Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 22 Dec 2008 05:06:36 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/22/t1229947657drb2twnu5lc35rk.htm/, Retrieved Thu, 02 Jan 2025 16:21:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=36014, Retrieved Thu, 02 Jan 2025 16:21:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact300
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
F    D  [Multiple Regression] [The Seatbelt Law ...] [2008-11-15 12:00:57] [93834488277b53a4510bfd06084ae13b]
-   PD    [Multiple Regression] [] [2008-11-15 18:50:27] [93834488277b53a4510bfd06084ae13b]
-    D      [Multiple Regression] [Paper - Multiple ...] [2008-12-21 14:45:31] [85841a4a203c2f9589565c024425a91b]
-   PD        [Multiple Regression] [Paper - Multiple ...] [2008-12-21 15:09:11] [85841a4a203c2f9589565c024425a91b]
- R PD          [Multiple Regression] [Paper - Multiple ...] [2008-12-22 11:39:51] [85841a4a203c2f9589565c024425a91b]
-   PD              [Multiple Regression] [Paper - Multiple ...] [2008-12-22 12:06:36] [07b7cf1321bc38017c2c7efcf91ca696] [Current]
Feedback Forum

Post a new message
Dataseries X:
97.57	0
97.74	0
97.92	0
98.19	0
98.23	0
98.41	0
98.59	0
98.71	0
99.14	0
99.62	0
100.18	1
100.66	1
101.19	1
101.75	1
102.2	1
102.87	1
98.81	0
97.6	0
96.68	0
95.96	0
98.89	0
99.05	0
99.2	0
99.11	0
99.19	0
99.77	0
100.6956867	0
100.7751938	0
100.5267342	0
101.013715	0
100.9242695	0
101.1031604	0
103.1107136	0
102.991453	0
102.3057046	0
102.6137945	0
103.6772014	0
104.7207315	0
107.6624925	0
108.8749752	0
108.1196581	0
107.6128006	0
106.4201948	0
105.6052475	0
105.7145697	0
105.4859869	0
105.5654939	0
105.177897	0
106.0922282	0
106.3406877	0
108.4675015	1
116.8654343	1
121.0793083	1
123.2657523	1
124.1800835	1
125.6012721	1
126.5652952	1
127.1814749	1
128.0361757	1
128.5529716	1
129.6660704	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
elektrictietsindex[t] = + 90.8627766197539 + 9.71251637015386dumivariable[t] + 1.38814478414702M1[t] + 0.249173786304261M2[t] -0.715009116953851M3[t] + 1.06444347381880M4[t] + 2.49843427862222M5[t] + 2.37921580939487M6[t] + 1.81113986016752M7[t] + 1.50163437094017M8[t] + 2.44328214171282M9[t] + 2.27841747248547M10[t] + 0.181074149227351M11[t] + 0.34653192922735t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
elektrictietsindex[t] =  +  90.8627766197539 +  9.71251637015386dumivariable[t] +  1.38814478414702M1[t] +  0.249173786304261M2[t] -0.715009116953851M3[t] +  1.06444347381880M4[t] +  2.49843427862222M5[t] +  2.37921580939487M6[t] +  1.81113986016752M7[t] +  1.50163437094017M8[t] +  2.44328214171282M9[t] +  2.27841747248547M10[t] +  0.181074149227351M11[t] +  0.34653192922735t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]elektrictietsindex[t] =  +  90.8627766197539 +  9.71251637015386dumivariable[t] +  1.38814478414702M1[t] +  0.249173786304261M2[t] -0.715009116953851M3[t] +  1.06444347381880M4[t] +  2.49843427862222M5[t] +  2.37921580939487M6[t] +  1.81113986016752M7[t] +  1.50163437094017M8[t] +  2.44328214171282M9[t] +  2.27841747248547M10[t] +  0.181074149227351M11[t] +  0.34653192922735t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
elektrictietsindex[t] = + 90.8627766197539 + 9.71251637015386dumivariable[t] + 1.38814478414702M1[t] + 0.249173786304261M2[t] -0.715009116953851M3[t] + 1.06444347381880M4[t] + 2.49843427862222M5[t] + 2.37921580939487M6[t] + 1.81113986016752M7[t] + 1.50163437094017M8[t] + 2.44328214171282M9[t] + 2.27841747248547M10[t] + 0.181074149227351M11[t] + 0.34653192922735t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)90.86277661975392.05607644.192300
dumivariable9.712516370153861.2367347.853400
M11.388144784147022.3958450.57940.5650890.282544
M20.2491737863042612.5181240.0990.9215970.460799
M3-0.7150091169538512.5134-0.28450.7772930.388647
M41.064443473818802.5100920.42410.6734530.336726
M52.498434278622222.5115520.99480.3249390.162469
M62.379215809394872.5101360.94780.3480570.174029
M71.811139860167522.509110.72180.4739780.236989
M81.501634370940172.5084720.59860.5522970.276149
M92.443282141712822.5082240.97410.334990.167495
M102.278417472485472.5083660.90830.3683390.18417
M110.1810741492273512.4977950.07250.9425170.471258
