Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationWed, 10 Dec 2008 13:54:19 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/10/t1228942533np9onpk0heoxbp7.htm/, Retrieved Thu, 31 Oct 2024 23:40:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=32114, Retrieved Thu, 31 Oct 2024 23:40:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact197
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [SD mean plot werk...] [2008-12-10 20:54:19] [270782e2502ae87124d0ebdcd1862d6a] [Current]
Feedback Forum

Post a new message
Dataseries X:
451
450
444
429
421
400
389
384
432
446
431
423
416
416
413
399
386
374
365
365
418
428
424
421
417
423
423
419
406
398
390
391
444
460
455
456
452
459
461
451
443
439
430
436
488
506
502
501
501
515
521
520
512
509
505
511
570
592
594
586
586
592
594
586
572
563
555
554
601
622
617
606
595
599
600
592
575
567
555
555
608
631
629
624
610
616
621
604
584
574
555
545
599
620
608
590
579
580
579
572
560
551
537
541
588
607
599
578
563
566
561
554
540
526
512
505
554
584
569
540
522
526
527
516
503
489
479
475
524
552
532
511
492
492
493
481
462
457
442
439
488
521
501
485
464
460
467
460
448
443
436
431
484
510
513
503
471
471
476
475
470
461
455
456
517
525
523
519
509
512
519
517
510
509
501
507
569
580
578
565
547
555
562
561
555
544
537
543
594
611
613
611
594
595
591
589
584
573
567
569
621
629
628
612
595
597
593
590
580
574
573
573
620
626
620
588
566
557
561
549
532
526
511
499
555
565
542
527
510
514
517
508
493
490
469
478
528
534
518
506
502




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32114&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32114&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32114&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
142523.01382983417567
2402.08333333333323.504190470998463
3423.525.22444701619370
446427.807781775480276
5536.33333333333337.163846883113693
6587.33333333333322.704958742863968
7594.16666666666726.777987341482776
8593.83333333333325.052066992686776
9572.58333333333321.689789526341070
10547.83333333333323.900678321805579
1151322.839359965558777
12479.41666666666724.574407727380082
13468.2528.336051563014582
14484.91666666666727.533313155763470
15531.33333333333331.326240331921979
16569.41666666666729.234034751959776
1759621.983464860497562
18594.08333333333318.870170463812353
19540.83333333333321.916508237703767
20505.41666666666719.519027236069565

