C][C]0.000179105451363684[/C][/ROW]
[ROW][C]75[/C][C]0.999728579050468[/C][C]0.000542841899063554[/C][C]0.000271420949531777[/C][/ROW]
[ROW][C]76[/C][C]0.999825097998438[/C][C]0.000349804003123109[/C][C]0.000174902001561555[/C][/ROW]
[ROW][C]77[/C][C]0.9999208104124[/C][C]0.000158379175199604[/C][C]7.91895875998022e-05[/C][/ROW]
[ROW][C]78[/C][C]0.999986863535236[/C][C]2.62729295269546e-05[/C][C]1.31364647634773e-05[/C][/ROW]
[ROW][C]79[/C][C]0.999980059500226[/C][C]3.98809995475258e-05[/C][C]1.99404997737629e-05[/C][/ROW]
[ROW][C]80[/C][C]0.999960684047477[/C][C]7.86319050468587e-05[/C][C]3.93159525234294e-05[/C][/ROW]
[ROW][C]81[/C][C]0.999960403172794[/C][C]7.91936544119184e-05[/C][C]3.95968272059592e-05[/C][/ROW]
[ROW][C]82[/C][C]0.999965527068617[/C][C]6.89458627653212e-05[/C][C]3.44729313826606e-05[/C][/ROW]
[ROW][C]83[/C][C]0.999938822927656[/C][C]0.000122354144688251[/C][C]6.11770723441255e-05[/C][/ROW]
[ROW][C]84[/C][C]0.999891969939312[/C][C]0.000216060121375740[/C][C]0.000108030060687870[/C][/ROW]
[ROW][C]85[/C][C]0.999904789957454[/C][C]0.00019042008509188[/C][C]9.521004254594e-05[/C][/ROW]
[ROW][C]86[/C][C]0.999845348561606[/C][C]0.000309302876788267[/C][C]0.000154651438394134[/C][/ROW]
[ROW][C]87[/C][C]0.999873568516877[/C][C]0.000252862966245434[/C][C]0.000126431483122717[/C][/ROW]
[ROW][C]88[/C][C]0.99975698117681[/C][C]0.000486037646378173[/C][C]0.000243018823189087[/C][/ROW]
[ROW][C]89[/C][C]0.999505009983863[/C][C]0.000989980032273658[/C][C]0.000494990016136829[/C][/ROW]
[ROW][C]90[/C][C]0.999027228011466[/C][C]0.00194554397706877[/C][C]0.000972771988534383[/C][/ROW]
[ROW][C]91[/C][C]0.998150983119239[/C][C]0.00369803376152243[/C][C]0.00184901688076122[/C][/ROW]
[ROW][C]92[/C][C]0.99822526222911[/C][C]0.00354947554177889[/C][C]0.00177473777088944[/C][/ROW]
[ROW][C]93[/C][C]0.99993787151327[/C][C]0.000124256973461928[/C][C]6.21284867309642e-05[/C][/ROW]
[ROW][C]94[/C][C]0.999974166731089[/C][C]5.16665378229629e-05[/C][C]2.58332689114814e-05[/C][/ROW]
[ROW][C]95[/C][C]0.999950884206613[/C][C]9.8231586774798e-05[/C][C]4.9115793387399e-05[/C][/ROW]
[ROW][C]96[/C][C]0.999864866934758[/C][C]0.000270266130483497[/C][C]0.000135133065241749[/C][/ROW]
[ROW][C]97[/C][C]0.999724554014814[/C][C]0.000550891970371158[/C][C]0.000275445985185579[/C][/ROW]
[ROW][C]98[/C][C]0.999566832779332[/C][C]0.000866334441336232[/C][C]0.000433167220668116[/C][/ROW]
[ROW][C]99[/C][C]0.99864463821873[/C][C]0.00271072356254151[/C][C]0.00135536178127076[/C][/ROW]
[ROW][C]100[/C][C]0.99532877953922[/C][C]0.00934244092155953[/C][C]0.00467122046077977[/C][/ROW]
[ROW][C]101[/C][C]0.986627470465112[/C][C]0.0267450590697767[/C][C]0.0133725295348884[/C][/ROW]
[ROW][C]102[/C][C]0.9534849200433[/C][C]0.0930301599133983[/C][C]0.0465150799566992[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.004860968307099920.009721936614199840.9951390316929
180.002564137014603610.005128274029207220.997435862985396
190.001514813703508730.003029627407017460.998485186296491
200.0005338315599754320.001067663119950860.999466168440025
210.0001122536696987070.0002245073393974140.999887746330301
223.28764127045154e-056.57528254090308e-050.999967123587295
236.95596345394575e-061.39119269078915e-050.999993044036546
241.44843737696234e-062.89687475392468e-060.999998551562623
252.66598915131778e-075.33197830263555e-070.999999733401085
265.65845555656118e-081.13169111131224e-070.999999943415444
272.02946688290276e-084.05893376580552e-080.999999979705331
286.89875376882125e-091.37975075376425e-080.999999993101246
294.89490309384618e-099.78980618769237e-090.999999995105097
303.33309108725183e-096.66618217450366e-090.999999996666909
311.91546219744602e-083.83092439489204e-080.999999980845378
321.37144544591753e-082.74289089183506e-080.999999986285546
331.99760676710620e-063.99521353421239e-060.999998002393233
344.78009425052581e-059.56018850105161e-050.999952199057495
350.0001586373779098350.000317274755819670.99984136262209
360.0003453147723888060.0006906295447776120.999654685227611
370.0003599498406300350.0007198996812600690.99964005015937
380.0003963812177860540.0007927624355721090.999603618782214
390.0004921625856771770.0009843251713543540.999507837414323
400.0005057753089332080.001011550617866420.999494224691067
410.0005843695694152360.001168739138830470.999415630430585
420.0009866697114990480.001973339422998100.9990133302885
430.02005695967859330.04011391935718660.979943040321407