t0.346531929227350.03126411.083900

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 90.8627766197539 & 2.056076 & 44.1923 & 0 & 0 \tabularnewline
dumivariable & 9.71251637015386 & 1.236734 & 7.8534 & 0 & 0 \tabularnewline
M1 & 1.38814478414702 & 2.395845 & 0.5794 & 0.565089 & 0.282544 \tabularnewline
M2 & 0.249173786304261 & 2.518124 & 0.099 & 0.921597 & 0.460799 \tabularnewline
M3 & -0.715009116953851 & 2.5134 & -0.2845 & 0.777293 & 0.388647 \tabularnewline
M4 & 1.06444347381880 & 2.510092 & 0.4241 & 0.673453 & 0.336726 \tabularnewline
M5 & 2.49843427862222 & 2.511552 & 0.9948 & 0.324939 & 0.162469 \tabularnewline
M6 & 2.37921580939487 & 2.510136 & 0.9478 & 0.348057 & 0.174029 \tabularnewline
M7 & 1.81113986016752 & 2.50911 & 0.7218 & 0.473978 & 0.236989 \tabularnewline
M8 & 1.50163437094017 & 2.508472 & 0.5986 & 0.552297 & 0.276149 \tabularnewline
M9 & 2.44328214171282 & 2.508224 & 0.9741 & 0.33499 & 0.167495 \tabularnewline
M10 & 2.27841747248547 & 2.508366 & 0.9083 & 0.368339 & 0.18417 \tabularnewline
M11 & 0.181074149227351 & 2.497795 & 0.0725 & 0.942517 & 0.471258 \tabularnewline
t & 0.34653192922735 & 0.031264 & 11.0839 & 0 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]90.8627766197539[/C][C]2.056076[/C][C]44.1923[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]dumivariable[/C][C]9.71251637015386[/C][C]1.236734[/C][C]7.8534[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]1.38814478414702[/C][C]2.395845[/C][C]0.5794[/C][C]0.565089[/C][C]0.282544[/C][/ROW]
[ROW][C]M2[/C][C]0.249173786304261[/C][C]2.518124[/C][C]0.099[/C][C]0.921597[/C][C]0.460799[/C][/ROW]
[ROW][C]M3[/C][C]-0.715009116953851[/C][C]2.5134[/C][C]-0.2845[/C][C]0.777293[/C][C]0.388647[/C][/ROW]
[ROW][C]M4[/C][C]1.06444347381880[/C][C]2.510092[/C][C]0.4241[/C][C]0.673453[/C][C]0.336726[/C][/ROW]
[ROW][C]M5[/C][C]2.49843427862222[/C][C]2.511552[/C][C]0.9948[/C][C]0.324939[/C][C]0.162469[/C][/ROW]
[ROW][C]M6[/C][C]2.37921580939487[/C][C]2.510136[/C][C]0.9478[/C][C]0.348057[/C][C]0.174029[/C][/ROW]
[ROW][C]M7[/C][C]1.81113986016752[/C][C]2.50911[/C][C]0.7218[/C][C]0.473978[/C][C]0.236989[/C][/ROW]
[ROW][C]M8[/C][C]1.50163437094017[/C][C]2.508472[/C][C]0.5986[/C][C]0.552297[/C][C]0.276149[/C][/ROW]
[ROW][C]M9[/C][C]2.44328214171282[/C][C]2.508224[/C][C]0.9741[/C][C]0.33499[/C][C]0.167495[/C][/ROW]
[ROW][C]M10[/C][C]2.27841747248547[/C][C]2.508366[/C][C]0.9083[/C][C]0.368339[/C][C]0.18417[/C][/ROW]
[ROW][C]M11[/C][C]0.181074149227351[/C][C]2.497795[/C][C]0.0725[/C][C]0.942517[/C][C]0.471258[/C][/ROW]
[ROW][C]t[/C][C]0.34653192922735[/C][C]0.031264[/C][C]11.0839[/C][C]0[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)90.86277661975392.05607644.192300
dumivariable9.712516370153861.2367347.853400
M11.388144784147022.3958450.57940.5650890.282544
M20.2491737863042612.5181240.0990.9215970.460799
M3-0.7150091169538512.5134-0.28450.7772930.388647
M41.064443473818802.5100920.42410.6734530.336726
M52.498434278622222.5115520.99480.3249390.162469
M62.379215809394872.5101360.94780.3480570.174029
M71.811139860167522.509110.72180.4739780.236989
M81.501634370940172.5084720.59860.5522970.276149
M92.443282141712822.5082240.97410.334990.167495
M102.278417472485472.5083660.90830.3683390.18417
M110.1810741492273512.4977950.07250.9425170.471258
t0.346531929227350.03126411.083900







Multiple Linear Regression - Regression Statistics
Multiple R0.928325847275186
R-squared0.861788878719192
Adjusted R-squared0.823560270705351
F-TEST (value)22.5430357916036
F-TEST (DF numerator)13
F-TEST (DF denominator)47
p-value6.66133814775094e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.94905205124836
Sum Squared Residuals732.965568863038

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.928325847275186 \tabularnewline
R-squared & 0.861788878719192 \tabularnewline
Adjusted R-squared & 0.823560270705351 \tabularnewline
F-TEST (value) & 22.5430357916036 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 47 \tabularnewline
p-value & 6.66133814775094e-16 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 3.94905205124836 \tabularnewline
Sum Squared Residuals & 732.965568863038 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.928325847275186[/C][/ROW]