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 425 & 23.013829834175 & 67 \tabularnewline
2 & 402.083333333333 & 23.5041904709984 & 63 \tabularnewline
3 & 423.5 & 25.224447016193 & 70 \tabularnewline
4 & 464 & 27.8077817754802 & 76 \tabularnewline
5 & 536.333333333333 & 37.1638468831136 & 93 \tabularnewline
6 & 587.333333333333 & 22.7049587428639 & 68 \tabularnewline
7 & 594.166666666667 & 26.7779873414827 & 76 \tabularnewline
8 & 593.833333333333 & 25.0520669926867 & 76 \tabularnewline
9 & 572.583333333333 & 21.6897895263410 & 70 \tabularnewline
10 & 547.833333333333 & 23.9006783218055 & 79 \tabularnewline
11 & 513 & 22.8393599655587 & 77 \tabularnewline
12 & 479.416666666667 & 24.5744077273800 & 82 \tabularnewline
13 & 468.25 & 28.3360515630145 & 82 \tabularnewline
14 & 484.916666666667 & 27.5333131557634 & 70 \tabularnewline
15 & 531.333333333333 & 31.3262403319219 & 79 \tabularnewline
16 & 569.416666666667 & 29.2340347519597 & 76 \tabularnewline
17 & 596 & 21.9834648604975 & 62 \tabularnewline
18 & 594.083333333333 & 18.8701704638123 & 53 \tabularnewline
19 & 540.833333333333 & 21.9165082377037 & 67 \tabularnewline
20 & 505.416666666667 & 19.5190272360695 & 65 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32114&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]425[/C][C]23.013829834175[/C][C]67[/C][/ROW]
[ROW][C]2[/C][C]402.083333333333[/C][C]23.5041904709984[/C][C]63[/C][/ROW]
[ROW][C]3[/C][C]423.5[/C][C]25.224447016193[/C][C]70[/C][/ROW]
[ROW][C]4[/C][C]464[/C][C]27.8077817754802[/C][C]76[/C][/ROW]
[ROW][C]5[/C][C]536.333333333333[/C][C]37.1638468831136[/C][C]93[/C][/ROW]
[ROW][C]6[/C][C]587.333333333333[/C][C]22.7049587428639[/C][C]68[/C][/ROW]
[ROW][C]7[/C][C]594.166666666667[/C][C]26.7779873414827[/C][C]76[/C][/ROW]
[ROW][C]8[/C][C]593.833333333333[/C][C]25.0520669926867[/C][C]76[/C][/ROW]
[ROW][C]9[/C][C]572.583333333333[/C][C]21.6897895263410[/C][C]70[/C][/ROW]
[ROW][C]10[/C][C]547.833333333333[/C][C]23.9006783218055[/C][C]79[/C][/ROW]
[ROW][C]11[/C][C]513[/C][C]22.8393599655587[/C][C]77[/C][/ROW]
[ROW][C]12[/C][C]479.416666666667[/C][C]24.5744077273800[/C][C]82[/C][/ROW]
[ROW][C]13[/C][C]468.25[/C][C]28.3360515630145[/C][C]82[/C][/ROW]
[ROW][C]14[/C][C]484.916666666667[/C][C]27.5333131557634[/C][C]70[/C][/ROW]
[ROW][C]15[/C][C]531.333333333333[/C][C]31.3262403319219[/C][C]79[/C][/ROW]
[ROW][C]16[/C][C]569.416666666667[/C][C]29.2340347519597[/C][C]76[/C][/ROW]
[ROW][C]17[/C][C]596[/C][C]21.9834648604975[/C][C]62[/C][/ROW]
[ROW][C]18[/C][C]594.083333333333[/C][C]18.8701704638123[/C][C]53[/C][/ROW]
[ROW][C]19[/C][C]540.833333333333[/C][C]21.9165082377037[/C][C]67[/C][/ROW]
[ROW][C]20[/C][C]505.416666666667[/C][C]19.5190272360695[/C][C]65[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32114&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32114&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
142523.01382983417567
2402.08333333333323.504190470998463
3423.525.22444701619370
446427.807781775480276
5536.33333333333337.163846883113693
6587.33333333333322.704958742863968
7594.16666666666726.777987341482776
8593.83333333333325.052066992686776
9572.58333333333321.689789526341070
10547.83333333333323.900678321805579
1151322.839359965558777
12479.41666666666724.574407727380082
13468.2528.336051563014582
14484.91666666666727.533313155763470
15531.33333333333331.326240331921979
16569.41666666666729.234034751959776
1759621.983464860497562
18594.08333333333318.870170463812353
19540.83333333333321.916508237703767
20505.41666666666719.519027236069565







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha28.351303468835
beta-0.00614170744482351
S.D.0.0160395006354588
T-STAT-0.382911387605542
p-value0.7062697573785

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 28.351303468835 \tabularnewline
beta & -0.00614170744482351 \tabularnewline
S.D. & 0.0160395006354588 \tabularnewline
T-STAT & -0.382911387605542 \tabularnewline
p-value & 0.7062697573785 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32114&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]28.351303468835[/C][/ROW]
[ROW][C]beta[/C][C]-0.00614170744482351[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0160395006354588[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.382911387605542[/C][/ROW]
[ROW][C]p-value[/C][C]0.7062697573785[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32114&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32114&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha28.351303468835
beta-0.00614170744482351
S.D.0.0160395006354588
T-STAT-0.382911387605542
p-value0.7062697573785







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha4.04665245700548
beta-0.133559153815103
S.D.0.304581204640806
T-STAT-0.438500970447632
p-value0.666240783994217
Lambda1.13355915381510

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 4.04665245700548 \tabularnewline
beta & -0.133559153815103 \tabularnewline
S.D. & 0.304581204640806 \tabularnewline
T-STAT & -0.438500970447632 \tabularnewline
p-value & 0.666240783994217 \tabularnewline
Lambda & 1.13355915381510 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=32114&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]4.04665245700548[/C][/ROW]
[ROW][C]beta[/C][C]-0.133559153815103[/C][/ROW]
[ROW][C]S.D.[/C][C]0.304581204640806[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.438500970447632[/C][/ROW]
[ROW][C]p-value[/C][C]0.666240783994217[/C][/ROW]
[ROW][C]Lambda[/C][C]1.13355915381510[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=32114&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=32114&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha4.04665245700548
beta-0.133559153815103
S.D.0.304581204640806
T-STAT-0.438500970447632
p-value0.666240783994217
Lambda1.13355915381510



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')