440.04761005914030530.09522011828061050.952389940859695
450.09932215811980080.1986443162396020.9006778418802
460.1513861300958550.302772260191710.848613869904145
470.1999965609831090.3999931219662180.800003439016891
480.2635788255327510.5271576510655020.736421174467249
490.2767026051402130.5534052102804270.723297394859787
500.3136122525212610.6272245050425210.68638774747874
510.3687540174108090.7375080348216190.631245982589191
520.4170662256687610.8341324513375230.582933774331239
530.4818687778263150.963737555652630.518131222173685
540.6165815600221370.7668368799557270.383418439977863
550.8844762053268520.2310475893462970.115523794673148
560.9558030814293550.08839383714128910.0441969185706446
570.9717177236746940.05656455265061150.0282822763253057
580.9797119220526260.04057615589474710.0202880779473736
590.9853032817517080.02939343649658430.0146967182482921
600.9908310969952370.01833780600952560.0091689030047628
610.9903228824174830.01935423516503420.00967711758251708
620.9901469460736670.01970610785266590.00985305392633293
630.9918005106112750.01639897877744920.00819948938872459
640.993982280104290.01203543979142160.00601771989571078
650.996913704560230.006172590879539280.00308629543976964
660.9992498905909020.001500218818196310.000750109409098156
670.999944430790180.0001111384196400265.55692098200131e-05
680.999984191004433.16179911409395e-051.58089955704697e-05
690.9999856600131482.86799737031082e-051.43399868515541e-05
700.999977452696244.50946075205582e-052.25473037602791e-05
710.9999615157640227.6968471956443e-053.84842359782215e-05
720.9999401879699570.0001196240600855675.98120300427837e-05
730.9998827564177880.0002344871644233920.000117243582211696
740.9998208945486360.0003582109027273670.000179105451363684
750.9997285790504680.0005428418990635540.000271420949531777
760.9998250979984380.0003498040031231090.000174902001561555
770.99992081041240.0001583791751996047.91895875998022e-05
780.9999868635352362.62729295269546e-051.31364647634773e-05
790.9999800595002263.98809995475258e-051.99404997737629e-05
800.9999606840474777.86319050468587e-053.93159525234294e-05
810.9999604031727947.91936544119184e-053.95968272059592e-05
820.9999655270686176.89458627653212e-053.44729313826606e-05
830.9999388229276560.0001223541446882516.11770723441255e-05
840.9998919699393120.0002160601213757400.000108030060687870
850.9999047899574540.000190420085091889.521004254594e-05
860.9998453485616060.0003093028767882670.000154651438394134
870.9998735685168770.0002528629662454340.000126431483122717
880.999756981176810.0004860376463781730.000243018823189087
890.9995050099838630.0009899800322736580.000494990016136829
900.9990272280114660.001945543977068770.000972771988534383
910.9981509831192390.003698033761522430.00184901688076122
920.998225262229110.003549475541778890.00177473777088944
930.999937871513270.0001242569734619286.21284867309642e-05
940.9999741667310895.16665378229629e-052.58332689114814e-05
950.9999508842066139.8231586774798e-054.9115793387399e-05
960.9998648669347580.0002702661304834970.000135133065241749
970.9997245540148140.0005508919703711580.000275445985185579
980.9995668327793320.0008663344413362320.000433167220668116
990.998644638218730.002710723562541510.00135536178127076
1000.995328779539220.009342440921559530.00467122046077977
1010.9866274704651120.02674505906977670.0133725295348884
1020.95348492004330.09303015991339830.0465150799566992







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level620.72093023255814NOK
5% type I error level710.825581395348837NOK
10% type I error level750.872093023255814NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 62 & 0.72093023255814 & NOK \tabularnewline
5% type I error level & 71 & 0.825581395348837 & NOK \tabularnewline
10% type I error level & 75 & 0.872093023255814 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=31958&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]62[/C][C]0.72093023255814[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]71[/C][C]0.825581395348837[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]75[/C][C]0.872093023255814[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=31958&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=31958&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level620.72093023255814NOK
5% type I error level710.825581395348837NOK
10% type I error level750.872093023255814NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}