[ROW][C]R-squared[/C][C]0.861788878719192[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.823560270705351[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]22.5430357916036[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]47[/C][/ROW]
[ROW][C]p-value[/C][C]6.66133814775094e-16[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]3.94905205124836[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]732.965568863038[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.928325847275186
R-squared0.861788878719192
Adjusted R-squared0.823560270705351
F-TEST (value)22.5430357916036
F-TEST (DF numerator)13
F-TEST (DF denominator)47
p-value6.66133814775094e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.94905205124836
Sum Squared Residuals732.965568863038







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
197.5792.59745333312814.97254666687189
297.7491.80501426451285.93498573548716
397.9291.1873632904826.73263670951795
498.1993.3133478104824.87665218951795
598.2395.09387054451283.13612945548718
698.4195.32118400451283.08881599548717
798.5995.09963998451283.49036001548718
898.7195.13666642451283.57333357548717
999.1496.42484612451282.71515387548718
1099.6296.60651338451283.01348661548718
11100.18104.568218360636-4.3882183606359
12100.66104.733676140636-4.07367614063592
13101.19106.468352854010-5.27835285401028
14101.75105.675913785395-3.92591378539486
15102.2105.058262811364-2.85826281136411
16102.87107.184247331364-4.3142473313641
1798.8199.252253695241-0.442253695241026
1897.699.479567155241-1.87956715524103
1996.6899.258023135241-2.57802313524102
2095.9699.295049575241-3.33504957524103
2198.89100.583229275241-1.69322927524103
2299.05100.764896535241-1.71489653524103
2399.299.01408514121030.185914858789742
2499.1199.1795429212103-0.0695429212102604
2599.19100.914219634585-1.72421963458464
2699.77100.121780565969-0.351780565969229
27100.695686799.50412959193851.19155710806153
28100.7751938101.630114111938-0.854920311938464
29100.5267342103.410636845969-2.88390264596922
30101.013715103.637950305969-2.62423530596923
31100.9242695103.416406285969-2.49213678596924
32101.1031604103.453432725969-2.35027232596924
33103.1107136104.741612425969-1.63089882596923
34102.991453104.923279685969-1.93182668596923
35102.3057046103.172468291938-0.866763691938469
36102.6137945103.337926071938-0.724131571938466
37103.6772014105.072602785313-1.39540138531283
38104.7207315104.2801637166970.44056778330257
39107.6624925103.6625127426673.99997975733333
40108.8749752105.7884972626673.08647793733333
41108.1196581107.5690199966970.550638103302563
42107.6128006107.796333456697-0.183532856697434
43106.4201948107.574789436697-1.15459463669743
44105.6052475107.611815876697-2.00656837669743
45105.7145697108.899995576697-3.18542587669743
46105.4859869109.081662836697-3.59567593669744
47105.5654939107.330851442667-1.76535754266666
48105.177897107.496309222667-2.31841222266666
49106.0922282109.230985936041-3.13875773604104
50106.3406877108.438546867426-2.09785916742563
51108.4675015117.533412263549-9.06591076354872
52116.8654343119.659396783549-2.79396248354871
53121.0793083121.439919517579-0.36061121757949
54123.2657523121.6672329775791.59851932242052
55124.1800835121.4456889575792.73439454242051
56125.6012721121.4827153975794.11855670242052
57126.5652952122.7708950975793.79440010242051
58127.1814749122.9525623575794.22891254242052
59128.0361757121.2017509635496.83442473645128
60128.5529716121.3672087435497.1857628564513
61129.6660704123.1018854569236.56418494307691

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 97.57 & 92.5974533331281 & 4.97254666687189 \tabularnewline
2 & 97.74 & 91.8050142645128 & 5.93498573548716 \tabularnewline
3 & 97.92 & 91.187363290482 & 6.73263670951795 \tabularnewline
4 & 98.19 & 93.313347810482 & 4.87665218951795 \tabularnewline
5 & 98.23 & 95.0938705445128 & 3.13612945548718 \tabularnewline
6 & 98.41 & 95.3211840045128 & 3.08881599548717 \tabularnewline
7 & 98.59 & 95.0996399845128 & 3.49036001548718 \tabularnewline
8 & 98.71 & 95.1366664245128 & 3.57333357548717 \tabularnewline
9 & 99.14 & 96.4248461245128 & 2.71515387548718 \tabularnewline
10 & 99.62 & 96.6065133845128 & 3.01348661548718 \tabularnewline
11 & 100.18 & 104.568218360636 & -4.3882183606359 \tabularnewline
12 & 100.66 & 104.733676140636 & -4.07367614063592 \tabularnewline
13 & 101.19 & 106.468352854010 & -5.27835285401028 \tabularnewline
14 & 101.75 & 105.675913785395 & -3.92591378539486 \tabularnewline
15 & 102.2 & 105.058262811364 & -2.85826281136411 \tabularnewline
16 & 102.87 & 107.184247331364 & -4.3142473313641 \tabularnewline
17 & 98.81 & 99.252253695241 & -0.442253695241026 \tabularnewline
18 & 97.6 & 99.479567155241 & -1.87956715524103 \tabularnewline
19 & 96.68 & 99.258023135241 & -2.57802313524102 \tabularnewline
20 & 95.96 & 99.295049575241 & -3.33504957524103 \tabularnewline
21 & 98.89 & 100.583229275241 & -1.69322927524103 \tabularnewline
22 & 99.05 & 100.764896535241 & -1.71489653524103 \tabularnewline
23 & 99.2 & 99.0140851412103 & 0.185914858789742 \tabularnewline
24 & 99.11 & 99.1795429212103 & -0.0695429212102604 \tabularnewline
25 & 99.19 & 100.914219634585 & -1.72421963458464 \tabularnewline
26 & 99.77 & 100.121780565969 & -0.351780565969229 \tabularnewline
27 & 100.6956867 & 99.5041295919385 & 1.19155710806153 \tabularnewline
28 & 100.7751938 & 101.630114111938 & -0.854920311938464 \tabularnewline
29 & 100.5267342 & 103.410636845969 & -2.88390264596922 \tabularnewline
30 & 101.013715 & 103.637950305969 & -2.62423530596923 \tabularnewline
31 & 100.9242695 & 103.416406285969 & -2.49213678596924 \tabularnewline
32 & 101.1031604 & 103.453432725969 & -2.35027232596924 \tabularnewline
33 & 103.1107136 & 104.741612425969 & -1.63089882596923 \tabularnewline
34 & 102.991453 & 104.923279685969 & -1.93182668596923 \tabularnewline
35 & 102.3057046 & 103.172468291938 & -0.866763691938469 \tabularnewline
36 & 102.6137945 & 103.337926071938 & -0.724131571938466 \tabularnewline
37 & 103.6772014 & 105.072602785313 & -1.39540138531283 \tabularnewline
38 & 104.7207315 & 104.280163716697 & 0.44056778330257 \tabularnewline
39 & 107.6624925 & 103.662512742667 & 3.99997975733333 \tabularnewline
40 & 108.8749752 & 105.788497262667 & 3.08647793733333 \tabularnewline
41 & 108.1196581 & 107.569019996697 & 0.550638103302563 \tabularnewline
42 & 107.6128006 & 107.796333456697 & -0.183532856697434 \tabularnewline
43 & 106.4201948 & 107.574789436697 & -1.15459463669743 \tabularnewline
44 & 105.6052475 & 107.611815876697 & -2.00656837669743 \tabularnewline
45 & 105.7145697 & 108.899995576697 & -3.18542587669743 \tabularnewline
46 & 105.4859869 & 109.081662836697 & -3.59567593669744 \tabularnewline
47 & 105.5654939 & 107.330851442667 & -1.76535754266666 \tabularnewline
48 & 105.177897 & 107.496309222667 & -2.31841222266666 \tabularnewline
49 & 106.0922282 & 109.230985936041 & -3.13875773604104 \tabularnewline
50 & 106.3406877 & 108.438546867426 & -2.09785916742563 \tabularnewline
51 & 108.4675015 & 117.533412263549 & -9.06591076354872 \tabularnewline
52 & 116.8654343 & 119.659396783549 & -2.79396248354871 \tabularnewline
53 & 121.0793083 & 121.439919517579 & -0.36061121757949 \tabularnewline
54 & 123.2657523 & 121.667232977579 & 1.59851932242052 \tabularnewline
55 & 124.1800835 & 121.445688957579 & 2.73439454242051 \tabularnewline
56 & 125.6012721 & 121.482715397579 & 4.11855670242052 \tabularnewline
57 & 126.5652952 & 122.770895097579 & 3.79440010242051 \tabularnewline
58 & 127.1814749 & 122.952562357579 & 4.22891254242052 \tabularnewline
59 & 128.0361757 & 121.201750963549 & 6.83442473645128 \tabularnewline
60 & 128.5529716 & 121.367208743549 & 7.1857628564513 \tabularnewline
61 & 129.6660704 & 123.101885456923 & 6.56418494307691 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]97.57[/C][C]92.5974533331281[/C][C]4.97254666687189[/C][/ROW]
[ROW][C]2[/C][C]97.74[/C][C]91.8050142645128[/C][C]5.93498573548716[/C][/ROW]
[ROW][C]3[/C][C]97.92[/C][C]91.187363290482[/C][C]6.73263670951795[/C][/ROW]
[ROW][C]4[/C][C]98.19[/C][C]93.313347810482[/C][C]4.87665218951795[/C][/ROW]
[ROW][C]5[/C][C]98.23[/C][C]95.0938705445128[/C][C]3.13612945548718[/C][/ROW]
[ROW][C]6[/C][C]98.41[/C][C]95.3211840045128[/C][C]3.08881599548717[/C][/ROW]
[ROW][C]7[/C][C]98.59[/C][C]95.0996399845128[/C][C]3.49036001548718[/C][/ROW]
[ROW][C]8[/C][C]98.71[/C][C]95.1366664245128[/C][C]3.57333357548717[/C][/ROW]
[ROW][C]9[/C][C]99.14[/C][C]96.4248461245128[/C][C]2.71515387548718[/C][/ROW]
[ROW][C]10[/C][C]99.62[/C][C]96.6065133845128[/C][C]3.01348661548718[/C][/ROW]
[ROW][C]11[/C][C]100.18[/C][C]104.568218360636[/C][C]-4.3882183606359[/C][/ROW]
[ROW][C]12[/C][C]100.66[/C][C]104.733676140636[/C][C]-4.07367614063592[/C][/ROW]
[ROW][C]13[/C][C]101.19[/C][C]106.468352854010[/C][C]-5.27835285401028[/C][/ROW]
[ROW][C]14[/C][C]101.75[/C][C]105.675913785395[/C][C]-3.92591378539486[/C][/ROW]
[ROW][C]15[/C][C]102.2[/C][C]105.058262811364[/C][C]-2.85826281136411[/C][/ROW]
[ROW][C]16[/C][C]102.87[/C][C]107.184247331364[/C][C]-4.3142473313641[/C][/ROW]
[ROW][C]17[/C][C]98.81[/C][C]99.252253695241[/C][C]-0.442253695241026[/C][/ROW]
[ROW][C]18[/C][C]97.6[/C][C]99.479567155241[/C][C]-1.87956715524103[/C][/ROW]
[ROW][C]19[/C][C]96.68[/C][C]99.258023135241[/C][C]-2.57802313524102[/C][/ROW]
[ROW][C]20[/C][C]95.96[/C][C]99.295049575241[/C][C]-3.33504957524103[/C][/ROW]
[ROW][C]21[/C][C]98.89[/C][C]100.583229275241[/C][C]-1.69322927524103[/C][/ROW]
[ROW][C]22[/C][C]99.05[/C][C]100.764896535241[/C][C]-1.71489653524103[/C][/ROW]
[ROW][C]23[/C][C]99.2[/C][C]99.0140851412103[/C][C]0.185914858789742[/C][/ROW]
[ROW][C]24[/C][C]99.11[/C][C]99.1795429212103[/C][C]-0.0695429212102604[/C][/ROW]
[ROW][C]25[/C][C]99.19[/C][C]100.914219634585[/C][C]-1.72421963458464[/C][/ROW]
[ROW][C]26[/C][C]99.77[/C][C]100.121780565969[/C][C]-0.351780565969229[/C][/ROW]
[ROW][C]27[/C][C]100.6956867[/C][C]99.5041295919385[/C][C]1.19155710806153[/C][/ROW]
[ROW][C]28[/C][C]100.7751938[/C][C]101.630114111938[/C][C]-0.854920311938464[/C][/ROW]
[ROW][C]29[/C][C]100.5267342[/C][C]103.410636845969[/C][C]-2.88390264596922[/C][/ROW]
[ROW][C]30[/C][C]101.013715[/C][C]103.637950305969[/C][C]-2.62423530596923[/C][/ROW]
[ROW][C]31[/C][C]100.9242695[/C][C]103.416406285969[/C][C]-2.49213678596924[/C][/ROW]
[ROW][C]32[/C][C]101.1031604[/C][C]103.453432725969[/C][C]-2.35027232596924[/C][/ROW]
[ROW][C]33[/C][C]103.1107136[/C][C]104.741612425969[/C][C]-1.63089882596923[/C][/ROW]
[ROW][C]34[/C][C]102.991453[/C][C]104.923279685969[/C][C]-1.93182668596923[/C][/ROW]
[ROW][C]35[/C][C]102.3057046[/C][C]103.172468291938[/C][C]-0.866763691938469[/C][/ROW]
[ROW][C]36[/C][C]102.6137945[/C][C]103.337926071938[/C][C]-0.724131571938466[/C][/ROW]
[ROW][C]37[/C][C]103.6772014[/C][C]105.072602785313[/C][C]-1.39540138531283[/C][/ROW]
[ROW][C]38[/C][C]104.7207315[/C][C]104.280163716697[/C][C]0.44056778330257[/C][/ROW]
[ROW][C]39[/C][C]107.6624925[/C][C]103.662512742667[/C][C]3.99997975733333[/C][/ROW]
[ROW][C]40[/C][C]108.8749752[/C][C]105.788497262667[/C][C]3.08647793733333[/C][/ROW]
[ROW][C]41[/C][C]108.1196581[/C][C]107.569019996697[/C][C]0.550638103302563[/C][/ROW]
[ROW][C]42[/C][C]107.6128006[/C][C]107.796333456697[/C][C]-0.183532856697434[/C][/ROW]
[ROW][C]43[/C][C]106.4201948[/C][C]107.574789436697[/C][C]-1.15459463669743[/C][/ROW]
[ROW][C]44[/C][C]105.6052475[/C][C]107.611815876697[/C][C]-2.00656837669743[/C][/ROW]
[ROW][C]45[/C][C]105.7145697[/C][C]108.899995576697[/C][C]-3.18542587669743[/C][/ROW]
[ROW][C]46[/C][C]105.4859869[/C][C]109.081662836697[/C][C]-3.59567593669744[/C][/ROW]
[ROW][C]47[/C][C]105.5654939[/C][C]107.330851442667[/C][C]-1.76535754266666[/C][/ROW]
[ROW][C]48[/C][C]105.177897[/C][C]107.496309222667[/C][C]-2.31841222266666[/C][/ROW]
[ROW][C]49[/C][C]106.0922282[/C][C]109.230985936041[/C][C]-3.13875773604104[/C][/ROW]
[ROW][C]50[/C][C]106.3406877[/C][C]108.438546867426[/C][C]-2.09785916742563[/C][/ROW]
[ROW][C]51[/C][C]108.4675015[/C][C]117.533412263549[/C][C]-9.06591076354872[/C][/ROW]
[ROW][C]52[/C][C]116.8654343[/C][C]119.659396783549[/C][C]-2.79396248354871[/C][/ROW]
[ROW][C]53[/C][C]121.0793083[/C][C]121.439919517579[/C][C]-0.36061121757949[/C][/ROW]
[ROW][C]54[/C][C]123.2657523[/C][C]121.667232977579[/C][C]1.59851932242052[/C][/ROW]
[ROW][C]55[/C][C]124.1800835[/C][C]121.445688957579[/C][C]2.73439454242051[/C][/ROW]
[ROW][C]56[/C][C]125.6012721[/C][C]121.482715397579[/C][C]4.11855670242052[/C][/ROW]
[ROW][C]57[/C][C]126.5652952[/C][C]122.770895097579[/C][C]3.79440010242051[/C][/ROW]
[ROW][C]58[/C][C]127.1814749[/C][C]122.952562357579[/C][C]4.22891254242052[/C][/ROW]
[ROW][C]59[/C][C]128.0361757[/C][C]121.201750963549[/C][C]6.83442473645128[/C][/ROW]
[ROW][C]60[/C][C]128.5529716[/C][C]121.367208743549[/C][C]7.1857628564513[/C][/ROW]
[ROW][C]61[/C][C]129.6660704[/C][C]123.101885456923[/C][C]6.56418494307691[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
197.5792.59745333312814.97254666687189
297.7491.80501426451285.93498573548716
397.9291.1873632904826.73263670951795
498.1993.3133478104824.87665218951795
598.2395.09387054451283.13612945548718
698.4195.32118400451283.08881599548717
798.5995.09963998451283.49036001548718
898.7195.13666642451283.57333357548717
999.1496.42484612451282.71515387548718
1099.6296.60651338451283.01348661548718
11100.18104.568218360636-4.3882183606359
12100.66104.733676140636-4.07367614063592
13101.19106.468352854010-5.27835285401028
14101.75105.675913785395-3.92591378539486
15102.2105.058262811364-2.85826281136411
16102.87107.184247331364-4.3142473313641
1798.8199.252253695241-0.442253695241026
1897.699.479567155241-1.87956715524103
1996.6899.258023135241-2.57802313524102
2095.9699.295049575241-3.33504957524103
2198.89100.583229275241-1.69322927524103
2299.05100.764896535241-1.71489653524103
2399.299.01408514121030.185914858789742
2499.1199.1795429212103-0.0695429212102604
2599.19100.914219634585-1.72421963458464
2699.77100.121780565969-0.351780565969229
27100.695686799.50412959193851.19155710806153
28100.7751938101.630114111938-0.854920311938464
29100.5267342103.410636845969-2.88390264596922
30101.013715103.637950305969-2.62423530596923
31100.9242695103.416406285969-2.49213678596924
32101.1031604103.453432725969-2.35027232596924
33103.1107136104.741612425969-1.63089882596923
34102.991453104.923279685969-1.93182668596923
35102.3057046103.172468291938-0.866763691938469
36102.6137945103.337926071938-0.724131571938466
37103.6772014105.072602785313-1.39540138531283
38104.7207315104.2801637166970.44056778330257
39107.6624925103.6625127426673.99997975733333
40108.8749752105.7884972626673.08647793733333
41108.1196581107.5690199966970.550638103302563
42107.6128006107.796333456697-0.183532856697434
43106.4201948107.574789436697-1.15459463669743
44105.6052475107.611815876697-2.00656837669743
45105.7145697108.899995576697-3.18542587669743
46105.4859869109.081662836697-3.59567593669744
47105.5654939107.330851442667-1.76535754266666
48105.177897107.496309222667-2.31841222266666
49106.0922282109.230985936041-3.13875773604104
50106.3406877108.438546867426-2.09785916742563
51108.4675015117.533412263549-9.06591076354872
52116.8654343119.659396783549-2.79396248354871
53121.0793083121.439919517579-0.36061121757949
54123.2657523121.6672329775791.59851932242052
55124.1800835121.4456889575792.73439454242051
56125.6012721121.4827153975794.11855670242052
57126.5652952122.7708950975793.79440010242051
58127.1814749122.9525623575794.22891254242052
59128.0361757121.2017509635496.83442473645128
60128.5529716121.3672087435497.1857628564513
61129.6660704123.1018854569236.56418494307691







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.001405850508008780.002811701016017560.998594149491991
180.0007493240028153590.001498648005630720.999250675997185
190.0007118812602666610.001423762520533320.999288118739733
200.0006703703033466280.001340740606693260.999329629696653
210.0001874483985588280.0003748967971176560.99981255160144
223.90922133188768e-057.81844266377536e-050.99996090778668
230.0004786382182936980.0009572764365873960.999521361781706
240.0002345074691434220.0004690149382868430.999765492530857
258.2089176518151e-050.0001641783530363020.999917910823482
262.73488971768266e-055.46977943536533e-050.999972651102823
271.79419466235211e-053.58838932470421e-050.999982058053376
285.55088738900961e-061.11017747780192e-050.99999444911261
291.83927676296787e-063.67855352593574e-060.999998160723237
301.17564147811592e-062.35128295623184e-060.999998824358522
317.67908653421392e-071.53581730684278e-060.999999232091347
326.21804287717982e-071.24360857543596e-060.999999378195712
335.08026280877746e-071.01605256175549e-060.999999491973719
342.33774347655197e-074.67548695310394e-070.999999766225652
351.26082563710130e-072.52165127420259e-070.999999873917436
366.20148206975187e-081.24029641395037e-070.99999993798518
374.28475254370735e-088.5695050874147e-080.999999957152475
383.06524279088880e-086.13048558177761e-080.999999969347572
390.0001721082002035050.0003442164004070110.999827891799796
400.03548702562328630.07097405124657250.964512974376714
410.2767297769524520.5534595539049040.723270223047548
420.6312532774693130.7374934450613740.368746722530687
430.849899028464930.3002019430701400.150100971535070
440.8689929097765450.262014180446910.131007090223455

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.00140585050800878 & 0.00281170101601756 & 0.998594149491991 \tabularnewline
18 & 0.000749324002815359 & 0.00149864800563072 & 0.999250675997185 \tabularnewline
19 & 0.000711881260266661 & 0.00142376252053332 & 0.999288118739733 \tabularnewline
20 & 0.000670370303346628 & 0.00134074060669326 & 0.999329629696653 \tabularnewline
21 & 0.000187448398558828 & 0.000374896797117656 & 0.99981255160144 \tabularnewline
22 & 3.90922133188768e-05 & 7.81844266377536e-05 & 0.99996090778668 \tabularnewline
23 & 0.000478638218293698 & 0.000957276436587396 & 0.999521361781706 \tabularnewline
24 & 0.000234507469143422 & 0.000469014938286843 & 0.999765492530857 \tabularnewline
25 & 8.2089176518151e-05 & 0.000164178353036302 & 0.999917910823482 \tabularnewline
26 & 2.73488971768266e-05 & 5.46977943536533e-05 & 0.999972651102823 \tabularnewline
27 & 1.79419466235211e-05 & 3.58838932470421e-05 & 0.999982058053376 \tabularnewline
28 & 5.55088738900961e-06 & 1.11017747780192e-05 & 0.99999444911261 \tabularnewline
29 & 1.83927676296787e-06 & 3.67855352593574e-06 & 0.999998160723237 \tabularnewline
30 & 1.17564147811592e-06 & 2.35128295623184e-06 & 0.999998824358522 \tabularnewline
31 & 7.67908653421392e-07 & 1.53581730684278e-06 & 0.999999232091347 \tabularnewline
32 & 6.21804287717982e-07 & 1.24360857543596e-06 & 0.999999378195712 \tabularnewline
33 & 5.08026280877746e-07 & 1.01605256175549e-06 & 0.999999491973719 \tabularnewline
34 & 2.33774347655197e-07 & 4.67548695310394e-07 & 0.999999766225652 \tabularnewline
35 & 1.26082563710130e-07 & 2.52165127420259e-07 & 0.999999873917436 \tabularnewline
36 & 6.20148206975187e-08 & 1.24029641395037e-07 & 0.99999993798518 \tabularnewline
37 & 4.28475254370735e-08 & 8.5695050874147e-08 & 0.999999957152475 \tabularnewline
38 & 3.06524279088880e-08 & 6.13048558177761e-08 & 0.999999969347572 \tabularnewline
39 & 0.000172108200203505 & 0.000344216400407011 & 0.999827891799796 \tabularnewline
40 & 0.0354870256232863 & 0.0709740512465725 & 0.964512974376714 \tabularnewline
41 & 0.276729776952452 & 0.553459553904904 & 0.723270223047548 \tabularnewline
42 & 0.631253277469313 & 0.737493445061374 & 0.368746722530687 \tabularnewline
43 & 0.84989902846493 & 0.300201943070140 & 0.150100971535070 \tabularnewline
44 & 0.868992909776545 & 0.26201418044691 & 0.131007090223455 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.00140585050800878[/C][C]0.00281170101601756[/C][C]0.998594149491991[/C][/ROW]
[ROW][C]18[/C][C]0.000749324002815359[/C][C]0.00149864800563072[/C][C]0.999250675997185[/C][/ROW]
[ROW][C]19[/C][C]0.000711881260266661[/C][C]0.00142376252053332[/C][C]0.999288118739733[/C][/ROW]
[ROW][C]20[/C][C]0.000670370303346628[/C][C]0.00134074060669326[/C][C]0.999329629696653[/C][/ROW]
[ROW][C]21[/C][C]0.000187448398558828[/C][C]0.000374896797117656[/C][C]0.99981255160144[/C][/ROW]
[ROW][C]22[/C][C]3.90922133188768e-05[/C][C]7.81844266377536e-05[/C][C]0.99996090778668[/C][/ROW]
[ROW][C]23[/C][C]0.000478638218293698[/C][C]0.000957276436587396[/C][C]0.999521361781706[/C][/ROW]
[ROW][C]24[/C][C]0.000234507469143422[/C][C]0.000469014938286843[/C][C]0.999765492530857[/C][/ROW]
[ROW][C]25[/C][C]8.2089176518151e-05[/C][C]0.000164178353036302[/C][C]0.999917910823482[/C][/ROW]
[ROW][C]26[/C][C]2.73488971768266e-05[/C][C]5.46977943536533e-05[/C][C]0.999972651102823[/C][/ROW]
[ROW][C]27[/C][C]1.79419466235211e-05[/C][C]3.58838932470421e-05[/C][C]0.999982058053376[/C][/ROW]
[ROW][C]28[/C][C]5.55088738900961e-06[/C][C]1.11017747780192e-05[/C][C]0.99999444911261[/C][/ROW]
[ROW][C]29[/C][C]1.83927676296787e-06[/C][C]3.67855352593574e-06[/C][C]0.999998160723237[/C][/ROW]
[ROW][C]30[/C][C]1.17564147811592e-06[/C][C]2.35128295623184e-06[/C][C]0.999998824358522[/C][/ROW]
[ROW][C]31[/C][C]7.67908653421392e-07[/C][C]1.53581730684278e-06[/C][C]0.999999232091347[/C][/ROW]
[ROW][C]32[/C][C]6.21804287717982e-07[/C][C]1.24360857543596e-06[/C][C]0.999999378195712[/C][/ROW]
[ROW][C]33[/C][C]5.08026280877746e-07[/C][C]1.01605256175549e-06[/C][C]0.999999491973719[/C][/ROW]
[ROW][C]34[/C][C]2.33774347655197e-07[/C][C]4.67548695310394e-07[/C][C]0.999999766225652[/C][/ROW]
[ROW][C]35[/C][C]1.26082563710130e-07[/C][C]2.52165127420259e-07[/C][C]0.999999873917436[/C][/ROW]
[ROW][C]36[/C][C]6.20148206975187e-08[/C][C]1.24029641395037e-07[/C][C]0.99999993798518[/C][/ROW]
[ROW][C]37[/C][C]4.28475254370735e-08[/C][C]8.5695050874147e-08[/C][C]0.999999957152475[/C][/ROW]
[ROW][C]38[/C][C]3.06524279088880e-08[/C][C]6.13048558177761e-08[/C][C]0.999999969347572[/C][/ROW]
[ROW][C]39[/C][C]0.000172108200203505[/C][C]0.000344216400407011[/C][C]0.999827891799796[/C][/ROW]
[ROW][C]40[/C][C]0.0354870256232863[/C][C]0.0709740512465725[/C][C]0.964512974376714[/C][/ROW]
[ROW][C]41[/C][C]0.276729776952452[/C][C]0.553459553904904[/C][C]0.723270223047548[/C][/ROW]
[ROW][C]42[/C][C]0.631253277469313[/C][C]0.737493445061374[/C][C]0.368746722530687[/C][/ROW]
[ROW][C]43[/C][C]0.84989902846493[/C][C]0.300201943070140[/C][C]0.150100971535070[/C][/ROW]
[ROW][C]44[/C][C]0.868992909776545[/C][C]0.26201418044691[/C][C]0.131007090223455[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.001405850508008780.002811701016017560.998594149491991
180.0007493240028153590.001498648005630720.999250675997185
190.0007118812602666610.001423762520533320.999288118739733
200.0006703703033466280.001340740606693260.999329629696653
210.0001874483985588280.0003748967971176560.99981255160144
223.90922133188768e-057.81844266377536e-050.99996090778668
230.0004786382182936980.0009572764365873960.999521361781706
240.0002345074691434220.0004690149382868430.999765492530857
258.2089176518151e-050.0001641783530363020.999917910823482
262.73488971768266e-055.46977943536533e-050.999972651102823
271.79419466235211e-053.58838932470421e-050.999982058053376
285.55088738900961e-061.11017747780192e-050.99999444911261
291.83927676296787e-063.67855352593574e-060.999998160723237
301.17564147811592e-062.35128295623184e-060.999998824358522
317.67908653421392e-071.53581730684278e-060.999999232091347
326.21804287717982e-071.24360857543596e-060.999999378195712
335.08026280877746e-071.01605256175549e-060.999999491973719
342.33774347655197e-074.67548695310394e-070.999999766225652
351.26082563710130e-072.52165127420259e-070.999999873917436
366.20148206975187e-081.24029641395037e-070.99999993798518
374.28475254370735e-088.5695050874147e-080.999999957152475
383.06524279088880e-086.13048558177761e-080.999999969347572
390.0001721082002035050.0003442164004070110.999827891799796
400.03548702562328630.07097405124657250.964512974376714
410.2767297769524520.5534595539049040.723270223047548
420.6312532774693130.7374934450613740.368746722530687
430.849899028464930.3002019430701400.150100971535070
440.8689929097765450.262014180446910.131007090223455







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.821428571428571NOK
5% type I error level230.821428571428571NOK
10% type I error level240.857142857142857NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 23 & 0.821428571428571 & NOK \tabularnewline
5% type I error level & 23 & 0.821428571428571 & NOK \tabularnewline
10% type I error level & 24 & 0.857142857142857 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=36014&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]23[/C][C]0.821428571428571[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]23[/C][C]0.821428571428571[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]24[/C][C]0.857142857142857[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=36014&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=36014&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level230.821428571428571NOK
5% type I error level230.821428571428571NOK
10% type I error level240.857142857142857NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}